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Abstract

In this work, we develop a new class of numerical schemes for collisional kinetic equations in
the diffusive regime. The first step consists in reformulating the problem by decomposing the
solution in the time evolution of an equilibrium state plus a perturbation. Then, the scheme
combines a Monte Carlo solver for the perturbation with an Eulerian method for the equilibrium
part, and is designed in such a way to be uniformly stable with respect to the diffusive scaling
and to be consistent with the asymptotic diffusion equation. Moreover, since particles are only
used to describe the perturbation part of the solution, the scheme becomes computationally
less expensive - and is thus an asymptotically complexity diminishing scheme (ACDS) - as
the solution approaches the equilibrium state due to the fact that the number of particles
diminishes accordingly. This contrasts with standard methods for kinetic equations where the
computational cost increases (or at least does not decrease) with the number of interactions. At
the same time, the statistical error due to the Monte Carlo part of the solution decreases as the
system approaches the equilibrium state: the method automatically degenerates to a solution
of the macroscopic diffusion equation in the limit of infinite number of interactions. After a
detailed description of the method, we perform several numerical tests and compare this new
approach with classical numerical methods on various problems up to the full three dimensional
case.

Mathematics Subject Classification: 65M06, 35B25, 82C80, 82D10, 41A60
Keywords: Kinetic equations; Diffusion scaling; Asymptotic preserving schemes; Asymptoti-
cally complexity diminishing schemes; Micro-macro decomposition; Monte Carlo methods.

1 Introduction

Kinetic equations are commonly used to describe several phenomena arising in physics such as
rarefied gas [5, 25], neutron transport [10], radiative transfer [11], plasmas [6] or electron flow in
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semiconductors [49]. In the description of these problems, one often encounters different spatio-
temporal scales which are due to the coexistence of equilibrium and non equilibrium phenomena.
This makes the problem hard to solve from the numerical point of view: the full kinetic model has
to be considered everywhere to capture the correct physics. This means that the numerical method
should deal with the high dimensionality issue and with different scales at the same time. Then,
whenever a direct discretization is considered, strong constraints on the time step are required which
involves huge computational cost. In addition, passing from the microscopic to the macroscopic
description may change the nature of the equations and the numerical method should be able
to follow this transition. This is the specific case considered in this work, in which equations
pass from a hyperbolic to a parabolic structure [4]. Consequently, the characteristic speeds of the
hyperbolic system grow to infinity as the scaling parameter tends to zero [4, 13] causing severe CFL
restrictions in standard explicit numerical methods. Unfortunately, the alternative consisting in
using macroscopic models can not be an option since macroscopic models are not able to capture non
equilibrium effects. Thus, a natural idea consists in performing a domain decomposition approach
and use the suitable model in the appropriate region [1, 2, 9, 21, 19, 18, 30, 32, 33, 35, 36, 37, 38,
45, 55]. This strategy is somehow optimal in terms of efficiency since the expensive kinetic model
is used only when necessary, but it requires to connect the macro and micro models which is not
an easy task at both mathematical and numerical levels, even if efficient approaches have been
recently developed [27, 56]. Another way to handle such multiscale nature of the phenomena is to
use asymptotic preserving (AP) methods [7, 8, 17, 26, 40, 31, 53, 34, 39, 41, 42, 43, 44, 50] which
enable to overcome the numerical stiffness and to use time and space steps which are independent
of the stiffness parameters which characterize the fast scales. However, while this approach permits
to solve the problem related to the choice of the small time and space steps, it does not overcome
the cost related to the solution of the kinetic model even in the equilibrium regions where a much
less complex asymptotic model could be used.

In this work, we propose a numerical method which tries to take the best of the above two
approaches: domain decomposition and asymptotic preservation. The method is based on a hybrid
Monte Carlo strategy [12, 46] for the underlying kinetic equation which follows the ideas introduced
in [24, 23, 20] and more recently in [16, 15, 14] in the context of gas dynamics. The problem
addressed is the solution of a kinetic type equation under a diffusive scaling which in the limit
gives rise to a parabolic type equation. More in details, the equation we consider is the following
radiative transport equation (RTE)

o f + év -Vxf = E%(PM =), ft=0,x,v)= fo(x,v), (1.1)

where f(t,x,V) represents the density of particles in phase space with x € Q C R%, v € V = R%,
d, € N* is the dimension in space, d, € N* in velocity space and e the scaling parameter. The
density p(t,x) of the particles is given by

= i = 71 ex —ﬂ
p(t,x) = /Vf(t,x,v)dv, while M(v) = (271-)%/2 p( 5 ) (1.2)

is the so-called absolute Maxwellian. Finally fy(x,v) is a given initial condition and we consider
periodic boundary conditions in space. To achieve our goal in this context, we proceed as follows:
we couple a Monte Carlo method for the solution of the kinetic model with a finite volume method



for the solution of the macroscopic one [24, 23, 20]. However, instead of solving directly the
kinetic model, we reformulate the original problem by using a micro-macro decomposition strategy
[47, 44, 3, 17, 14, 15]. This permits to derive an equivalent set of equations which expresses the
time evolution of the macroscopic part p(t,x)M(v) plus the time evolution of the perturbation
g(t,x,v). Our strategy will be shown to have a low computational complexity in the fluid regions,
which then makes it competitive with the computational complexity of the domain decomposition
methods in these regions. In other words, our method has almost a fluid complexity in the fluid
regions. Moreover, it has even lower complexity in the kinetic regions compared to other approaches
(like AP or domain decomposition methods), since only the deviation from equilibrium has to be
discretized with the Monte Carlo method, not the whole distribution f. Successively, we derive
our numerical method by using an asymptotic preserving approach for the microscopic part of the
solution which overcomes the parabolic stiffness and freezes the characteristic speeds in terms of
the scaling parameter.

Since the kinetic equation which describes the evolution of the perturbation is solved by a
particle approach, the result is a scheme in which the computational cost depends on the magnitude
of the perturbation. The larger is the fraction of the solution far from equilibrium, the larger is the
number of particles used. Moreover, since this fraction changes with time and space, the method
automatically adapts itself to optimize the solution in terms of computational cost and reduction of
the statistical error. In fact, the part of the solution described by particles is the lowest possible at
each instant of time. This means that the proposed method realizes a variance reduction method
whose effectiveness depends on the regime studied. As and where the equilibrium is approached,
the number of particles in the Monte Carlo method is reduced, which decreases the computational
cost enough to make it almost equivalent to the computational cost of a classical numerical method
for the diffusion equation. With respect to standard AP schemes the reduction of the complexity
is not only due to the overcoming of the stiffness of the collisional scale, but also to the reduction
of the dimensionality of the problem in the diffusion asymptotics.

The rest of the paper is organized as follows. Section 2 is concerned with the presentation
of the model, the derivation of the micro-macro equivalent model and its diffusion asymptotic.
In Section 3 we present the asymptotically stable discretization of the microscopic model and a
Monte Carlo Lagrangian discretization is proposed. In the same section, the discretization of the
macroscopic part by a suitable Eulerian scheme that avoids the parabolic constraint on the time
step is discussed. Section 4 is devoted to numerical results and analysis of the performances of
the proposed method by treating problems from one up to three spatial dimensions. Finally, some
remarks conclude the work in Section 5 together with an outlook on future researches.

2 Micro-Macro decomposition and the limit diffusion equation

In this section, we introduce the micro-macro decomposition of (1.1) for the distribution f [44, 3, 47]
which permits to separate the time evolution of the equilibrium part from the time evolution of the
perturbation part. This reads

f(tv X, V) = p(t, X)M(V) + g(tv X, V)v ,O(t, X) = <f>(t’ X) (2'1)



with M (v) the Maxwellian equilibrium already introduced, i.e. a Gaussian distribution centered
in zero with variance one. The non equilibrium ¢ satisfies by construction for all times

(9) =0 where (f) = /Vf(v)dv (2.2)

with V' = R%. In the following, we use the notation Il¢ = (¢)M to indicate the orthogonal
projection of a function ¢ into the null space N of the relaxation operator (p(t,x)M (v)— f(t,x,v)).
With this notation, the so called microscopic-macroscopic (micro-macro) model reads

1
Oip+ —(v - Vyg) =0,

i ) (2.3)
g + R [V VxpM + (I = )(v - Vxg)] = ~ 29

The above model is equivalent to the original one (1.1) and is obtained as follows. We first plug

in (1.1) the decomposition (2.1). This gives
1 1 1
OypM + Og + oV VxpM + oV Vxg = — 29 (2.4)

Then, we apply (I — IT) with I the identity operator to this equation and use IIg = 0, II(d;g) = 0,
II(vM) =0, II(pM) = pM to get the second equation of (2.3).

On the other hand, applying II to equation (2.4) gives the first equation of (2.3). Now, when ¢
goes to zero, one gets from the second equation of (2.3)

g = —e(v-VxpM) + O(£%). (2.5)
Then, the macroscopic equation becomes
Oip = (v - Vx(v - VupM)) = O(e),
which gives
Op — Axp = O(e).

The limit diffusion equation is then obtained by passing to the limit € — 0

Bip — Axp = 0. (2.6)

3 A new asymptotically complexity diminishing scheme (ACDS)

In this section, we present the new numerical method to solve equation (1.1). The main difficulty
related to the derivation of a numerical scheme is due to the fact that the scaling parameter £ can
range of several order of magnitude both in time and space. Thus, in the situation in which the
scaling parameter is small, the problem becomes stiff and in particular this causes the characteristic
speeds to grow to infinity. Among the possible solutions, the class of asymptotic preserving method
represents certainly a good choice to tackle the method [26, 8, 17, 15], they permit to choose the
time step independently of the stiffness of the underlying equation remaining consistent and stable.
Here, we propose an alternative which enjoys the same consistency and stability properties but, in



addition, it also permits to reduce the numerical complexity (and then the computational cost) of
the problem.

Our first step is presented in the following paragraph and follows the strategy of [15]. Indeed,
we propose a reformulation of the micro-macro system (2.3) which permits to surround the stiffness
of the transport term. We then propose a particle method to solve the reformulated microscopic
equation.

3.1 A time discrete reformulation

The development of a particle-based scheme for equation (1.1) or equivalently for equation (2.3)
involves a splitting between the transport and the collision parts. However, while the collision term
can be taken implicit, this cannot be done for the transport part. Avoiding the costly inversion of
the advection operator, since this transport part is stiff, its exact resolution is faced to the issue
of unbounded characteristic speeds. In order to bound the characteristic speeds, we proceed as
follows. We first rewrite the micro part of (2.3) by multiplying it by e/<*. This reads

2
et/a

0(e"% ) = ——F (p.9). (3.1)

where F (p, g) is given by
F(p,g) =v - -VxpM +v-Vxg— (v-Vxg) M. (3.2)

We denote now by At > 0 a time step and set t" = nAt with n € N. By integrating (3.1) on
[t", 1" 1], one gets

1t
o) = e AEg(er) = 2 [V i) ()
tn
and then up to an error O(At?)
gty = e B g(en) — e(1 — B F (p(t7), g(#7)) + O(AP).

Now, one can observe that the above equation can be rewritten as

n+ly _ qn e—At/e? _ _ o At/e?
g(t )At g(t ) _ X 19(75”) — 51T]:(,0(t"),g(t")) + O(At), (3‘3)

which can be recast, up to an additional error of order O(At), as

e—At/62 -1 1— e—At/62

o9l = o glt") — e

At F(p(t™),g(t")) + O(At).

We now define the first-order in time reformulation of (2.3) as

1

Op + gvx (vg) =0, (3.4)
e—At/E2 -1 1— e—At/€2

Org = TQ - ET}-(P, 9), (3.5)



with F (p, g) given by (3.2). Let us observe that the evolution equation (3.5) for the perturbation g,
unlike the second equation of (2.3), does not contain any stiff term. In particular, the characteristic
speeds are bounded with respect to €. Therefore, the approximated model (3.5) appears to be more
suitable for a numerical discretization which is constructed following the characteristics equations.
We recall that this strategy bears some similarities with the so-called Implicit Monte Carlo (IMC)
approach (see [28, 48, 29, 22]) which was originally introduced to overcome the stiffness due to the
collisional part of the kinetic equation. However, while the IMC method is usually applied to the
full unknown f and efficiency is generally lost close to the asymptotic limit, here the Monte Carlo
approach is used to solve the perturbation g and both efficiency and accuracy increase when the
scaling parameter goes to zero.

Finally, let us remark that this reformulation is consistent with the original model (2.3) in the
following sense: when At — 0, (3.5) converges towards the original microscopic equation of (2.3)
for a fixed € > 0. Let us finally stress that higher order (in time) reformulations of the microscopic
model are possible. We do not discuss this possibility here and we refer to [15] for the derivation
of a second order approximation of the micro equation of (2.3) which is smooth in e.

3.2 The Monte Carlo discretization for the perturbation equation

This subsection is devoted to the derivation of a particle based numerical scheme for equation
(3.5). The particle method is based on a time splitting which separates the advection part from
the interaction part. It reads

1. Transport:
1— e—At/62
Oig + ¢ A7 v-Vyxg =0, (3.6)
2. Interaction:
e—At/€2 -1 1— e—At/e2
Org = Al g—¢€ AL (V- VxpM — (v - Vxg)M). (3.7)

The type of scheme we consider is based on stochastic approach and it first consists in replacing the
continuous function g(¢,x,v) by a set of N,(¢) particles which occupy random positions x;,(¢) € R
with random velocities vy (t) € R% and weights wy at time ¢ sampled accordingly to g(t,x,v) as
detailed later on. Thus, we consider the following particle approximation of g:

Np(t)
g(t,x,v) ~ u(t,x,v) = Z wrd(x — x5 (1))0(v — vi (1)),
k=1

in which ¢ is the usual Dirac distribution and u(t,x,v) is a so-called empirical distribution. Let us
observe that the above choice corresponds to constant weights wy while the number of particles in
the domain may change with time. An alternative particle approach may consist in taking time-
dependent weights wy(t) while maintaining constant their number [47]. Starting from the empirical
distribution, one needs to reconstruct the particle densities in phase space during the time evolution
of the solution. Restricting ourselves to the one dimensional case for simplicity, these densities are



obtained by introducing a mesh in the phase space and computing the histogram on this mesh in
the cell centers x; and vy with corresponding mesh sizes Az and Awv:

1 zi+Az/2  pug+Av/2
oltzio) = x| s /W_M - dpt, 2, v). (3.8)

In practice, we use the following formulae

1
g(t,xi,ﬂg) - M Z Wi,
k=1,...,Np(t)
(zk(t),v (8))EC; e

where C;y = [z; — Azx/2,xz; + Az /2] x [vp — Av/2,v0 + Av/2]. The extension to the multidimen-
sional case of such reconstruction is straightforward.

It remains to define the weights wy. This is done as follows. We first define the mass m, of an
individual particle representing a portion of the distribution f(t = 0,x,v) as

1
= t= . .
my N, =0) /Rdm » flt=0,x,v)dvdx (3.9)

Successively, we assign to a particle a positive or negative weight. This is a consequence of the
fact that the perturbation ¢ is not positive everywhere and this contrasts with the usual particle
methods which are applied on the full distribution function f (in this case particles have only
positive weights since f is positive by definition). Thus, the weights wy are chosen either positive
wi = my, if k belongs to the subset of the N, (t) particles used to represent the positive part of
the microscopic function g, i.e. k € N C [1,N,], or negative in the opposite case wy = —m,, if
k€ N= C [1,N,]: the subset of the particles used for representing the negative part of g. For
consistency we have N T NN~ = (), while the accuracy of the method is related to the choice of the
mass my: smaller is the mass m,, larger is the accuracy of the method.
At time ¢t = 0, the number of particles is given by

NO’jE:j:i E(t = 0,x,v)dvdx
mp Ris JRdo g ) Ay )

where the positive (respectively the negative) part of g is
9" = (g£g)/2 (3.10)
Since the integrals of g% have no reason to be integers we associate to any real number a the integer
la] with probability 1—a+|al

and the integer
la| +1 with probability — a — [a]

where |a] is the integer part of a. All the real expressions defining integers have to be interpreted
with the above meaning.



In the sequel, we denote by C;, C R% x R% the cell centered around the point (x;,v,) and by
for (resp. NZ’L ;) the number of positive (resp. negative) particles in Cj, at time ¢". Initially, we
use in the 1-dimensional framework the following definition

1 zi+Az/2  pog+Av/2
NZO;E = i—/ / gi(t =0, z,v)dvdz,
Mp Joi—Ax/2 Jv—Av/2

and approximate it by N, 0.+ — :l:AxA” gt(t = 0,z4,v7). The extension of this definition to the
multidimensional case is stralghtforward

For the positive particles in C; 4, the sampling is then defined as follows: for all k =1,... N, 2 f,
the velocities Vg are assigned to vy, the positions xg are uniformly distributed in the cell C; defined
for d, = 1 by C; = [v; — Az/2,2; + Az /2] (this notation is generalized in the multidimensional
case), and the weights wy = m,. The same strategy is used for negative particles, expects the
weights that are defined as wy, = —m,.

Moreover, we introduce N, * = => Zn gi and N/' = N 4 N/"" the total number of particles
in C; at time t", n > 0, and ﬁnally N" = z NI

Thanks to the above described setting and notations, we are now ready to detail our algorithm
step by step. Thus, we start with an initial sampling of the N,(t = 0) particles (xg,vg) which
approximates the initial micro unknown g(¢t = 0,x,v), as described previously. Then at each time
step At, we follow the splitting procedure presented at the beginning of this subsection.

1. We solve the transport part by shifting particles
X = X} 4 e(1 — e AU )y, (3.11)

The velocities of the particles do not change in this step. This defines an intermediate
empirical distribution from which an intermediate particle density §"(x,v) can be recovered
by the formulae

J"(x,v) ~ p"(x,v) = Zwké (x —x}o(v — Vi) (3.12)

and then used for solving the next step. In particular, this gives the values §"(x;,vy) in the
cell C; 4. In the 1-dimensional case, the formulae writes

- 1
k=1,....N}
(mZ+1 Uk)eci,z

and is easily extended in the multidimensional case.

Since particles have moved in this transport part, we denote by NZ" + (resp. NZ" ") the

number of positive (resp. negative) particles in C; after the transport step, and we define
NP = N"T 4 N"T

2. We solve the interaction part by reporting dyg ~ gn+A1t_gn into (3.7):

gntl = e—At/52§n +(1— e—At/EQ)E[ — V- Vep"M + Vy - <v§">M], (3.14)



where the function ¢" is defined by (3.13). In the following we give details about how this
step is solved with stochastic particles.

One can observe that ¢"*! in (3.14) is written as a linear combination of §" and a given
analytic function in v. At the Monte Carlo level, the above formulae can be interpreted in
the following way:

—At/e?

e with probability e , the distribution ¢"*! remains to be §*,

e with probability (1 — e At/ 62), the distribution ¢"*! is replaced by a new distribution
given by P"(x,v) =¢[ — v Vxp"M + Vyx - (v§")M].

In practice, this means that

At/e?

e a fraction e~ of particles is kept with unchanged velocity and position. More pre-

cisely, in each cell C; we keep e 2t/ e NZ" particles. The particles are picked and discarded

randomly since there is no dependence of the coefficient e =2t/ ¢ on the velocity.
i —At/e? n,+ . c . ,Pn’:t(Xi, V)
e One samples a fraction (1—e )M, particles from the distribution T
[/, Prrdedy

where the positive and negative parts are defined like in (3.10).

More in details, to samples the M" o+ particles, we consider a piecewise constant discretization
of P™*(x,v), where gradients Vyp" and Vy - (v§") are approximated by central differences.
In practice, in each cell C; ; we create M l}i particles with weights +m,,. In the 1-dimensional
case, for example, we have that 7

n 1 zi+Az/2  pupgt+Av/2
M = —/ / + P (2, v)dvd,
’ Mp Jo;—Az/2 Jv,—Av/2

is approximated by MZ" éi = i%?’”’i(azi,w). To these particles, we assign velocities
Vi = vy, positions x}! uniformly distributed in the cell C;, and weights wj, = £m,. Moreover,
since only a fraction (1 — et/ 52) of the sampled particles is needed for the next time step,
we directly sample this smaller amount of particles instead of sampling the full set and then
discarding a part. This automatically allows to diminish the number of used particles as
¢ — 0. Let us finally remark that a simple sampling technique is used here but other more
efficient sampling strategies can be used (such as acceptance/rejection sampling for example
(see [51] for instance)). Finally, for the next time step the number of particles becomes
N = e‘At/€2Nf + M;" and the above procedure can be iterated to advance in time.

The method described deserves some remarks. First, it permits to overcome the stiffness related
to the characteristic speeds allowing for time steps independent of the scaling parameter €. Second,
it automatically diminishes the computational complexity as ¢ — 0: the number of particles dimin-
ishes exponentially with the scaling parameter. This is opposite to standard Monte Carlo or more
general particle approaches for kinetic equations, where the computational complexity remains un-
changed with e. This highlights the asymptotically complexity diminishing (ACD) property of our
strategy.



3.3 A finite volume method for the macroscopic equation

In this subsection, we focus on the space-time discretization of the macroscopic equation (3.4). One
natural choice would be the following time discretization (see [44])

Y2

A A TR TS T
A +€Vx (vg"T) =0, (3.15)

n+1

where the value g"™! would be recovered from the Monte Carlo solution of equation (3.5). This
would permit to overcome the stiffness in (3.15) and would lead to a numerical scheme which is
stable for all time steps and is consistent with the limit diffusion equation scheme. However, due to
the stochastic approximation, ¢"t! may suffer from noise which will be passed on the macroscopic
unknown p"*t!. This statistical noise, inherent to particle methods, will be amplified by the factor
1/e so that from one side it would be more difficult to stabilize a finite volume method and from
the other side the asymptotic behavior could be lost. To overcome this drawback, we then propose
to separate in the expression of ¢"*! given by (3.14) the macroscopic term containing p" which
gives rise to the limit diffusion equation (2.6) from the microscopic ones.

Thus, starting from (3.14), let us first compute (v - V,g"t1)

<V . vxgn+1> _ e—At/g2 (V ] Vx§n> _ 8(1 . e_At/EQ)
(v Vx (v Vxp"M)) = (v - Vx ((v - Vxg")M))).

Since (v - Vxg)™ does not depend on v and (vM) = 0, we get
(v - Vyg"™h) = e At/e? (v -Vxg") —e(l — e_At/EQ)(V -Vx (v-Vxp"M))
and finally
(V- Vig"thy = e B (v . W, ™) — e(1 — e 21" Ay p™. (3.16)

Plugging expression (3.16) into the macro equation (3.15), we get

n+1 n
u + le—At/€2 (V . Vx§n> o (1 o e—At/eQ)Axpn —0.
At €
We now observe that the above time discretization permits to remove the stiffness that appeared in
(3.15) when € — 0, but the diffusion turns out to be explicit. Therefore, this requires a parabolic
CFL condition of type At < CAz?. To avoid such restrictive condition, an implicit treatment of
the asymptotic heat equation may be adopted so that the time discretization of the macro unknown

becomes

n+l _ n 1
F e+ 2T (v — (L= e A . (3.17)

Note that this choice allows larger time steps, and that equation (3.14) may be modified accordingly
in this case:

gn+l — e—At/€2§n 4 (1 o C_At/EQ)E[ — V- vxpn+1M + Vx . <V§n>M] . (318)

Luckily, equations (3.17) and (3.18) can still be solved separately by first solving implicitly equation
(3.17) which needs only the knowledge of g™ which is obtained by the advection step of the time

10



splitting algorithm described in (3.2). Successively one can solve (3.18) with the value p"*! found
in (3.17).

We finally discuss the space discretization. We choose for (3.17) a simple centered finite dif-
ference approximation of Vy - (v§"™). Concerning the space approximation of the Laplacian term,
we use an ADI (Alternating Direction Implicit) method (see [52]) to avoid the inversion of large
matrices in the multidimensional cases, still avoiding parabolic CFL condition. We give details in
the two-dimensional case d, = 2 in space (x = (z,y)). In this case, the method reduces to the
following splitting, starting from p".

1. We solve over a time step At the equation Oyp + %e‘At/Ez (V- V") — (1 — e 29, p =0,
using a Crank-Nicolson time discretization to get p*.

2. Starting from p*, we solve over a time step At the equation 0;p + %e_m/ez (v-Vxg" —(1—
e~ At/ €2)(‘?yyp = 0, using a Crank-Nicolson time discretization to get p"**.

Given x; = Timin + (1 — 1) Az, yj = Ymin + (J — 1)Ay, a cartesian mesh of size (Axz, Ay) with N,
and N, points, we define p}; an approximation of p(t",z;,y;), and (vg"); ; an approximation of the
first moment (vg(t",x;,y;)), with v = (vy,v,). Then, the corresponding time-space discretization
is the following.

1. For each fixed j such that 1 < j < N, solve the one-dimensional system of size IV,

At —A 2 At —A 2 At —A 2
—oaple YN+ (1 t Rz e )) i~ gazl—e YEYpr
_ At arjer ({ad"ivry = (Wef"icny | (00" ig1 = (048")ij1
b 2 2Ax 2Ay
ﬁ(l B e—At/e2)pln+17j —2p5; + i

2 Az? '
which furnishes the intermediate values p7; i

2. For each fixed ¢ such that 1 <+¢ < N,, solve the one-dimensional system of size IV,

- ~ (1 - e_At/E2) Koo + <1 + ﬂ(1 — e_At/E2)> n+l _ At (1 _ e—At/az)pn—i-l

2Ay? Pij+1 Ay? Pii T oAy i.j-1
o At arjer (g ivry = (eg"icny | (0" i1 = (048")ij1
b 2 2Ax 2Ay
+§(1 B e—At/EQ)’OZj-‘rl — 205 + P
Agy? ’

which gives the value of the density at time n + 1: pﬂ'gl <N,
It is known that the natural extension to the three dimensional case of the above ADI method
is conditionally stable (i.e. At = O (sz)). Consequently the resulting micro-macro method is
also conditionally stable in the full three dimensional case. However, some unconditionally stable
variants of the ADI method have been derived, for instance in [54]. Alternatively, a fully implicit
scheme (which involves the resolution of a linear system in p) can be used. In both situations, the
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resulting full micro-macro method can be modified to become unconditionally stable.

We conclude this section by stressing that the proposed method is globally unconditionally
stable, independently of e, thanks to the two following ingredients: (i) the approximation of the
microscopic part is unconditionally stable due to the reformulation and the use of a particle method;
(74) the approximation of the macroscopic part is free from the CFL parabolic condition due to the
use of a implicit or semi-implicit method for the diffusion term.

4 Numerical results

We present in this section several numerical results with the scope of understanding the behaviors
and the characteristics of the proposed method. The two first subsections aim at validating the
Hybrid Micro-Macro Monte Carlo scheme described in the previous section. They concern four
dimensional phase space experiments (d, = d, = 2). In these cases, our method is compared to
other known approaches: namely a micro-macro grid method (see [17, 44]) considered as a reference,
a full particle scheme performed on the original distribution function f, or a finite difference method
for the asymptotic diffusion equation. Diagnostics on macroscopic variables as well as v-dependent
quantities are presented. Numerical cost reduction measures - linked to the ACD property - are
discussed, in order to point out the efficiency of our method. After these validating tests, we
highlight other advantages of our method, namely the possibility of considering space-dependent
scaling parameter € and the performances in higher dimension. To that aim, in the third subsection,
we present a slightly different model, in which a space-dependent collisional frequency is considered.
We show how the Hybrid Micro-Macro Monte Carlo method is automatically able to adapt the
number of particles to the collision frequency. Finally, we propose a full 3D in space and 3D in
velocity test case to show the ability of our approach to deal with problems of physical relevance.

4.1 Two-dimensional test cases with constant scaling parameter and equilib-
rium initial condition

This subsection is devoted to 2D-2D numerical results in the constant e case and with an equilibrium
initial condition given by

f(t=0,x,v) = p(t=0,x)M(v), x € [0,47]?, v € R? (4.19)
with p(t = 0,x) = 1+% cos ($) cos (%), M(v) = % exp (—%), so that g(t = 0,x,v) = 0. Periodic
boundary conditions are imposed in space. The aim is to compare our Hybrid Micro-Macro Monte

Carlo approach, referred to as ”MM-MC” in the sequel, with other methods. Namely, we compare
the MM-MC with the following methods.

e A micro-macro grid approach (referred to as "MM-G”). Considering the model described by
equations (3.4)-(3.5), g is discretized on a grid in space and in velocity. This method has been
shown to be uniformly stable independently of the scaling parameter ¢ and asymptotically
consistent with the diffusion equation (see [44] for details). When the meshes are refined
enough, we will take the solution provided by MM-G as a reference solution for comparisons.
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Figure | Scheme | N, N, | m, Ny, , Ny, | At € T
la MM-MC | 128 107° 0.1 0.0001 | 2
1b MM-MC | 128 1076 0.1 0.1 2
lc MM-G 128 10 0.01 0.0001 | 2
1d MM-G | 128 10 0.0005 | 0.1 2

Table 1: Numerical parameters for the MM-MC and the MM-G methods.

e A full particle method (referred to as ”Full MC”). We use a classical particle method directly
on model (1.1). We refer to [6] for details about this approach. At the limit & — 0, this
method suffers from a severe constraint on the time step: it has to be of order 2. For this
reason, we shall only use it in regimes where ¢ is of order 1.

e A finite difference discretization for the limit equation (referred to as ”Limit”). When the
scaling parameter ¢ is small, we use finite differences in space and an ADI Crank-Nicolson
scheme in time for discretizing the limit diffusion equation, as explained in Subsection 3.3.

The solution of a refined MM-G will be taken as a reference solution.

Limit and intermediate regimes. First, we check the asymptotic behavior of our MM-MC
method in the limit (¢ = 0.0001) and intermediate (¢ = 0.1) regimes and verify that the right limit
is reached.

The deviation from equilibrium for the different values of the scaling parameter can be measured
by performing a diagnostic on the non equilibrium part of the momentum variable (v, g)(t,x). To
that aim, in Figure 1, we report the momentum at the final time of the simulation (v, ¢)(T = 2,x).
This quantity is fixed to zero at the beginning, in fact equilibrium initial data are chosen, and it
should remain zero in the limit ¢ — 0. Table 1 reports the numerical parameters chosen for the
simulations.

For ¢ = 0.0001 (respectively £ = 0.1), results given by the MM-MC approach are presented in
Figure la (respectively 1b) while results given by the MM-G approach are presented in Figure 1c
(respectively 1d). We observe from the simulations that the component of the momentum given
by the perturbation g diminishes as € goes to zero, as theoretically expected. So we can claim that
both approaches share a good asymptotic behavior, i.e. are asymptotically consistent. Moreover,
we can observe that the MM-MC method produces some statistical oscillations which automatically
diminish when the scaling parameter decreases, since the number of particles used in the simulation
is proportional to the perturbation g (let us remark that when e = 1076 there is almost no particles
at T = 2). We emphasize that this noise can also be reduced by imposing a higher number of
particles, or equivalently a smaller typical weight m,, for each particle.

We finally compare the results by considering the slice y = 0. Figure 2a shows the slice density
p(T = 2,z,y = 0) while in Figure 2b the slice momentum (v,¢)(T = 2,2,y = 0) for ¢ = 0.1 and
e = 0.0001 is shown. We can finally claim that for these test cases, the MM-MC method is able to
reproduce the correct solution identified by the reference furnished by the MM-G scheme.

Concerning the choice of the time step, the MM-MC method is stable independently of the time
step At. On the contrary, the MM-G scheme, as other grid based schemes, suffers from a constraint

13



MM-MC, £=0.0001, T=2 MM-MC, £=0.1, T=2

0.015
0.0075
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o

-0.0075
-0.015

(a) MM-MC method, T'= 2, £ = 0.0001 (b) MM-MC method, T'=2, e = 0.1

MM-G, £=0.0001, T=2 MM-G, £=0.1, T=2

0.01
0.005

1x10710

<V, &>
<v, &>
S

-0.005

1x10710 -0.01

(¢) MM-G method, T' = 2, e = 0.0001 (d) MM-G method, T'=2, ¢ = 0.1

Figure 1: The component of the momentum given by the perturbation g, (v,g), is shown for the
MM-MC and the MM-G methods and for different values of the scaling parameter ¢ in the limit
and intermediate regimes.

on At related to the speed of the particles. We also stress that these results can not be obtained
by a standard Monte Carlo approach since the stiffness of the equation will cause too severe time
step limitations while statistical noise will remain at the contrary to our approach in which this
error disappears in the asymptotic limit.

Kinetic regime. In this part, we are interested in the numerical results when ¢ is of order 1, we
refer to this regime as the kinetic regime. The initialization is the same as for the previous case
(see (4.19)). Table 2 reports the numerical parameters chosen for the following simulations.
Figure 3 (respectively Figure 4) shows the density profile (respectively the error on the density
profile) at time 7' = 2, whereas the momentum (v, f) is reported in Figure 5. For ¢ = 0.5 (respec-
tively € = 1), we report the density obtained when a full Monte Carlo method (referred to as ”Full
MC”) is employed to compute the solution. In Figure 3a (respectively 3d) these density profiles
are shown for the two different values of . As well known, a full Monte Carlo method suffers from
large numerical noise especially when non stationary problems are solved. This fact is made clear
by the simulation reported in which 10® particles are used in the simulations. This corresponds to a
particle weight of order 107%. On the contrary with respect to the full particle scheme, the MM-MC
produces solutions with much less oscillations as shown in Figure 3b for ¢ = 0.5 (respectively 3e for
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(a) Density p(T' = 2,z,y = 0) (b) Momentum (v,g)(T = 2,2,y = 0)

Figure 2: Slices of the density p(T" = 2,2,y = 0) and of the momentum (v, ¢)(T = 2,2,y = 0) in
the limit and intermediate regimes. Comparisons between the MM-MC, the MM-G and the limit
diffusion equation.

Figure | Scheme | N, N, | Typical weight | Ny, , Ny, | At € T
3a, 5a | Full MC | 128 1076 0.1 0.5 |2
3d, 5d | Full MC | 128 1076 0.1 1 |2
3b, 5b | MM-MC | 128 1076 0.1 0.5 |2
3e, 5e | MM-MC | 128 1076 0.1 1 |2
3c, 5¢ | MM-G | 128 10 0.001 | 0.5 | 2
3f, 5f | MM-G | 128 10 0.005 |1 |2

Table 2: Numerical parameters for the Full MC, the MM-MC and the MM-G methods for the

kinetic regime.

¢ = 1) with the same typical weight m,,. In both cases, the results of the MM-MC method are very
close to the ones of the MM-G reference method shown in Figure 3¢ for e = 0.5 (respectively 3f for
¢ = 1). These observations are made more clear thanks to Figure 4 where the difference between
the density obtained by the reference solution and the density obtained by Full MC on the the left
(Figures 4a and 4c) and the difference between the reference solution and the density obtained by
MM-MC on the right (Figures 4b and 4d) are displayed for € = 0.5 and € = 1. One can see that the
error produced by Full MC is one order of magnitude larger than the error produced by MM-MC.
Let us also remark that the reference solution and the Monte Carlo methods employ different time
steps as shown in Table 2. This causes different numerical diffusions in the solutions responsible
for an increase of the difference between the reference and the Monte Carlo solutions.

Concerning the momentum, we show the quantity (v, f) given by the Full MC method in Figure
Ha for ¢ = 0.5 and in Figure 5d for ¢ = 1. The numerical noise strongly affects this quantity. For
the MM-MC method, the corresponding quantity (v,g) is presented in Figure 5b and in Figure 5e
for the two different values of the scaling parameters while the results for the MM-G approach are
presented in Figure 5c¢ and in Figure 5f.
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(d) Ful MC, T=2,e =1 (e) MM-MC method, T=2,e =1 (f) MM-G method, T =2, =1

Figure 3: The density profile p is shown for the MM-MC, the MM-G and the Full MC methods in
the kinetic regime.

As for the case of the limit and intermediate regimes, we report the density and the momentum
profiles for a slice in y = 0. The density p(T = 2,z,y = 0) is shown in Figure 6a, while the
momentum (v, f)(T = 2,z,y = 0) is shown in Figure 6b for the case ¢ = 1. Let us remark that
the density slice of MM-MC is slightly more damped than the one of MM-G. This has also been
observed in the error plots in Figure 3e. In fact, as already stated, this behavior is due to the time
discretization and in particular to the different time steps employed. Indeed, decreasing the time
step for MM-MC enables to decrease the numerical diffusion.

Asymptotically complexity diminishing property. In this part, we are interested in mea-
suring the computational cost of the method as well as measuring the so-called ACD property of
our MM-MC method. This latter means the capacity of the scheme to diminish its computational
complexity as the limit diffusion equation is approached. We highlight these properties through
the evolution in time of the total number of particles N,(¢). In Figure 7a, we present the results
obtained in the 2D-2D case where the initial condition is given by (4.19) and where € takes the
values 1, 0.5, 0.2 and 0.1. As the perturbation ¢ is initially zero, the number of particles at the
beginning increases due to the fact that the transport phase induces departure from equilibrium.
Then, due to collisions, the system approaches the equilibrium again and the number of particles
decreases. The smaller is €, the smaller is g and the smaller is the number of particles we need to
represent this component of the solution. This behavior is confirmed by Figure 7b, where results
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(a) Difference between Full MC and(b) Difference between MM-MC and
MM-G, T =2, ¢ = 0.5 MM-G, T =2, ¢ = 0.5

Difference (MM-G)-(Full MC), e=1, T=2 Difference (MM-G)-(MM-MC), e=1, T=2
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(c) Difference between Full MC and(d) Difference between MM-MC and
MM-G, T =2,¢=1 MM-G, T =2,¢=1

Figure 4: Plots of the difference between the density between Full MC and MM-G (figures (a) and
(c)) and between MM-MC and MM-G (figures (b) and (d)) for e = 0.5 and ¢ = 1.

are given for e = 0.01, € = 0.001 and £ = 0.0001.

However, it is important to stress that the global cost does not only depend on the number of
particles since the sampling procedure has a cost which is not negligible compared to the rest of
the scheme. More in details, there are two additional steps in the scheme compared to a standard
Monte Carlo approach which increase the cost. These are:

e sampling from the function P™*(x,v),
e solve the macroscopic equation.

Even if standard numerical techniques are employed in the whole algorithm (LU solver for the
ADI step, classical techniques for the particles part), it is never simple to estimate the efficiency of
the current implementation. More generally, the computational cost of a numerical method may
depend on different sources, and instead of doing a direct measure of the computational cost, we
try in the following to give a measure of the complexity of our method in comparison with the
complexity of a standard Monte Carlo approach. In order to do that, we start from giving the cost
needed to compute the solution of the kinetic equation in the diffusive scaling by using a standard
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Figure 5: The component of the momentum (v, g) (resp. (vzf)), given by the perturbation is shown
for the MM-MC, the MM-G and the Full MC methods, for different values of the scaling parameter
¢ in the kinetic regime.
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Figure 6: Slices of the density p(T' = 2,z,y = 0) and of the momentum (v,¢)(T = 2,z,y = 0) in
the kinetic regime. Comparisons between the MM-MC, the MM-G and Full MC methods.
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Monte Carlo method. This can be estimated by the simple following formula
Cuc(f) =CrNM

where Uy is a suitable constant, IV is the number of particles and M is the number of time steps.
The time step of standard MC approach is of the order of eAz/ max(v) due to the type of scaling.
On the other hand, the cost related to the computation of a solution with the MM-MC method is

Cunm—mc(f) = CgNgMg + CpNa[cing + CgNgsz;l”Mg

where Cy is a constant very close to C; ~ Cy since the transport parts of the two Monte Carlo
methods are equivalent, Ny is the number of particles used to describe the perturbation, N, (resp.
N,) the number of grid points in physical (resp. velocity) space and d, and d, respectively the
dimensions in velocity and space. Now, since the cost related to the solution of the macroscopic
equation C'pN:f/,lz M, is in general much lower than the cost of any type of solver applied to kinetic
equations, i.e. C, < (g, then, at least as a first approximation, the computational overhead can
be considered negligible for this part of the method. Concerning Mg, this is the number of time
steps used in our method which is always M, < M. In particular, the ratio between the number of
time steps needed to reach the final solution for the two methods is such that

My =eM

which means that we experiment very large gains when close to the asymptotic limit and smaller
ones when close to the kinetic regime. Concerning the ratio between the number of particles of the
standard Monte Carlo N and the number of particles employed in the solution of the perturbation g,
i.e. Ny/N, it is always in favor of the MM-MC method here presented. In particular, it goes to zero
as € — 0 and the numerical tests show that it decreases exponentially in the space homogeneous
case and faster than linearly in the space non homogeneous case with e.

Finally, we consider the quantity C’gNg” N M,. This cost is due to the sampling of new particles
from the distribution P"’i(x, v). This sampling should be done at each time step in each spatial
cell and it depends on a grid in velocity space which should be adopted to successively perform the
sampling. This part of the numerical method is comparable to a standard grid method for solving
the kinetic equation. However, it still depends on the scaling through the term (1 — e/ 82) which
means that Cy depends on ¢ and it goes to zero as ¢ — 0.

Thus, to resume, the cost of the MM-MC method, as it has been presented, is comparable to the
cost of a grid method when ¢ is of order one and comparable to a cost of a macroscopic scheme
when ¢ — 0, with a cost which decreases with the scaling parameter. Let us also remark that the
computational performances of the MM-MC strategy shown here can be additionally improved by
avoiding the construction of a grid in velocity space with the use of acceptance/rejection techniques.

4.2 Two-dimensional test cases with non-equilibrium initial condition and con-
stant scaling parameter

In this part, we consider the following non-equilibrium initial data for the distribution function f

1 —2/? 2|2
fE=0,x,v) = — <eXp (_M) + exp (—M>> p(t =0,x), x €[0,47]%, v € R?,
41 2 2
(4.20)
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Figure 7: Total number of particles as a function of time for a 2D-2D case with equilibrium initial
condition.

with p(t =0,x) =1+ % cos (£) cos (4). The tests presented use the parameters detailed in Table
3. In this part, we look at quantities depending only on the velocity space: i.e. v, and v,. More

Figure Scheme | N, N, | Typical weight | N, ,N, | At € T

8a, 8b,8¢c, 9a | MM-MC | 128 5x 1070 0.1 1 various
9b MM-MC | 128 5x 1076 0.1 0.5 0.2

9c MM-MC | 128 5x 1076 0.1 0.1 0.2

8d, 8e, 8f, 9d | MM-G 128 20 0.01 1 various
9e MM-G 128 20 0.001 | 0.5 0.2

of MM-G 128 20 0.0005 | 0.1 | 0.2

Table 3: Numerical parameters for the MM-MC and the MM-G methods for non equilibrium initial
data.

precisely, we compute f f(t,x,v)dx and fg(t, x,Vv)dx from the MM-MC method and we compare
them to the results from the MM-G one. We present in Figures 8 the quantity [ f(¢,x,v)dx at
different times for e = 1. In details, Figures 8a, 8b and 8c (resp. 8d, 8e and 8f) report the results
for the MM-MC method (resp. the MM-G method) at times 7' =0, 7' = 0.5 and 7' = 2. When ¢
diminishes equilibrium is reached faster, results are not reported.

Finally, in Figure 9, we compare the integral of the perturbation f g9(T,x,v)dx at T = 0.2 for
different values of the scaling parameter . Results given by the MM-MC method, respectively
the MM-G method, are presented in Figure 9a, respectively in Figure 9d, for ¢ = 1, in Figure
9b, respectively in Figure 9e, for ¢ = 0.5 and in Figure 9c¢, respectively in Figure 9f, for ¢ = 0.1.
We summarize by observing from these test cases that the MM-MC method furnishes results
which are in a very good agreement with those obtained by the reference MM-G scheme. From
a computational point of view, in this situation the initial number of particles is as large as the
one used for a standard Full MC method. This is due to the fact that the initial number of
particles has to be large enough to represent g(7' = 0,x,v) # 0 with reasonable accuracy. Thus,
the first iterations in time require the same computational cost as a classical full particle method.

20



MM-MC, g=1, T=0 MM-MC, e=1, T=0.5 MM-MC, =1, T=2

JA(Txy.v,v,) dx dy
I f(T,x,y,vrvy) dx dy
I f(T.x.y.vy.vy) dx dy

(a) MM-MC, T =0, e =1 (b) MM-MC, T =05, ¢ = 1 (¢) MM-MC, T =2, ¢ = 1
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Figure 8: Integral of the distribution function in space [ f(7T,x,v)dx at times T'= 0, T' = 0.5 and
T =2fore=1.

Then collisions drive the system to its equilibrium and the number of particles diminishes. We
finally report the evolution in time of the number of particles for different values of ¢ in Figure 10:
€ =10.1,0.2,0.5,1. The numerical parameters are: N, = N, = 128, m;, = 5 x 1076 and At =0.1.

4.3 Two-dimensional test cases with non constant scaling parameter

In this part, we focus on a more realistic multi-scale kinetic problem where a space dependent
function a(x) is introduced to enrich the model. Our aim is to study the behavior of the previously
described scheme in such a case. We expect that the method is able to automatically adapt the
number of particles in each cell, according to the values of a(x) > 0. In details, we consider the

following equation

a?(x)

ouf + v Vuf = T (o0 - ) (4.21)

2
€
where (x,v) € [0,47]? x R? and t > 0. Periodic boundary conditions are imposed in space. We

choose for a(x) a step function whose values are 10 or 0.5 (see Figure 11). We recall that the
asymptotic diffusion model in this context becomes

1
atp — Vx . <mvxp> =0.

We now briefly present the main steps of our method, which is slightly modified to take into account
this new context
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Figure 9: Integral of the perturbation in space [ g(T,x,v)dx at time T' = 0.2 for e = 1, € = 0.5
and € = 0.1.
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Figure 10: Total number of particles as a function of time for a non-equilibrium initial condition
and different values of the scaling parameter.

e micro part: advance the particles

1 13 _ 2 A 2
X = (1 e A,

e micro part: solve the modified interaction part by sampling and discarding particles

gn—l—l = e_a2(x)At/62§n + a2é(jx) (1 - €_a2(x)At/Ez) [ — V- prnM + Vi - <V§H>M]a

22



1Sy

axy)

07 0

Figure 11: Profile of the function a(x).

e macro part: advance the macroscopic part

nl " —a?(x)At/e?
i —|-1Vx.<Ve—a2(x)At/52§n>_vx' (1 — e~ @ (AL
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Obviously, when a(x) = 1, we recover the scheme presented in Section 3.

Our Micro-Macro Monte Carlo (MM-MC) method is compared, as previously, to a grid based
reference solution referred to as "MM-G” where the function a(x) has been included. The results
obtained by MM-G use the following numerical parameters: N, = N, = 64 for the spatial grid,
Ny, = Ny, = 32 for the velocity grid and At = 10~%. For our MM-MC solver, the numerical
parameters are: N, = N, = 64, N, = 5000 (hence m, ~ 7.7 x 107%), At = 0.1. The initial
condition is chosen as

folxv) = 1= [exp (-0 e (- @)] p(0.%),

with u = (2,2) and p(0,x) = 1 + 1 cos(%) cos(¥).

In Figure 12, we first plot the space dependent density p(T = 0.5,x) at the final time 7' = 0.5
obtained by the two different solvers (with ¢ = 0.5). We can see that the two solutions are
very close, which confirms the good behavior of the MM-MC method in this context. Keeping
e = 0.5, we then plot the velocity repartition of the microscopic part g at position x = (1,1), which
corresponds to a small value of the a function (a(1,1) = 0.5) and then the point x = (1, 1) belongs
to a microscopic region. Indeed, we can observe in Figure 13 that the distribution function has
not reached the equilibrium state whereas the equilibrium state is reached for x = (27, 27) (which
corresponds to a(2m,27w) = 10), which belongs to a macroscopic region. Next, in Figure 14, we
show the spatial distribution of the particles used to sample the perturbation g, for different values
of ¢ (¢ =0.1,1073,10~%). From this figure, it is clear that particles are automatically created in
the zones in which the departure from the equilibrium state is large and are discarded otherwise.
Typically, particles leave the central macroscopic zone for which the function a(x) is quite large
whereas the zone in which a(x) is small still contains particles even when ¢ = 1072, Obviously,
when ¢ is small enough (e = 10™%), the non homogeneity of a(x) has essentially no influence on the
microscopic part which is then sampled using very few particles. Finally, in Figure 15, the time
history (semi-logscale) of the number of particles is displayed. Initially, the number of particles is
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chosen as 5000 per cell (hence the mass of a particle is close to m,, ~ 7.7x107%). The corresponding
number of particles in the whole domain is around 3.2 x 107. After one iteration, we can see that
this number is decreased by a factor of order 1/e and then a linear decrease is observed (which
corresponds to an exponential dependence of the number of particles with respect to time). Let
us notice that the number of particles employed is a direct consequence of the magnitude of the
perturbation. On the contrary a standard Monte Carlo approach would require a constant number

of particles for all the simulation, which means around 15 times more particles than the one used
by MM-MC method.

CORERERENN
o NBRO® N

Figure 12: Density profile p(T' = 0.5,x). Left: MM-MC method; right: MM-G.

S66660000
~838S SR8
S6bEL00000
~R328 SRS8

Figure 13: Velocity dependence of the distribution function at position (x,y) = (1,1). Left: MM-
MC method; right: MM-G method.

4.4 Three-dimensional test cases

We conclude this section with a full three dimensional in space and three dimensional in velocity
simulation. We consider the following initial condition

fo(x,v) = W [exp ( - #) + exp ( — wﬂ p(0,x), (4.22)

with u = (2,2,2), p(0,x) = 1+ 2 cos(%) cos(¥) cos(%) and x = (z,y,2) € [0,47]3, v = (vg, vy, v;) €
R3. Periodic boundary conditions are considered in space. In this framework, we only consider our
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Figure 14: Spatial repartition of the particles at time 1" = 0.5.
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Figure 15: Time evolution of the number of particles for different values of ¢ (Left: ¢ = 1072;
middle: ¢ = 1073; right: ¢ = 1074

MM-MC solver, since both grid and full particle approaches are too expensive in this case. The
numerical parameters of the MM-MC method are the following: N, = N, = N, = 16, a typical
weight of order 6 x 107, At = 0.1. We present the evolution in time of the quantity [ f(t,x,v)dx,
obtained by our MM-MC scheme. Results obtained for ¢ = 1 are plotted in Figure 16, for T = 0,
T =0.2 and T = 1. In addition to the presented figures, we have verified that the equilibrium is
reached in shorter time when ¢ is reduced.

We finally report in Figure 17 the evolution of the number of particles in this full 3D-3D case
with equilibrium initial condition

ft=0,x,v) = p(t=0,x)M(v), x € [0,47]%, v € R?,
with p(t = 0,x) = 1+ 3 cos (£) cos (¥) cos (), M(v) = (2753/2 exp (—@
tion is: N, = N, = N, = 16 with a typical weight for the particles of order 5 x 10~% and At = 0.1.
From the results, we observe the same behaviors as for the 2D-2D case both for high values of the
scaling parameter ¢ (Figure 17a) and in the limit regime (Figure 17b). The number of particles
really employed in the construction of the solution is a function of the scaling parameter and it
initially increases since the motion creates a departure from the equilibrium and successively it

diminishes. This is a sign that a global equilibrium is about to be reached.

x Y

>. The space discretiza-
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Figure 16: The integral of the distribution function in space fx f(T,x,v)dx for ¢ = 1 and different
times. Full three dimensional case.
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Figure 17: Total number of particles as a function of time for the full 3D-3D case with equilibrium
initial condition.

In the last Figure 18, we show the evolution of the number of particles for a non-equilibrium
initial condition (4.22). In this last case, the numerical parameters are N, = N, = N, = 16, a
typical weight for the particles of order 5 x 10™* and At = 0.1. The same behaviors as for the
2D-2D case are observed: the number of particles used to compute the solution decreases as a
function of time and as a function of the scaling parameter ¢.

5 Conclusion

In this work, we have presented a new numerical method for kinetic equations in the diffusion
scaling. The main lines of the proposed method are the following. (i) It is based on a suitable
merging between Monte Carlo approach and a finite volume method. (i7) The Monte Carlo part
of the solution is constructed to solve the perturbation part of the model while the finite volume
part is designed to solve the macroscopic equilibrium part of the solution. The method enjoys
some nice properties which we summarize as follows. (a) Compared to a standard Monte Carlo
approach for solving the kinetic equation its statistical noise is smaller and it diminishes when

26



3D case, g, of order 1

8.000°
7.0m0%
6.000°
5.000°
4.0m0°

3.0m0°

Total number of particles

2.0m0°

1.000° -

0
0000" =057 15 3 a5 3 3STITAST s

Figure 18: Total number of particles as a function of time for the full 3D-3D case with a non-
equilibrium initial condition.

the scaling parameter £ decreases. (b) It is uniformly stable with respect to the scaling parameter
as well as with respect to the space mesh size. (c¢) Its computational cost as well as its variance
diminish as the equilibrium is approached. (d) It does not need artificial transitions to pass from
the microscopic description to the macroscopic one. The numerical results illustrate the efficiency
of the proposed method compared to the standard Monte Carlo approaches as well as compared to
standard deterministic methods based on a grid in the phase space.

In the future, we intend to work more extensively on the full three dimensional case and to
consider problems with more physical relevence. In this respect, the extension of the present
approach to the case of the Boltzmann operator is also under study.
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