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A study of transitions in an undergraduate mathematics program 

Laura Broley and Nadia Hardy 

Concordia University in Montreal, Canada, l_brole@live.concordia.ca  

In this paper, we introduce an in-progress study of the transitions students face as 

they advance in their mathematics courses. Previous work has discussed the changes 

that occur in the transition from high school to university. With regards to the 

knowledge students are expected to learn, however, significant similarities have 

been noted: to do well in introductory university courses, students can learn to solve 

a particular subset of tasks through routinized techniques, with limited awareness of 

the supporting mathematical theory. In contrast, students in advanced courses are 

required to work with and on that theory. The first stage of our project aims to better 

understand this transition by building praxeological models of the knowledge to be 

learned in a succession of two introductory analysis courses.     

Keywords: Transition to and across university mathematics, teachers’ and students’ 

practices at university level, teaching and learning of analysis and calculus. 

INTRODUCTION 

Several studies have discussed the specific knowledge taught and learned in pre-

calculus, calculus, and analysis courses, from different perspectives: for example, 

concept image and concept definition (e.g., O’Shea, 2016), APOS theory (e.g., 

Martínez-Planell, Trigueros Gaisman, & Mcgee, 2016), and the Anthropological 

Theory of the Didactic (ATD; e.g., Bergé, 2016). Our starting point is the general 

and relatively vague question of when in an undergraduate degree in mathematics 

does a student need (need in the sense of to succeed in the course) to engage in 

mathematical activities that may substantially, or meaningfully, lead to developing 

mathematical practices. We consider and frame this question within the ATD 

(Chevallard, 1999), which provides theoretical tools for modelling any human 

activity or practice. The semantic distinction between these two words is essential to 

us. Our hypothesis is that the kinds of didactic constructs to which professors and 

students are exposed are decisive in fostering the emergence of practices out of 

collections of local, particular, and relatively short-lived activities. From the 

theoretical stance we take, this means the development of mathematical knowledge 

out of local, particular, and relatively short-lived mathematical activities.  

Previous research has found that the activities proposed to students in introductory 

calculus courses do not necessarily encourage the development of mathematical 

practices. Lithner’s (2004) study of the exercises in undergraduate calculus 

textbooks used in Sweden led to the conclusion that the majority of tasks students 

encounter can be solved by mathematically superficial techniques such as finding 

and copying a similar solution outlined somewhere in the same section of the book. 

When working in Spanish high school calculus classes, Barbé, Bosch, Espinoza, and 
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Gascón (2005) observed teachers implementing mathematically incomplete 

practices: they solved numerous tasks in hopes of guiding students in developing 

solid mathematical techniques, but struggled to introduce any lasting rational 

discourse (i.e., theoretical block) that produced or explained the techniques. Hardy 

(2009), who conducted task-based interviews with students in North American 

college calculus courses, showed that in the absence of such a theoretical block, 

students construct non-mathematical reasoning to support the highly routinized 

practical block they develop (i.e., the techniques and corresponding types of tasks).  

To describe the kinds of transitions students are expected to go through as they 

progress in their university mathematics coursework, Winsløw (2008) introduced the 

model depicted in Figure 1 below. The conjecture is that students encounter at least 

two types of transitions in the practices they are supposed to develop. The first 

requires them to gain some level of awareness of the theoretical block that was once 

absent from their exclusively practical work; the second occurs when elements of 

that theoretical block become part of the practical block with which they must 

engage autonomously. Think, for instance, of how some early university courses 

spend a significant amount of time in lectures elaborating previously scarce 

definitions, theorems, and proofs, which students may be expected to understand 

enough to quote in assignments or reproduce on exams. In contrast, more advanced 

coursework requires students to develop their own proofs, often involving the more 

abstract objects that were part of the theoretical block constructed in earlier courses. 

 

Figure 1: Transitions in university mathematics coursework (from Winsløw, 2008) 

A recent study suggests that in the context of undergraduate multivariable calculus 

courses, students are not yet required to go through Transition 1: the models of the 

knowledge to be learned in these courses show that students are exposed to a limited 

practical block (Π), with no need to work with or on the corresponding theoretical 

block (Λ; Brandes, 2017). This said, students are indeed expected to work with and 

on mathematical theory when they take advanced courses later on.   

A few questions arise from this:  

1. What does this “work with and on a theoretical block” look like in comparison 

to the routinized, principally practical activity in which students seem to be 

engaging in introductory courses? 



  

2. If the practices students develop in advanced mathematics courses can be 

modelled by the third stage shown in Figure 1, when, if ever, do students’ 

practices reflect the second stage, and what are the mathematical activities 

proposed to them in such contexts?  

The purpose of our study is to contribute to addressing these questions, and 

therefore, to the discussion of the transitions students face. To do so, we propose to 

model the knowledge at different stages in the didactic transposition process in two 

courses contained in what we will call the “analysis path” in a typical undergraduate 

mathematics program in North America (US and Canada). Ultimately, the goal is to 

reflect on the general question mentioned above: Can the activities in which students 

are obliged to engage lead to the development of mathematical practices (i.e., 

mathematical knowledge)?  

THEORETICAL FRAMEWORK  

“Activity and practice” 

As mentioned above, we have come to see the semantic difference between activity 

and practice as pertinent to our work. The ATD’s notion of praxeology provides a 

fundamental model for defining mathematical practice, which, in the context of the 

theory, is equated to mathematical knowledge. According to the model, any practice 

(or piece of knowledge) can be represented by a quadruplet [T, τ, θ, Θ] involving 

four interconnected components: a type of tasks T, which generates the practice, the 

corresponding collection of techniques τ developed to accomplish T, the discourse 

used to describe, justify, explain, and produce the techniques (i.e., their technologies 

θ), and the underlying theories Θ that serve as a foundation of the technological 

discourse. As students progress in their studies of mathematics, they engage in 

numerous activities, which progressively determine the practices they develop.  

As a strictly hypothetical example, we could imagine students in an introductory 

calculus course being asked to engage in the following activities, inspired by a 

commonly used calculus textbook (Stewart, 2008):   

a1: Estimate the area under the graph of  from  to  using 

four approximating rectangles and right endpoints. Sketch the graph and the 

rectangles. Is your estimate an underestimate or an overestimate? What happens if 

you repeat the exercise with left endpoints? (Areas and Distances, Section 5.1) 

a2: Evaluate . (The Substitution Rule, Section 5.5) 

a3: Determine if  is convergent or divergent. If it is convergent, 

evaluate it. (Improper Integrals, Section 7.8)  

If these were the first activities completed by students in the corresponding sections, 

we could expect their actions to be localized and particular. In other words, the 



  

solutions students produce would likely be the result of their engagement in a 

relatively isolated act of figuring out how to solve the specific given problem. As the 

students participate in more activities, however, they may be exposed to tasks of the 

same type, and may consequently begin to develop a related practice. By the end of a 

calculus course, for example, students will have typically solved a large number of 

problems involving the calculation of definite integrals by way of various integration 

techniques. From this, they may have learned to recognize other activities (e.g., 

 or ) as forming a type of task with a2, and therefore as 

requiring the same technique: making a substitution (not forgetting to change the 

bounds!), determining the anti-derivative of the new function, and calculating the 

difference of this anti-derivative evaluated at the bounds. In comparison, certain 

activities may be encountered by students only in insignificant (e.g., unevaluated), 

rare, and/or disconnected situations. The action of accomplishing those tasks may 

hence remain isolated and particular, never contributing to the development of 

practices. Activities like a1 or a3, for instance, might never be encountered beyond a 

few recommended exercises at isolated, unique moments in the course.  

Research confirms that the collection of activities given (and not given) to students 

play a crucial role in determining the kinds of practices they develop (and do not 

develop). Although students may seem to be learning mathematical practices, they 

may in fact be engaging in isolated activities or developing practices of a non-

mathematical nature. In her research, Hardy (2009) noticed that when first-year 

calculus students are given activities related to slightly non-routine tasks, they often 

apply techniques in a mathematically unjust way. For example, when asked to 

compute , 20 out of 28 students factored, seven of which did direct 

substitution first. Her analysis of students’ discourse during task-based interviews 

led her to conclude that the students tended to justify their techniques through 

perceived norms. She specifies, for example, that “it seems that students were doing 

substitution not to find the limit or to characterize an indetermination, but because 

that is ‘what you do first’” (p. 351). To explain her observations, Hardy (2009) 

discusses how the kinds of activities to which the students were exposed led them to 

develop such practices, composed of a limited practical block and non-mathematical 

technologies. The activities in which students participated did not only relate to sets 

of highly routinized tasks, they also required no form of mathematical justification. 

Engaging in such activities, students observed patterns that led to the construction of 

techniques based on arbitrary lists of steps that just seemed to work; at least enough 

to do well on assignments and exams.   

In a similar sense, we could imagine a student in our hypothetical example justifying 

their solution to the activity “integrate  over ” by 

saying something like: “first, find the antiderivative, then find the difference between 

the value at 1 and the value at -1, because that’s how we always do it!” An activity 



  

such as “integrate  over ”, might therefore elicit the following 

erroneous response: 

 

Unless of course the isolated activities, a1 and a3, were eventually, substantially, and 

meaningfully incorporated into developing the above non-mathematical practice into 

a practice more mathematical in nature.   

“Undergraduate mathematics coursework” 

As illustrated in the previous section, an anthropological perspective does not 

interpret students’ non-mathematical practices (or knowledge) as reflecting a 

common misconception inspired by difficulties inherent to a given mathematical 

concept. Rather, it sees such practices as resulting from a concrete situation within 

which the student finds themselves, under the influence of institutions (Douglas, 

1986). In the ATD, the word “institution” is taken in a wide sense. For example, 

mathematicians work within an overarching institution that we could call 

Mathematical Research (MR), where their praxeologies are shaped by various shared 

criteria (concerning consistency, beauty, explanatory power, efficiency, etc.), but 

survive only if they follow the strict rules of mathematical reasoning. The students of 

interest to us, in contrast, are subjects of the institution Undergraduate Mathematics 

Coursework (UMC), which was in large part created to train potential participants of 

MR. This said, various conditions and constraints within UMC can require and 

enable a network of praxeologies that is fundamentally different from that built and 

recognized by MR. The non-mathematical praxeologies described in the previous 

section provide some examples.  

To capture the transposition of knowledge as it moves from MR into UMC, 

Chevallard, and others (e.g., Bosch, Chevallard, & Gascón, 2005), have introduced a 

distinction between different types of knowledge (i.e. practice): 

 Scholarly Knowledge, produced and used by mathematicians; 

 Knowledge to be Taught, as determined by curricula, textbooks, and 

professors’ teaching plans;  

 Knowledge Actually Taught, according to professors’ actual interactions with 

students, e.g., in lectures; 

 Knowledge to be Learned, i.e., the knowledge students are expected to 

develop, which is often a transposed subset of the knowledge to be taught and 

actually taught, with the minimal core indicated by assessment tools;  

 Knowledge Actually Learned, which can only be predicted, through analyses 

of student work, in-class observations of students, or other specially-designed 

interactions with students, such as interviews or problem-solving situations.   



  

Although a lot can happen in university lectures, the minimal knowledge students are 

obliged to learn to pass their courses is determined by their assignments and exams. 

It is not surprising that the knowledge actually learned by students is often only a 

transposed subset of this minimal core. Hence, if we want to know what kind of 

knowledge students are or could possibly be developing in UMC, then we cannot 

restrict our exploration to curricula, textbooks, and teachers’ lecturing practices: we 

need to pay careful attention to the way in which students are assessed.  

Students’ learned knowledge in UMC may also be characterized as a progression 

through various sub-institutions: from secondary school to early university courses 

(e.g., in single and multivariable calculus), through to more advanced university 

courses (e.g., in real analysis, metric spaces, measure theory, and functional 

analysis), which may eventually lead to graduate studies and beyond. Programs can 

vary from school to school and from country to country. However, a common 

phenomenon in secondary schools seems to be that assessments focus solely on the 

practical block of mathematical knowledge. The teacher may be expected to know 

the theoretical block for explaining the material to students; but the students are 

typically not obliged or even invited to develop an awareness of the technology or 

theory, let alone how it is linked to the practical block (Barbé et al., 2005; Winsløw, 

Barquero, De Vleeschouwer, & Hardy, 2014). One observed result is that many 

students interpret mathematical knowledge (practice) as equivalent to identifying a 

type of task and applying the corresponding technique (Bergqvist, Lithner, & 

Sumpter, 2008). Several studies confirm that this same kind of situation can arise in 

early university coursework (e.g., Lithner, 2003; Hardy, 2009; Brandes, 2017).  

Indeed, over multiple years of coursework, students not only gain a particular view 

of what mathematical knowledge is, but they also develop knowledge that, when 

judged against the scholarly knowledge produced and used by mathematicians, is 

evidently non-mathematical – from the strategies they develop to identify tasks, to 

the discourses they use to justify these strategies and the techniques they choose. 

Nevertheless, as conjectured in the schema shown in Figure 1, a transition is 

expected to occur at some point: students are eventually required to develop 

knowledge that is completely and coherently mathematical. These circumstances lead 

Winsløw et al. (2014) to wonder about how teachers could help students accomplish 

such transitions. In parallel, we are inspired to validate, specify, and extend these 

researchers’ claims by constructing praxeological models of how the different kinds 

of knowledge produced in the didactic transposition process progress throughout an 

entire undergraduate degree. In other words, we are inspired to investigate more 

closely the nature of the mathematical training being received by future 

mathematicians in the progression of their undergraduate coursework.  

Of course, developing praxeological models to represent the knowledge (to be) 

taught and (to be) learned throughout an entire undergraduate degree is a hefty task. 

Within the context of our PhD project, we propose to accomplish a first stage, based 



  

on a subset of courses in one coursework path. Like in the Mathematical Research 

institution, Undergraduate Mathematics Coursework is divided into several sub-

institutions according to domain – e.g., algebra, geometry and topology, analysis, 

statistics, mathematical physics, or probability – each of which contain a grouping of 

courses, which can be placed in some chronological order according to their 

prerequisites. Having already carried out research in the early courses of an “analysis 

path”, this is the context that seemed most appropriate for our work.  

METHODOLOGY 

Although our project aims at modelling different levels of knowledge that can be 

identified in the didactic transposition process, in this paper we discuss only the 

modelling of the knowledge to be learned (KTL).  

Our research is conducted at a large, urban, Canadian university. The mandatory 

courses in the analysis path of an Honours Bachelor of Science in Mathematics 

include multivariable calculus (MVC) I and II, and mathematical analysis (MA) I, II, 

and III. Since previous work (Brandes, 2017) suggests that the KTL in MVC I and II 

is similar in nature to the KTL in calculus and pre-calculus courses, we decided to 

start by focussing our attention on the two courses that come next and are likely 

candidates for housing the transitions of interest to us: MA I and II.  

As mentioned above, the KTL represents the knowledge that students are expected to 

develop, which can be gleaned from the various activities in which they are invited 

to engage (lectures, assignments, and exams), as well as the materials that frame and 

support the activities (course outlines and textbooks). Since the minimal core of the 

KTL is represented in the assessment activities students must complete on their own, 

we have decided to ignore what happens in lectures and focus on the activities that 

comprise assignments and (practice) exams.   

MA I and II are institutions in themselves in that they enjoy some sort of stability. 

For various reasons, course outlines and assigned textbooks tend to remain the same 

from year to year. The courses also maintain the same assessment structure: students 

complete assignments on a regular basis during the term, a midterm exam halfway 

through, and a final exam, with most of their mark (90% or more) concentrated in the 

examinations. This said, the actual activities proposed on assignments, midterms, and 

finals have less stability in that they can reflect personal choices of the professors 

assigned to teach the course in a given term. On top of this, our approach to 

modelling the knowledge actually learned will involve task-based interviews with 

students after they have passed MA I or II. Hence, we have collected the assignments 

and (practice) exams proposed only by the professor(s) who would be teaching those 

students. For instance, from the two MA I professors teaching in Fall 2017, we 

collected eleven weekly assignments, seven practice midterms, six practice final 

exams, and the actual examinations they gave to their students (these professors 

worked together in that they gave the same set of activities to their students).  



  

To analyse such a collection of activities, we think about whether each activity is 

“isolated” or part of a “path to a practice”. An “isolated” activity may occur only 

once in the sense that no other activities engage students in accomplishing the same 

type of task. Since such activities are unlikely to contribute directly to the 

development of a practice, we reflect on why they are proposed. In comparison, the 

activities that belong to a “path to a practice” typically combine with other activities 

to expose students to a type of task. Our goal in studying these activities is to extract 

a theoretical model of the praxeologies that the ideal student (i.e., the student that 

receives a good passing grade) is expected to develop in the course. We start by 

constructing punctual praxeologies related to groups of non-isolated activities. 

Looking at the problem statements, we can establish the types of tasks (T) that 

generate the praxeologies. Determining the technologico-theoretical blocks ([τ, θ, 

Θ]), however, requires more data. We rely on the solutions a professor makes 

available to students to uncover the intended techniques, as well as portions of the 

expected theoretical blocks; and we complete the latter by checking the course 

outline and reading the relevant textbook chapters. The resulting collection of 

punctual praxeologies then becomes part of our data, which we use to construct more 

generalized praxeologies, think about how they are related to one another, and reflect 

on the nature of the KTL.  

Eventually, we plan to put the models of the KTL for MA I and II together and 

compare our results with what previous researchers have found in calculus and pre-

calculus courses. This, we hope, will allow us to discuss how the ideal student is 

expected to progress in the early stages of the analysis path. At the time of the 

INDRUM 2018 conference, we will have completed this initial theoretical stage of 

our project and will thus be able to share our results.  

SUMMARY AND EXPECTATIONS 

For a long time, mathematics students survive their courses based on developing a 

transformed version of a practical block, where they learn to recognize routine tasks 

and apply techniques to solve them in a sort of mechanical, naturalized, or 

normalized way, void of a mathematical theoretical block. At some point throughout 

an undergraduate degree in mathematics, however, the conditions for students’ 

survivability change dramatically and possibly abruptly: they are faced with 

activities that require them not only to fill the void of a mathematical theoretical 

block, but also to develop techniques for accomplishing tasks (e.g., proofs) that 

involve the abstract theoretical objects that have come out of hiding. Through 

modelling the knowledge the ideal student is expected to develop, as well as, 

eventually, the knowledge students actually develop in early analysis courses, we 

expect our project to bring about a more detailed and concrete understanding of 

praxeological “transitions” that have been theorized to occur, and give us some 

insight into how (or if) students adapt to them.  



  

Returning to the vague and general question that originally inspired our project, we 

ultimately hope to learn more about what students are actually learning throughout 

an undergraduate degree in mathematics. The empirical data we collect will be a 

contribution to largely anecdotal discussions about when (if at all) students’ 

knowledge is invited to become, and actually becomes, coherently, completely, and 

complexly mathematical, just like the scholarly knowledge produced and used in the 

institution of Mathematical Research. The significant difference between elementary 

and advanced courses, as professors gain more freedom and teach topics more 

closely related to their field of study, leads us to predict that students are eventually 

required to develop mathematical practices. After all, in spite of the apparent 

disconnection that is often observed between university mathematics courses and 

mathematical research (cf. Broley, Caron, & Saint-Aubin, 2017), the field of 

mathematics continues to live on, with new mathematicians emerging from the 

coursework that made up their mandatory professional education. In any case, 

through studying the principal conditions that currently shape the activities in which  

undergraduate mathematics students engage, we feel that we will be in a better 

position to discuss realistic and meaningful ways of encouraging these students to 

develop practices that are truly “mathematical”, within the confines of educational 

institutions. This, we hope, will serve as complementary to the recent surge of 

studies (cf. Barquero, Serrano, & Ruiz-Munzon, 2016) aiming to explore innovative 

teaching approaches that question not the nature of the knowledge developed, but the 

dynamics of the knowledge development.  
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