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Abstract

We consider a generalization of (pro)algebraic loops defined on general categories of al-
gebras and the dual notion of a coloop bialgebra suitable to represent them as functors.
Our main result is the proof that the natural loop of formal diffeomorphisms with associa-
tive coefficients is proalgebraic, and give a full description of the codivisions on its coloop
bialgebra. This result provides a generalization of the Lagrange inversion formula to series
with non-commutative coefficients, and a loop-theoretic explanation to the existence of the
non-commutative Faa di Bruno Hopf algebra.
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1 Introduction

1.1 Presentation and overview of the results

An affine proalgebraic group G is a representable functor in groups defined on the category of
commutative associative algebras over a field F. The algebra representing G is the commutative
Hopf algebra F[G] of regular functions. In this paper we consider two generalizations of proal-
gebraic groups, on one side to representable functors on categories of non-commutative algebras,
on the other side to functors taking values in non-associative groups with divisions, that is, loops.

Our main motivation comes from two proalgebraic groups of formal series appearing in
renormalization in quantum field theory: the group of invertible series with constant term equal
to 1, represented by the Hopf algebra of symmetric functions, and that of formal diffeomorphisms
tangent to the identity, represented by the Faa di Bruno Hopf algebra. Details on the role played
by these series in quantum field theory are given in a separate section below.

Both types of series make sens with non-commutative coefficients, and both representa-
tive Hopf algebras admit a non-commutative version [7]. We are interested in the relationship
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between the non-commutative algebras and the sets of series. For this, we first consider gener-
alizations of proalgebraic groups to categories of non-commutative algebras.

Functors in groups on general categories have been studied by algebraic topologists in the late
50’s. D. Kan considered them on the category of groups [21], and B. Eckmann and P. Hilton [14]
introduced them on general categories. Their representative Hopf-type object is called a cogroup.
In a category with coproduct II and initial object, a cogroup is an object H endowed with a
comultiplication, a counit and an antipode satisfying the usual properties of Hopf algebras,
where the comultiplication takes values in H I1 H instead of H® H (which is not necessarily
defined). Cogroups are then generalizations of commutative Hopf algebras which, countrarly to
quantum groups in the case of associative algebras, preserve the functorial properties and the
adjoint constructions. They have proved to be very fruitful in homotopy theory, where they
appear as special H-spaces [22], as shown by I. Berstein [3]. A comprehensive study of cogroups
in many varieties of algebras can be found in G. Bergman and A. Hausknecht’s book [2].

However, not all proalgebraic groups admit an extention to non-commutative algebras. For
instance, while the group of invertible formal series naturally extends as a proalgebraic group to
the category of associative algebras, the group of formal diffeomorphism does not. We show, on
this example, that the extention of the functor is sometimes possible if we regard the original
group as a loop.

Loops are multiplicative sets with unit and with a left and a right division instead of two-
sided inverses. They first appeared, with some extra properties, in the work of R. Moufang [32]
on alternative rings. Associative loops are groups. Similarly to Lie groups, the tangent space
of a smooth loop carries a particular algebraic structure called a Sabinin algebra [37, 29], which
reduces to a Mal’cev algebra [28] for smooth Moufang loops. The notion of universal enveloping
algebra has been extended to Sabinin algebras by I. Shestakov, U. U. Umirbaev [39] and J.
Mostovoy, J. M. Pérez-Izquierdo [30].

In this paper we consider functors in loops on a general category C with coproduct and
initial object and call their representative objects coloops in C. We specialise C to be a variety
of algebras over a field F to have a reasonable notion of generalized (pro)algebraic loop. The
first simple example is the extention of the functors of invertible elements in a unital algebra
and that of unitary elements in a unital involutive algebra. As expected, the largest category on
which these functors are representable as loops turn out to be respectively that of alternative
and of alternative involutive algebras (Prop. 3.4 and Prop. 3.9). We also show that the loop of
unitary elements in the Cayley-Dickson extention of an involutive algebra is not representable
on non-commutative algebras (Prop. 3.11), even if examples of such loops exist. Then we turn
to loops of formal series with coefficients in a non-commutative algebra. First we consider the
set of invertible series (with constant term equal to 1). The algebra of series with coefficients
in an alternative algebra is alternative. Surprisingly, in contrast to the previous results, we find
that the set of invertible series is a proalgebraic loop on all algebras, not necessarily alternative
(Thm. 4.4). Finally, our main result concerns the natural loop of formal diffeomorphisms (tan-
gent to the identity) with associative coefficients. We show that it is proalgebraic, and give the
closed formulas of the codivisions on its representative Faa di Bruno coloop bialgebra (Def. 5.5
and Thm. 5.25). For this, we express the co-operations in terms of some recursive operators
defined on any positively graded algebra (Thm. 5.17), which extend the natural pre-Lie product
of the Witt Lie algebra (cf. [8, 15]) but not as a multibrace product (cf. [24]), and which turn
out to be very rich in combinatorial properties. The coefficients appearing in the divisions show
up sequences of integer numbers typical of the Lagrange inversion formula (as Catalan numbers)
and some new ones, that we call (labeled) Lagrange coefficients (Def. 5.3 and 5.4). This result is
a generalization of the Lagrange inversion formula to series with non-commutative coefficients,
and gives a loop-theoretic explanation to the existence of the non-commutative Faa di Bruno
Hopf algebra [7].



1.2 Motivation: formal series in quantum field theory

In perturbative quantum field theory, the correlation functions, which give the probability am-
plitude of an event, are asymptotic series in the powers of a measurable parameter A, such as
the electric charge, called the coupling constant. For instance, for a self-interacting field ¢ with
coupling A and mass m, the k-point correlation function is a series

GP (@1, .p) = (Blar) - dlaw)y = Y, GP (@1, ..o zpim, h) A"
n=0

where the nth coefficient is a finite sum of amplitudes of suitable Feynman graphs with & fixed
external legs, which depend on the mass m and on the Planck constant A, and n is related to
the number of internal vertices of the graph.

The computation of the correlation functions gives rise to some divergent integrals, or ill-
defined product of singular distributions. Giving a meaning to such terms requires a renor-
malization procedure, which globally amounts to suitably multiply and compose the correlation
functions with some others series, called renormalization factors, obtained by assembling the
counterterms needed to cure each divergency [13], [19]. Given an ambient algebra A, typically C
or the algebra C((¢)) of Laurent series in a regularization parameter ¢, in renomalization theory
there appear two groups of formal series in the variable A and coefficients in A:

e the set Inv(A) = {a()\) = Z anp \" | ag = 1,a, € A} of invertible series, endowed with
nz=0
the pointwise multiplication (ab)(A) = a(A) b(A) and the unit 1(\) = 1, which represent
the Green’s functions (up to an invertible factor) and the renormalization factors;

e the set Diff(4) = {a(/\) = Z an N7 ag = 1,a, € A} of formal diffeomorphisms,
nz=0
endowed with the composition law (a o b)(A) = a(b())) and the unit e(A) = A, which
represent the bare coupling constants.

Dyson’s renormalization formulas [13] are modeled by the semi-direct product Diff (A) x Inv(A),
endowed with the law

(a1,b1) - (az,b2) = (a1 0 ag, (by 0 az) ba),

where a1, ag € Diff (A) and by, by € Inv(A), which is well defined because formal diffeomorphisms
act on invertible series from the right, by composition.

These groups are proalgebraic on commutative algebras. Physically, this means that the
overall renormalization procedure (except the scheme which says how to compute the coun-
terterms) is independent of the chosen field theory, whenever the latter leads to commutative
amplitudes. The recent results on the Renormalization Hopf algebras, initiated by A. Connes
and D. Kreimer [10, 11], show even a stronger result: co-operations dual to the multiplication
and the composition of series exist even on Hopf algebras generated by Feynman graphs. In
other words, there exist proalgebraic groups of series expanded over Feynman graphs or various
types of trees, which turns out to be extremely efficient in handling the combinatorial content
of renormalization procedures [5, 6, 7, 40, 36].

The toy model ¢? theory used by Connes-Kreimer is a scalar field theory and leads to
the commutative algebra A = C of amplitudes. However, interesting situations involve non-
commutative algebras. In fact, Feynman amplitudes are complex numbers for single scalar fields,
the coupling constants and the renormalization factors, but they are 4 x 4 complex matrices for
the fermionic or bosonic fields, and may be represented by higher order matrices for theories
involving several interacting fields. In this case, forcing the final counterterms to be scalar, as
imposed by the fact that the renormalization factors act on the Lagrangian, prevents to describe



the renormalization in a functorial way, as shown by the results in [41], where the Hopf algebra
does not represent a functorial group on A = My(C). In order to preserve this functoriality,
there is a need to understand Dyson’s formulas for sets of series Inv(A) and Diff (A) also when
A is not a commutative algebra. This is the motivation for the present work.
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2 Loops and coloops

2.1 Loops and functors in loops

A loop is a non-empty set @ endowed with a multiplication Q x Q@ — @, (a,b) —> a - b, a
(two-sided) unit 1 € @, a left division \ : Q x Q@ — @ and a right division /: Q x Q — Q
satisfying the cancellation properties
a-(a\b) = b, a\(a-b) =b, (2.1)
(a/b) - b= a, (a-b)/b=a.



Given two loops Q and @', a homomorphism of loops f: Q — Q' is of course a map which
preserves the multiplication, and therefore the unit and the divisions.

The multiplication in a loop @ is not necessarily associative, if it is associative then the loop
is a group. Any element a in a loop @ has a right inverse 1/a and a left inverse a\1, which
do not necessarily coincide and do not necessarily determine the divisions, in the sense that they
do not satisfy the identities

(a\1) -b=a\b and b-(1/a) =b/a (2.3)

for any a,b € ), which hold in any group. Examples of loops which are not groups are known
since a long time, see for instance [9] or [35].

Denote by Loop the category of loops and let F' : Loop — Set, be the forgetful functor
to the category of pointed sets. Given a category C, a functor () : C — Loop is said to be
representable if the composite functor FQ) is representable. This means that ) is naturally
isomorphic to a hom-set functor A — Homg(H, A) for a given object H in C. Following an
established terminology on cogroups, the representative object H can then be called a coloop
in C. A reasonable notion of (pro)algebraic loop is obtained for C being a variety of algebras
over a field [, its representative coloop then being a sort of bialgebra.

In this section we describe coloops in an axiomatic way. In the next sections we give some
easy examples of algebraic and non-algebraic loops on associative and non-associative algebras,
and then study extensively the loop of invertible series and that of formal diffeomorphisms.

2.2 Coloops in general categories

Given a category C, Yoneda Lemma says that the category of representable functors from C
to Set, with natural transformations, is equivalent to C. The equivalence is realized by the
contravariant Yoneda functor Y from C to the functor category Set®, defined on any object
H in C by the functor Y(H) = Homc(H, ), and on any map ¢ : H — H by the natural
transformation Y (¢) : Y(H) — Y(H') : a — «a¢ (cf. [27] for details). In this section we
characterise the subcategory of C equivalent to representable functors from C to Loop.

The cartesian product of two functors Y (H;) and Y (Hz) is known to be represented by the
categorical coproduct Hy 11 Hy, i.e. Y (Hy) x Y(Hy) = Y(Hy 1 Hs), and the constant functor
to the base point is known to be represented by an initial object I, i.e. it is of the form Y (I).
We recall the categorical notations about the coproduct, the initial object and some related
categorical maps we need to define coloops.

The coproduct in a category C is a bifunctor 1I defined on two objects A and B as the
unique object A B together with two maps i1 : A > AL B and iy : B — A1l B satisfying the
following universal property: for any maps f : A — C and g : B — C, there exists a unique
map {f,g) : AlIB — C such that {(f,g)i; = f and {f,g)is = g. On two maps f: A —» A’
and ¢g : B — B’, the bifunctor is defined as the map f11g = (i} f,ibg): AuB — A’11B’. The
coproduct can be extended to several objects and maps with similar universal constructions, and
turns out to be an associative bifunctor, in the sense that (AlIB)1IC = AlI(BLC) = AUBUC
for any three objects and (f11g)1lh = f1l(gl1h) = fllgllh for any three maps in C.

An initial object in C is an object I together with a unique map u4 : I — A on any object,
which commutes with any map f : A — B, that is, fuq = up. Then, there are canonical
isomorphisms A1 ] = A =~ I 11 A given by the maps

p1: A— All with inverse 1 =dda,usy: AT — A,
pr: A—TIHA with inverse o ={ua,idygy: ITTA — A.



In particular, we have I 111 ~ I, {us,us) = ug and therefore also uanp = ug llupg.

For any objects A and B, there is a canonical symmetry operator 74 g = (i2,%1) : AUB —
B1I A such that TX}B = 7B,4. Note that BIIA = A1l B as objects in C, but the maps 4; and
19 are inverted. The twist 7 is precisely the map which identifies A11 B and B 11 A as universal
objects. To sum up, (C,11,1,7) is a strict symmetric monoidal category.

Furthermore, for any A, there exists a canonical folding map py = {ida,id4): ATA — A
such that, for any maps f,¢ : A — B, we have

(frg)=up(f1g).

It follows that p preserves the unit, i.e. pa(ugllug) =ua,us) = ug, that it is associative, i.e.
pa(pallida) = pa(idalipa), and that it is commutative, i.e. 14744 = pa. It also follows that
p commutes with any map f: A — Bin C, ie. up (f1f) = fus. To sum up, we can say that
any object (A, ua,ua) is a commutative monoid in C, with respect to the monoidal product 11,
and that any map f: A — B in C is a morphism of monoids. Finally, one can prove that the
folding map on ALl B is given by panp = (pall pp) (idall7p 4 1idR).

Definition 2.1 Let us call coloop in C an object H endowed with the following maps in C:
i) a comultiplication A: H — H1I H;
ii) a counit ¢ : H — [ satisfying the counitary property
(e1id) A = ¢ and (idle) A = ¢, (2.4)
where 1 : H - HUI and g : H — I'11 H are the canonical isomorphisms;
iii) a right codivision 0, : H — H 11 H satisfying the right cocancellation properties
(idirp) (6, 1id) A = iy and (id 1 p) (A1rid) 6, = i1, (2.5)
where i1 : H — H 11 H can be factorized as i; = (id T u) ¢1;
iv) a left codivision §; : H — H 11 H satisfying the left cocancellation properties
(pirid) (id116;) A = ig and (p11id) (id T A) & = g, (2.6)
where i : H — H 11 H can be factorized as is = (u11id) 3.

If H and H’ are two coloops in C, we say that a map f : H — H’ is a homomorphism of
coloops if it commutes with the coproducts, the counits and the codivisions.

Proposition 2.2 Let H be a coloop in C.

1. The codivisions verify the identities
1o, =ue and wo; = ue, (2.7)
and the following partial counitality properties

(idire) 6, = ¢ and (e11id) &; = 2. (2.8)



2. We can define a right antipode S, : H — H and a left antipode S;: H — H by
setting

Sy := 19 (e 11id) 0, and Sp:=1n (id1ie) gy , (2.9)

where 1 = (d,ugy: HUI — H and ¥y = (ug,id) : IWH — H are isomorphisms. The
antipodes satisfy the following left and right five-terms identities

(S id) A = ue and w(idS) A =ue. (2.10)

These properties are easily veryfied. A proof using tangle diagrams is given in the Appendix.

Theorem 2.3 Let C be a category with coproduct and initial object. Then the Yoneda functor
s a contravariant equivalence of categories from the category of coloops in C to that of covariant
representable functors QQ : C — Loop.

Proof. We follow the ideas of Eckmann-Hilton [14], who characterized the subcategories of C
equivalent to the category of representable functors from C respectively to the category Mag of
unital multiplicative sets, called unital magmas in [38, 4], and to the category Grp of groups'.

Let us first prove that the Yoneda functor, applyed to coloops in C, gives rise to a functor
in loops. On a given coloop H, let us call Q = Y(H). We define the multiplication and the
divisions on each set Q(A) = Homc(H, A) as usual convolution with the coproduct and the
codivisions in H, namely

a-f={a,B)A=ps(alf)A

a/f ={a, )8, = pa(all )9, (2.11)

a\B =<{a,B)d = pa(all )4,
for any a, 8 € Q(A). The unit in Q(A) is given, as usual, by the map 14 = uy e, and the left
and right inverses of « are then easily described as o\l = a S; and 1/a = a S,. Then, using
the cocancellation identities (2.5) and (2.6), and because 4 is associative and commutes with
C-maps, it is easy to verify that the divisions given by (2.11) satisfy the cancellation properties
(2.2) and (2.1).

Now fix a homomorphism of coloops ¢ : H — H, and call Q = Y(H), Q' = Y(H’) and

® =Y (¢). Yoneda Lemma tells us already that ® is given on an object A by the map

C4:Q(A) — Q'(4)
ar— Py(a) = aog,

and that, for any f: A — B, ® acts on the map Q(f) : Q(A) — Q(B) given by Q(f)(a) = f«
as a natural transformation, i.e.

5(Q(f)(a) = fad=Q'(f)(Pa(a)).

It is then easy to verify that ®4 is a homomorphism of loops, that is, for any «, 5 € Q(A), we
have

Pa(a-B) =Pa(a) 2a(B),

and similarly for the other co-operations.

!Eckmann-Hilton require C to have zero-maps, we replace them with an initial object.



Viceversa, let us describe how a functor in loops () gives rise to a coloop structure on its
representative object H. Suppose that the covariant functor @ is represented by an object H,
ie. Q =Y (H), that the set Q(A) is a loop for any A in C, and that for any map f : A — B the
induced map Q(f) : Q(A) — Q(B) given by a — Q(f)(«) = fa is a loop homomorphism. We
use repeatedly the fact that, given «, 5 € Q(A), for the composite maps f(« - f3), fa, ff € Q(B)
we have

fla-B)=Q(f)e-B) = Q(f) () - QUN(B) = (fa) - (fB) (2.12)

and similarly for the operations / and \. Seeing i1,i2 : H — H 11 H as elements of Q(H 11 H),
we define the comultiplication and the codivisions on H by

A =iy g, Op = i1/i2, 0 = i1\i2

and the counit ¢ as the unit 17 in Q(I). It follows that the antipodes are the inverses of the
identity map, S, = 1g/idy and S; = idg\1x.

Let us show that these maps give a coloop structure to H, and that the functor Q — H is
inverse to the Yoneda one, H — @ = Y (H). For any «, 5 € Q(A), we apply (2.12) to A = HIIH,
B=A, f={(a,8): HUH — A and to the elements a =iy, 8 = is of Q(H 11 H), and get

(a,B) A =L, B) (i1 - i2)
= (o, Byir) - Ko, B)iz) = - B (2.13)
and similarly for the operations / and \. Now apply @ to a unit map uy : I — A. Since
Q(ua) : Q(I) — Q(A) is a homomorphism of loops, it preserves the units, and therefore, for
e =17 € Q(I), we have
Q(ua)(e) =uge = 14.

In particular we have ug e = 1p, and therefore, using (2.13), we have
<uH€,idH>A = 1H . idH = idH.
On the other side, we have

<uH€,idH>A = <uH,idH> (E]_Iid) A
=g (e11id) A,

and we obtain the equality 1y (¢ 11id) A = id. Since 1 is the inverse map to @2, we obtain
(e11id) A = 9, which proves (2.4). Let us show equalities (2.5). Firstly, we have trivially that

(id 11 ’LLH) 11 = <i1, 19 uH>z'1 = 17.
Secondly, note that 4, - iy = (i1/i2) - i2 = i1, therefore

(id 11 p) (0r 11id) A = iy, dap) (i10r, d2) (i1 - i)
= (iv,igp) (8 - i2)
= <’i1,i2/£>’i1 = ’il.
Finally, since {«, 8)(i1/i2) = a/ and (i3 - i2)/io = i1, we also have
(1 1) (A 1) 6, = Gin, i) G A, i) (i1 /i)
= (in, gy (31 - i2)/i2)

= <i1,’i2,lt>i1 = ’il.



The same arguments apply to the left codivision. O

The relationship between coloops and cogroups is straightforward. As usual, a coloop H is
coassociative if

(Aid) A = (idITA) A, (2.14)

and H is cocommutative if 7 A = A.
We say that H has the left and right coinverse property if the codivisions are determined
by the antipodes, that is,

o = (S;id) A. and 0p = (id11S,) A (2.15)

These identities correspond to the analogues (2.3) in the loop @ = Y (H).
Furthermore, an antipode on H is a map S : H — H satisfying the five-terms identity

p(SUid)A = p(idIS)A = ue. (2.16)

This happens if and only if S, = S;. Note that the unicity of the antipode does not imply
that the coinverse properties are veryfied. A counterexample is given by the coloop of formal
diffeomorphisms, cf. Section 5.

A cogroup in a category C is an object H endowed with a coassociative comultiplication A,
a counit ¢ satisfying the counitary property (2.4) and an antipode S satisfying the five-terms
identity (2.16), cf. [3].

Proposition 2.4 If H is a coassociative coloop, then it is a cogroup.

In fact, in the Appendix we prove with tangles that coassociativity implies that the left and
the right antipodes coincide, and therefore H has an antipode satisfying the five-terms identity
(2.16), and moreover that it satisfies the coinverse properties (2.15).

2.3 (Pro)algebraic loops

Let A be a variety of unital algebras over a field [, that is, the subcategory of vector spaces
over | which collects all algebras of a certain type, given by a set of operations of various arities,
included the unit of arity 0, defined by a set of identities (cf. [27] ch. V). For instance, A can be
the category of P-algebras, where P is an algebraic operad with P(0) = { unit map } (cf. [25]).

Then, A has a coproduct and an initial object (cf. [27] ch. IX), therefore we can apply to
A the results of the previous section. More precisely, the initial object is given by the trivial
unital algebra F. Suppose that in A there are operations p of arity n > 0, and let A denote the
subalgebra of such operations, then A1l B is the quotient of the free algebra A(A @ B) (which
always exists, cf. [27] ch. V) by the ideal generated by the identities

PA(A®B) (ah "'>an) = pA(alv "'>an) € Av for any ai,...,an € A

PA(A®B) (b1, 0n) = pp(b1, ..., bn) € B, for any b1, ...,b, € B (2.17)
la =1p = 1a0B);

for all the operations p admitted in A. The universal properties of 11 follow from the universal
properties of the free algebra A(A @ B).

Examples 2.5 1. In the category Comy of unital commutative and associative algebras
over [, the free algebra Comg(V) on a vector space V is the symmetric algebra S(V),
and the coproduct of two algebras A and B is the tensor product A® B.



2. In the category Asf of unital associative algebras over [, the free algebra Asp(V) is the
tensor algebra T'(V'), and the coproduct? A 11 B of two algebras A and B is the tensor
algebra T(A @ B) modulo relations (2.17), which mean that a®a’ = aa whenever a and
a’ are both in A or both in B. As a vector space, we then have

AuB=Fo® [A®B®A®~; ® B®A®B®~;],

n=1

n n

and the multiplication in A1I B is given by the concatenation modulo the above relations.
For instance, if we denote the multiplication in ALl B by e, we have

(b®a)e (W ®d @b") =b®axl @d V"
(b®a) e (d @V ®d")=b®(ad )b @d".

3. Let Algy be the category of unital algebras (not necessarily associative, also called mag-
matic) over F. The free unital algebra on a vector space V is the tensor algebra with
parenthesizing T{V'}, and the coproduct A1l B of two algebras A and B is the quotient
of T{A® B} modulo relations (2.17), which again mean that a®a’ = aa whenever a and
a’ are both in A or both in B. The multiplication in A 11 B is the concatenation with
parenthesis.

4. An alternative algebra is an algebra A such that the associator (a,b,c) = (ab)c — a(bc)
is skew-symmetric, that is

(bya,c) = —(a,b,c) and (a,c,b) = —(a,b,c) (2.18)
for any a,b,c € A. This is equivalent to require that
(ab)b = a(bb) and (aa)b = a(ab)

for any a,b € A. Unital alternative algebras over a field F form a subcategory of Algp,
denoted by Alty, which is a variety with initial object F. The coproduct A1l B of two
unital alternative algebras is the quotient of the coproduct in Algy by the relations (2.18).
For details see [43].

5. In a category A, an (anti) involution is a unary linear operation * : A — A such that
(a*)* =a and (a1 a2)* = a5 af, (2.19)

for any a,a1,a2 € A. Each of the four previous categories of algebras can be considered
with involution, and denote by A*. For such algebras, the initial object and the coproduct
are the same as in A, the involution on A11B is automatically defined from the involutions
on A and B by properties (2.19). Note that, in Algy and in Alt, the parenthesizing of a
word a1 ® - -+ ®ay, is inverted from left to right by the involution, together with the single
letters of the word.

Definition 2.6 A coloop H in a variety of unital algebras A is called a coloop A-bialgebra.
Its associated functor in loops @ = Y (H) is then called an algebraic loop on A if H is a
finitely generated algebra, and a pralgebraic loop on A if H is not finitely generated. In this
case, it is an inductive limit of finitely generated coloop A-bialgebras.

2In associative algebras, the coproduct is usually called free product and denoted by .
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There are not many examples of algebraic loops. In section 3, we give an example of an alge-
braic group on commutative algebras which can be extended to associative algebras (the group
of unitary elements), and another one which can not be extended to a functor on associative
algebras even as a loop (the Cayley-Dickson loop). Viceversa, in section 5 we give the example
of a proalgebraic group which can be extended to associative algebras as a proalgebraic loop (the
loop of formal diffeomorphisms). Finally, in section 4, we also give an example of an algebraic
group which can be extended to associative algebras as a group, and to non-associative algebras
as a loop (the loop of invertible series).

Remark 2.7 All these examples of cogroups and coloops have free underlying algebra structure.
The fact that this should hold in any category (under certain completeness hypothesis) has not
been proved, but it was proved for cogroups in several categories: by D. Kan [21] in the category
of groups, by I. Berstein [3] (and later reproved by J. Zhang in [44]) in the category of graded
connected associative algebras, and by B. Fresse [16] in the category of complete algebra over
any operad. For coloops, this result is proved by G. Bergman and A.O. Hausknecht [2] in the
category of graded connected associative rings.

Before giving the examples, we mention two maps which allow to compare coloop and cogroup
bialgebras to usual Hopf algebras. A coloop A-bialgebra has the operations p : H®" — H
from A, and the categorical folding map p: H 1 H — H needed to describe the coloop axioms,
which can be iterated on n copies of H. In general, there is no relationship between these two
types of operations, since H®" need not being an algebra in A.

Assume that A is a category of algebras such that, for any A-algebras A and B, the tensor
product A® B is again an A-algebra with componentwise operations

pfqn(}@B(al ®b17'” 7an®bn) :p%)<al7”' 7an)®pg)(b17 7bn)
and unit 1agp = 14®1pB.

Definition 2.8 For any n > 2 and for any n algebras Ag, with k = 1,...,n, we call canonical
projection of Ay 11---11 A, onto A1 ® --- ® A,, the algebra homomorphism

™= <]177]n>A1UHAn—>A1®®An
induced by the injective algebra maps ji : Ay > A1 ® --- ® A, given by
Jelap) =14, ® - @ap® -+~ ®1a,.

The map 7 reorders the elements of A;11---11 A, and then multiplies them within each Aj to
get elements in A1 ® -+ ® A,,. For instance, if we denote by a*) an element a € A, seen in the
coproduct A;11---11 A,,, we have

(e d?) = (ac) ® (bd).

This map is surjective, because a preimage of any a1 ®a2® - ®a, € A1® -+ ® A, by 7 is
given by agl)ag) e a%n) eAI---1TA,.

Note that, when all A; coincide and we are given an operation p of arity n, the map p :
A" — A is not, in general, an algebra homomorphism (because p is not), and therefore it
surely differs from the folding map p = {(id4, ...,id4). In fact, g multiplies the elements of A in
the order they appear in A" (it is a concatenation), while pr first reorders the factors in A™™
with 7, as explained above, then multiplies them (it is a componentwise operation).

11



Definition 2.9 On the other side, for any n > 2 and for any n algebras A, with k£ = 1,...,n,
there are categorical maps iy : Ay — A1 11---11 A,. For any operation p of arity n in A, we call
canonical inclusion of 4;® --- ® 4, in Ay 1I---11 A, the linear map ¢, : 41® --- ® A4, —
Ay10---11 A, defined by

Lp(al® . @an) = pu(il(al)y -~-7in<an))7

where py;: (A1 11--- 11 A,) ®n _, Ay 1---11 A, denotes the operation p on the coproduct algebra
Aq11---11 A,. It follows from the definition of 11 that this map is injective.

Note that ¢, is not, in general, an algebra homomorphism, because the operation p in A is
not. However, when all Aj coincide (say, with A), the map ¢, allows to recover the operation
pa: A®" 5 A from the folding map p, in the sense that j1¢, = pa, because

ppu(in(ar), ... in(an)) = palas, .., an)

for any a4, ...,a, € A.

Proposition 2.10 When the map v, is well defined, we have w1, = ida,®...9 A, -

Proof. Denote by pg the operation p on the tensor algebra 41 ® --- ® A,,. Since 7 is an algebra
homomorphism, for any ai € Ay, with k = 1,...,n, we have

Tip(a1® - ®ay) = Tpu(i1(ar), ..., in(an)) = p®<7r(i1(a1)), ...,ﬂ(in(an))>
. <<j1,.”,jn>(il(a)),.”,<j1,.”,jn>(in(an)))

— o (31(@1), - n(an))
= a1® e ®an‘

OJ

Remark 2.11 These maps allow in particular to compare the coloop bialgebra representing
some loop to other types of bialgebras related to it which appear in the literature. In particular,
the universal enveloping algebra of the Sabinin algebra associated to the loop has been studied
in [33, 30, 31]. Because of the axioms, it is clear that the graded dual of this universal enveloping
algebra does not coincide with the bialgebra H® induced by a coloop bialgebra H, nor in Algy
nor in Asyf.

Finally, let us use these maps to compare associative coloop bialgebras and Hopf algebras.
Let H be a coloop bialgebra in Asg. Denote by H® the algebra H endowed with the usual
co-operations

A® =7 A, 68 =76, 62 =nd,: H® — H®® HO,

the counit € and the antipodes S,, S;, which are all still algebra homomorphisms on H®.

Proposition 2.12 If A is coassociative, then A® is coassociative. Moreover, we have

S, =(e®id)d®  and S = ([d®e)5P.

12



Proof. If A is coassociative, the two terms
(A® ® ld) A® = (ﬂ' ® ld) T(HUH)UH (A 11 ld) A

and

coincide, because A is coassociative and because the two maps (7 ® id) ® m(gypuy and (id ®
) @ Tu(rna) coincide with the standard projection 7: HUH U H — H ® H ® H. Therefore
A® is coassociative.

For any a € H, the term 6,(a) € HM 11 H® is a finite sum of products of elements of H)
and of H® in alternative order. The right antipode S(a), = (11id) §,(a) turns all the factors
belonging to H) into scalars, which can then be positioned on the lefthand side of all the
remaining elements belonging to H?). Therefore the result is the same that we obtain if we
first reorder the factors in H() all at the leftmost position by applying 5-(a)®. Same with S
by putting all the scalars on the rightmost position. O

Note however that S, and S; do not necessarily satisfy the left and right five-terms identities
for A® on H®, because

m (S, ®id) A® = m7 (S, 11id)i A® = g7 (S, 11id) e A

and ¢ is not the identity map on H 11 H. Therefore, even if H is a cogroup bialgebra, H® is
not necessarily a Hopf algebra.

3 Coloops of invertible and unitary elements

3.1 Loop of invertible elements

In this section we give an example of an abelian algebraic group which can be extended to
associative algebras as a group, to alternative algebras as a loop, but not to non-associative
algebras, even as a loop.

Let | be a field. For any unital commutative algebra A over [, the set
I(A) = {a € A| a admits an inverse a~' }

is the abelian group of invertible elements in A. The functor I is represented on Comy by the
commutative (and cocommutative) Hopf algebra of Laurent polynomials H; = F[z,z~!], with
evident co-operations

Alz) =xzQ®uw, e(x) =1, S(z) =zt

We show that the functor I admits an extention to associative algebras as a group, and that it
admits an extention to non-associative algebras, as a loop, only on alternative algebras.

Definition 3.1 Let us call invertible coloop bialgebra on [ the associative algebra H{' =
F[z,z~'] endowed with the following co-operations with values in the coproduct HY'ULH}' of the
category Asf:

Az) = 2 2® A = (@) (a7HW,
e(r) =1 e(z™h) =1,

de(a) = 2 (a1 e =2 @O,
6(z) = (z=HD 23 Sz = (7 H@ M),

It follows that there is a two-sided antipode given by S(z) = z~! and S(z™!) = z.

13



Proposition 3.2 The algebra H{' is a cogroup bialgebra in Asy and represents, for any asso-
ciative algebra A, the group
I(A) = Homas, (Hi', A)

of invertible elements of A. Moreover, the group I(A) is abelian if and only if A is commutative.

Proof. The axioms of a coloop bialgebra for the codivisions are easily verified. The first claim is
then ensured by the fact that A is clearly coassociative. Thus, the second statement is evident.

The fact that the group I(A) is abelian if and only if A is commutative is less evident because
A is not cocommutative. In fact, we have

7 A(z) = 7(z 23) = 2@ 2V 2 W 2@ = A(g).

It is however true because the generators z and z—! are group-like, and therefore the commuta-
tivity of the convolution product only depends on that of the multiplication in A. O

Example 3.3 An evident example is I(M,(F)) = GL,(F).

Proposition 3.4 The algebraic group I can be extended as a loop to a variety of algebras A
Algr if and only if A is a subcategory of alternative algebras Alty admitting coproduct and
initial object. In particular, it is an algebraic loop on Alty.

Proof. If I could be extended as an algebraic loop to Alg, its representative coloop bialgebra
should be the algebra Hj' = F[z, '] with co-operations defined on generators as in Def. 3.1
but taking values in the coproduct Hf' I Hf' of the category Alg. This algebra is not a coloop
bialgebra in Alg, because the codivisions do not satisfy the cocancelation properties (2.6) and
(2.5). In fact, the element

(id 11 ) (6, 11id) A(z) = (2P (271 @) 22

can not coincide with iy (z) = () in Hi'11 HI.

However, the conditions which make the cocancellation being satisfied, all similar to the one
above, are precisely equivalent to the axioms of alternative algebras, when all non-zero elements
are invertible (cf. [43]). O

Example 3.5 The octonions O form an alternative algebra, where the set I(0) of invertible
elements is well known to be a Moufang loop (cf. [9]), that is, it is a loop satisfying the Moufang
identities

for any elements a, b, c.
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3.2 Loop of unitary elements

Consider now involutive algebras A, and the subgroup of I(A) made of unitary elements in A,
namely
UA) ={aeA|aa” =1},

when A is commutative. Exactely as for I, the functor U is represented on Comj by the
commutative Hopf algebra Hy = Flz,z* | z2* = 1], with co-operations

Alz) =z Q®uw, e(z) =1, S(z) = z*.

Definition 3.6 Let us call unitary coloop bialgebra on [ the associative algebra Hy =
Flz,z* | za* = 1] endowed with the co-operations defined on generators exactely as those in
Def. 3.1, where the generator ! is replaced by z*.

As for the invertible coloop bialgebra, one can prove that

Proposition 3.7 The algebra Hy is a cogroup bialgebra in Asg and represents, for any invo-
lutive associative algebra A, the group

U(A) = HOHIAS? (H[L,[T7 A)
of unitary elements of A. Moreover, the group U(A) is abelian if and only if A is commutative.

Examples 3.8 For [ = R, this functor allows to describe several groups of unitary matrices.

1. Applied to the algebra M, (R), if we take the transposition of matrices as involution, it
gives U(R) = {1, -1}, and the orthogonal group U (M,(R)) = O(n) for n > 1.

2. On M,,(C), we take as involution the complex conjugate of the transposition. Then U(C) =
U(1) = S' and U(M,(C)) = U(n) is the unitary group.

3. Let H be the algebra of quaternions. On M, (H), we take as involution the quaternionic
conjugate of the transposition. Then U(H) =~ Sp(1) = SU(2) =~ S* and U(M,(H)) =
U(n,H) = Sp(n) is the compact symplectic group, also called the hyperunitary group.

Again exactely as for the invertible coloop bialgebra, one can prove the next result.

Proposition 3.9 The algebraic group U can be extended as a loop to a wvariety of algebras
A c Algp if and only if A is a subcategory of involutive alternative algebras Alty admitting
coproduct and initial object. In particular, U is an algebraic loop on Altf.

Example 3.10 On the alternative algebra of octonions O, the octonian conjugaison is an invo-
lution, and the set U(0) of unitary elements is again a Moufang loop, homemorphic to S7.

3.3 Unitary Cayley-Dickson loops
In this section we give an example of a loop which is not algebraic on associative algebras.

Let F be a field and j denote an imaginary unit. For any involutive commutative algebra A
over [, the set
Ucp(A)={a+bje A+ Aj|aa* +bb" =1}

15



gives the group of unitary elements in the Cayley-Dickson algebra A + A j with multiplication
(a+bj) (c+dj) = (ac — d*b) + (da + bc*) j,

unit 1, and involution (a + bj)* = a™ —bj.
The functor A — Ucp(A) is representable on Comy, by the commutative Hopf algebra

Hycp = Flz, 2%, y,y* | x2® + yy* = 1]

with co-operations

A(z) =r®@r —y®y" Aly) =r@y +y®x*,
e(z) =1 e(y) =0,
S(z) = x* S(y) =~y

Proposition 3.11 The algebraic group Ucp can not be extended as a loop to the category of
involutive associative algebras.

Proof. If Ucp could be extended to an algebraic loop to Asf, its representative coloop bialgebra
H{p should be an associative algebra generated by x, z*, y and y* submitted to conditions
which give x x* + yy* = 1 if the variables commute. The co-operations should then be defined
on generators exactely as in the commutative case, but taking values in the coproduct Hyj 11 Hy
of the category Asf.

The conditions zz* = z*x and zz* + y*y = 1 are enough to guarantee that the algebra
H{jcp has a well defined comultiplication, a counit and an antipode satisfying the five-terms
identities. However, the codivisions, defined according to the coinverse properties (2.15) as

6,(z) = 20 ()@ + (y*)@ yO) 5.(y) = —y@ 2@ 1 y® £
ou(w) = (@)W 2 4 ()& yV au(y) =y (@)W =y @)@,

satisfy the cocancellation identities (2.5) and (2.6) if and only if
W (2*2)@ = (2% 2)@ M) and y W (y* )@ = (y*y)@ 4D

in H{jep I Hjep- This could happen for two reasons. The first is that the map N : Hjop —
Hyep given by N(a) = aa® = a*a has scalar values, i.e. its image is in u(F) < H{jgp. This
is the case if Hjop is a composition algebra, cf. [1]. But composition algebras do not have a
coproduct. The second possibility to verify these conditions is that the identity a(Mb(2 = p(2) (1)
holds in H{jqp 11 Hjep for any elements a,b € H{jop. This means that 11 = ® and therefore it
is only possible in the category Comg. OJ

Examples 3.12 In agreement with this result, we find few examples of loops arising as sets of
unitary elements in the Cayley-Dickson algebra constructed on an associative algebra:

1. Ucp(R) = U(C) = S! is an abelian group. Ucp(M,(R)) is a loop only for n = 2.
2. Ucp(C) = U(H) = S2 is a group. Ucp(M,(C)) is a loop only for n = 2.
3. Ugp(H) = U(D) = S7 is a Moufang loop. Ucp(M,(H)) is not a loop for n > 1.
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4 Coloop of invertible series

The group of invertible series (with constant term equal to 1), is the set of formal series
Inv(A)z{a(/\): N an N [ ap =1, aneA}
n=0

with coefficients a,, taken in a commutative algebra A, endowed with the pointwise multiplication
(ab)(A) = a(N) b(A), unit 1(A) = 1, and where the inverse of a series a()) is found by recursion.
It is an abelian proalgebraic group on Com, represented by the cocommutative Hopf algebra

Hiyy = Flxy, n>1] (xg=1)
Ainv(517n) = Z T @ Tp—m
m=0

known as Hopf algebra of symmetric functions [17].
The functor Inv admits an evident extention to associative algebras as a functor in groups
(but not abelian), represented by the cogroup bialgebra [7]

Hipy = Fayp, n=1) (xg =1)
n

Ainv(iEn) = Z :I:1(’I:’LL) $£L22m

m=0

with antipode defined recursively. The projection of this bialgebra by the canonical map 7 given
in Def. 2.8 coincides with the Hopf algebra of non-commutative symmetric functions (cf. [18]).

In this section we show that the functor Inv can be extended to non-associative algebras, as
a proalgebraic loop.

4.1 Loop of invertible series

Definition 4.1 Let A be a unital algebra and let A\ be a formal variable. We call invertible
series in \ with coefficients in A the formal series in the set

Inv(A):{a=Zan)\"|a0=1, aneA},

n=0

endowed with the multiplication

=3 S b
n=0 m=0

and the unit e given by ey = 1 and e, = 0 for all n > 1. For instance,

(a-b)1 =aq + by,
(a . b)2 =ag +a1by + bQ,
(a . b)g = a3 + agby + a1by + b3.

Proposition 4.2 For any unital algebra A, the set of invertible series Inv(A) is a loop.
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Proof. It is clear that the series e is a unit for the given multiplication, so we only have to show
that there exist a left and a right divisions satisfying the cancellation properties (2.2) and (2.1).
Since the multiplication is completely symmetric in the the two variables, the proof for the two
divisions is exactely the same. We do it for the right division.

Given two series a = > a, A" and b = > b, A", we define the right division a/b = > (a/b), \"
so that (a/b)b = a, that is

n
(a/b)m brn—m = an for any n > 0.

m=0
These equations are solved recusively from (a/b)g = 1, and give the nth term

n—1

(a/b)n = an — > (a/b)m brm.
m=0
Let us then prove by induction that (a-b)/b = a, that is, ((a - b)/b) = ay for any n > 0. We
have ((a-b)/b), = ag = 1 and, for any n > 1,

nfl

((a-B)b), = (@-b),

=0

3

n—

=a, + (am — (@ b)) bo—m,

m=0

so if we suppose that ((a-b)/b), = a, for any m = n — 1, we have ((a-b)/b) = ay. O

For instance, for the right division we find

(a/b)l =a) — b17
(a/b)2 = ag — a1by — by + b1by,
(a/b)3 =az — (a1b2 + agbl) + (albl)bl — b3 + (b1b2 + b2b1) — (blbl)bl,

and for the left division we find

(a\b)l = bl —ay,

(a\b)g = b2 — a1b1 —as + ajay,

(a\b)3 = bg — (a1b2 + a2b1) + al(albl) — bg + (a1a2 + agal) — al(alal).
4.2 Coloop bialgebra of invertible series

For any integer n > 1 and any 1 < £ < n, let C% denote the set of compositions of n of length
¢, that is, the set of ordered sequences n = (nq,...,ny) such that

ny+ - +ng=n, and Ny, ...,ng = 1. (4.1)
For instance, for £ = 1,2,3, we have

c={n}, a={@} aG={wy}
c={®} G={2.02}, ¢={111}
Definition 4.3 Let us call coloop bialgebra of invertible series the free unital algebra
HY =T{x,|n=>1}

with the following graded co-operations:
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e comultiplication Al : HY — HI 11 HH given by

mv mv mv mv

A]'ilv (‘TTL) =

Tm Yn—m;

ANGE

0

e counit ¢ : H} — [ given by e(xy,) = dn.0;

e right codivision ¢, : Hj} — HL 11 H!l given by

inv in

n—1

O (Tn) = Tn — Yn + Z (_1)6 Z ((((xm - ym)ynz)yng) ”')yn5+17

l=1 neCffrl

where C:+! is the set of compositions of n of length £ 4 1, cf. (4.1);

e left codivision §; : Hl) , — H{I 1 Hl given by
n—1
01(en) = g = o+ 2, (1D @y (- (s @iy = 2nn))) )-
(=1 necit!

Theorem 4.4 The algebra HY. is a coloop bialgebra and represents the loop of invertible series
as a functor Inv : Alg — Loop.

As a consequence, given an algebra A, a series a = ), ~oa, \" € Inv(A) can be seen as an
algebra homomorphism a : HYl — A defined on the generators of Hi, by a(x,) = a,, and the
right and left division a/b and a\b are given at any order n by the following closed formulas:

(a/b)n = HA (CL ul b) 57’ (xn)

n—1
= an — bn + Z (—1)Z Z ((((anl - bnl)bnz)bn;g) te ')bne+17
/=1

ne Cf;rl

(a\b)n = pa (a11b) 6y (zn)

n—1
= by, —ap + Z (_1)Z Z Qny ( o (anz (anz (bnlJrl - anlJrl))))'
/=1

ne Cff 1

Proof. The algebra H}}  clearly represents the functor Inv with values in sets, and the comul-
tiplication All = represents the pointwise multiplication of series. The only thing which should
be proved is that H}  is a coloop bialgebra with the given codivisions. The formulas for the left
and for the right codivisions are perfectly symmetric, in the sense that §; = 79, so it suffices to
give the details for one codivision. Let us then show that the right codivision satisfies the two
equations (2.5).

Concerning the first one, we have

n—1

(6, 1HiA) AL, (2n) = 6 (2n) + 20 + D 6(Tm) 2nm

m=1
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and therefore

n—1

(ld nl :u’)((sr nl ld)AII'LV<LZ'n) = 57’(‘TTL) + yn + Z 6r(xm) yn—m

m=1

— Yn + 2 <_1)£ Z (((um ynz)ym) : ">ynz+1 + Yn
/=1

ne CLtl
n—1m—1

+ Z Um Yn—m + Z Z Z (((um1 ymz)"')ymAH) Yn—m
m=1 \=1 meC,i‘fl

where we set u,, := z,, — y, and therefore we have

n—1
Z Um Yn—m = Z Uny Yng-
m=1

neC2

Setting £ = A + 1 in the last sum, we have 2 </ <n—1and £ < m <n — 1 with

n—1

4 1 _ b+l
U cnx i =it
m=A

therefore
n—1 m—1 n—1

<_1)>\ Z <((um1 Yma) )ymxﬂ) Yn—m = Z <_1)£ Z <(<un1 Yns) yn3) o ')yne+1'
m=1 \=1 me At =2 ne it

Thus, we finally obtain
(6, Wid) AL, (zn) = Zn.
For the second identity, we rewrite the comultiplication as

A]flnv(xn) =Tp + Yn + Z Ty Yno

neC2

and using the fact that
n—1
cirt=J ehx e
m

and setting p = £, we rewrite the right codivision as

5r(xn) = Up + <_1)M Z (((um ykl)yk2) e >yku'
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We then have

Al = A

an

( 11id)d, (x,

) =

HM| HMI

3

n—1 n—m

—at 2 MDY (A ) = 2w 2) )2
m=1 p=1 keCﬁf m
n—1 n—m
=Tp +Yn + an1yn2+2 Z(_ iDlg Z ((‘Tmzkl)"')zku_zn
neC2 m=1 p=1 keCh_
2 S () ),
p=1 keCﬁf m
Z Z Y ((($m1ym2)zk1)"'>sz
ecz, p=1 kec;j .
Z Z (zmzkl)"-)zkﬂ.
p=1 keCﬁf m

Zz

When we then apply id 11 i, we identify 2, = ¥, and 2, = yg, for i =1

, -y 14, and therefore we

have
(id 11 1) (Al 11id)0, () = 25 + Z Tny Yng + Z Z Z (mm Yky) o )ykM
neC2 m=1 p=1 kec,‘; m
+ Z Z Z Z <(($m1ym2)yk1)"'>ykM
m=1me(C2, p=1 keCﬁf m
where
n—1 n—m n—1
<_1)M Z ((‘Tm ykl) T )yk# = Z (_1)6 Z ((‘Tru yn2) e )ynuly
m=1 p=1 kecx m /=1 neCfl“
and
D Ty Yny + Z > Z Y (((:Emlymz)y/ﬁ)m)ykH
neC2 m=1me(C2, p=1 keC,‘I‘ m
n—1
== (_1)1$n1 Ynip — Z (_1)Z Z ((fnnl ynz) T )ynuy
neCit! 0=2 ne it
Then we finally have
(id 1 p) (AL, 1id)6 (2,) = 2.

4.3 Properties of the loop of invertible series

Corollary 4.5
power associative.

1. The proalgebraic loop Inv on the category Alg is not right alternative nor
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2. The left and the right inverses of any a € Inv(A) do not coincide, that is
a\e # e/a.

3. The left and right inversions do not allow to construct the divisions, that is,
a/b # a(e/b) and a\b # (a\e)b

for any a,b € Inv(A).

Proof. 1. It suffices to show that the coloop bialgebra H.  is not right coalternative, that is

mv
(idup) K # 0, where K = (Al 11id) Al — (id T Al ) Al is the coassociator.

The first default from right alternativity appears on the generator xg, since we have
K(x3) = (z1y1)21 — 21(y121)
(id i p) K(x3) = (z1y1)y1 — x1(y1y1) # 0.

For instance, if A is the algebra of sedenions, spanned by 1 and the imaginary units e; for
i =1,...,15, the default from right alternativity can be seen comparing (ab)b and a(bb) for the
two series

a=1+ (e1+e1)A and b=1+4 (e5 + e14)A

because (e1 + e1p)(es + e14) = 0 and therefore
(ab)b — a(bb) = —(e1 + e10)(e5 + 614)2 2\ = 2(e1 + e10) A3,
Similarly, Inv(A) is not power associative because
p(d ) K(z3) = (v121)71 — 21 (20171 # 0.

For instance, if we take A to be the algebra of 2 x 2 matrices with coefficients in the sedenion
algebra, for the series ¢ = 1 4+ c1 A with

e1 +eyp es+ e
“= 0 1

we have

Bep = ( —2(€1O+ ew) —(es il- e14) ) and o= < —2(610+ €10) €5 +1€14 >

and therefore

(cc)e — e(ce) = < 0 e ) ) 23,

2. The left and right inverses in Inv(A) coincide if and only if the left antipode S; and the
right antipode S, of HIl  coincide. Applying equations (2.9), we find

Sy(xy) = (e1id) 6, (xy,)

= —T, — nzl<_1)£ Z <(<xn1 xnz) xm) T >x"e+1
=1 ne it
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and

Si(xn) = (idIe) 0y (xp)
n—1
== 30" Y (o (o @) )
{=1 ne C45H1

therefore the two antipodes do not coincide.
For instance, for a series ¢ = 1 + ¢1 A, we have

efc=cS, =1—c1 A+ A\ — (cr1e1)cq A+ ((clcl)cl)cl M4
de=cS=1—-c1 A+ A\ — c1(erer) P (cl(clcl)) M4
If ¢ is the series considered above, with coefficients in the algebra of 2 x 2 matrices over sedenions
and
o — e1+eyp e5+ e
1= 0 1 )

we have
—2(65 + 614)

efc—c\e = ( 8 . ) N 00,

3. To show that a/b # a (e/b) and a\b # (a\e) b in the loop Inv(A) is equivalent to show that

o # (1d11.S,) AI-I']IHV and 0 # (Sl 11 id) Al

mv

in the coloop bialgebra HI! . Let us show it for the right codivision. For any generator z,,, we
have

n—1
(id11S;) A]i_llnv (Tn) = Tn + Sr(yn) + Z T Sr(Yn—m)
m=1
n—1
=Tpn —Yn — Z <_1)é Z ((yru ynz) T )yn5+1
=1 neCffl
n—1 n—1n—m—1
= Tmtem— Y, Y, DN D (((yk1 ka)---)ykM)
m=1 m=1 \=1 kGCijn

Writing the last two sums in terms of compositions of n yields

n—1

(id 11 Sr) A]i_LV(xn) =Tp — Yn + Z (_1)6 Z (xm (((ynz yna) T )y"e+1) - ((ynl ynz) T )y"e+1)7
=1 ne Cf;rl

which is clearly different from the expression of d,(z,,). O

Proposition 4.6 Given an algebra A, the loop Inv(A) satisfies a polynomial identity

for any series a,b,...,c € Inv(A) if and only if the identity () is satisfied in A, that is, for any
elements a,b,...,c € A.
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This implies in particular that Inv(A) is a Moufang loop if and only if A is left and right
alternative, and that Inv(A) is a group if and only if A is associative.

Proof. Roughly speaking, this result follows from the fact that the comultiplication All is linear
on both sides on generators. More precisely, if () holds in A, then it holds in the algebra of formal
series A[[A]] and therefore in its multiplicative subset Inv(A). Viceversa, if (%) holds in Inv(A),
it suffices to consider series of the form a = 1+ (a1 — 1)\, b=1+ (b1 —1) A\,..., c =14 (c1 — 1) A,
apply (#) and evaluate at A = 1, the result is (*) on the elements a1, b1, ...,c; € A. O

5 Coloop of formal diffeomorphisms
The group of formal diffeomorphisms (tangent to the identity) is the set of series

Diff(A) :{a: Zan)\"ﬂ | ap =1, aneA}
n=0
with coefficients a,, taken in a commutative algebra A, endowed with the composition law
(aob)(A) = a(b(N)), unit e(A) = A, and where the inverse of a series a()) is given by the
Lagrange inversion formula [23]. It is a proalgebraic group on Com, represented by the Faa di
Bruno Hopf algebra [12], [20]

Hygg = Flz,, n > 1] (rg =1)

n
(m+1)!
Ar4B (:En) Z T ® Z |p1 xﬁjl T "Eifzn
(p)

m=0

where the sum is done over the set of tuples (pg, p1, p2, ..., Pn) of non-negative integers such that
po+pr+pe+---+py=m+1and p; + 2ps + -+ + np, = n —m. In this section we show that
this group can be extended as a proalgebraic loop to the category As.

5.1 Loop of formal diffeomorphisms

Definition 5.1 Let A be a unital associative algebra, non necessarily commutative, and let A
be a formal variable. We call formal diffeomorphisms in A with coefficients in A the formal series
in the set

Diff(A):{a: Zan)\”+1|a0:1, aneA},

n=0

endowed with the composition law

aObZZ i Z ambko"'bkm)\nJrl

n=20 m=0 ko+-+km=n—m
k07~~~7km>0

n—1 n
I R M G I S
m=1 =1

n=0 ki+-+km=n—m
k17~~~7km>1

and the unit e given by ey = 1 and e, = 0 for all n > 1. For instance,
(aob)y =ai + by,
(a o b)g as + 2a1b1 + b,
(a o b)g as + 3asb; + a1 (2b2 + b%) + bs.
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The indeterminate A is not necessary to define the loop law, but helps to keep track of the degree
of the terms in the sum.

Proposition 5.2 For any unital associative algebra A, the set Diff(A) is a loop.

Proof. It is clear that the composition is a well-defined operation, and that e is a unit. Let us
show that the left and right divisions exist.

i) Let us prove that there exists a right division / satisfying the two equations (2.2). Given two
series a = Y a, A" and b = Y. b, A"*1, let us define the series a/b = Y(a/b), A"*! so that
(a/b) o b = a, that is

n
Z Z (a/b)m biy - - - br,, = an for any n > 0.
m=0 ko+-+km=n—m
k07~~~7km>0

From now on, in the sum over the integers ko, ..., k, we omit to write that all integers can be
zero. These equations are solved recursively, starting from (a/b)g = a9 = 1. The nth term is
given by

n—1

(a/b)n = an — | > (a/b)m bry - - - br,, -

m=0 ko+--+km=n—m

To prove that (aob)/b = a, i.e. that <(a o b)/b) = a, for any n > 0, we proceed by induction.
We have ((a o b)/b)0 = (aob)y = 1, therefore

<(ao b)/b)1 — (aob) — ((ao b)/b)obl — a1+ b — by = a

and

n—1

((aov)p) =(@ob—2 X ((@ob)b) biy--by,

m=0 ko+--+km=n—m

n n—1
= Z Z ap bry -+ by, — Z Z ((aob)/b) by -+ - D,
m=0 ko++km=n—m 20 kgt o m

=a, + nz—:l Z (am - ((aob)/b>m) ko *** bk

m=0 ko+-+km=n—m
so, if we suppose that <(a o b)/b) = a,, for any m < n — 1, we have ((a o b)/b) = Q.

ii) To prove the existence of the left division we proceed in the same way: the series a\b that
satisfies the identity a o (a\b) = b of equations (2.1), that is,

Y an @By (@B, = by foranyn >0,

m=0 ko+-+km=n—m
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is given recursively by (a\b)g = 1 and

n

(a\b)n = b — Z Z am (a\D)kqy *+* (a\D)k,, -

m=1 ko+--+km=n—m

The identity a\(a o b) = b means that, for any n > 0, we have <a\(a o b)) = by,. This is proved
by induction. We have (a\(a o b)>0 =1, therefore

<a\(ao b))1 =(aob)] —ay (a\(a o b))0<a\(ao b))0 =a;1+b—a;=0b

and

(a\(a o b))n = (aob), — i Z am <a\(a o b))k0 e (a\(a o b))

m=1 ko+--+km=n—m

m

n

_ Zn: Z U brg + b, — Z Z U (a\(ao b)>k

= apb, + i Z am, <ka b, — <a\(a o b))k0 e (a\(a o b))km>

m=1 ko+--+km=n—m

SN (et (o), (aen), )

m=1 ko+-+km=n—m 0

+an (boebo— (a\(@ob)) - (a\@ob) )
:bn+’§ S <bk0-.-bkm— (a\(@ob)) "'(a\wob))km)’

m=1 ko+-+km=n—m 0

- (a\(@on)

0 km,

so, if we suppose that <a\(a o b)) = by, for any m < n — 1, we have (a\(a o b)) = by,. O

n
For instance, the first terms of the right division are

(a/b)1 = a1 — by,
(a/b)2 = as — [b2 + 2(a/b)1bl] — 4y — 2a1by — (by — 20%),
(a/b)s = az — [b3 + (a/b)1 (2bs + b2) + 3(a/b)2b1]
= a3 — (2a1b2 + 3azby) + 5a1bi — [bs — (2b1bs + 3baby) + 5b7],
and the first terms of the left division are
(a\b)1 = b1 — ay,
(a\b)g = by — [Qal (a\b)1 + ag] = by — 2a1by — (ag — 2a2),

(@\b)s = bs — |a1(2(a\b)s + (@\D)}) + a2(3(a\b)1) + as]
3 — (2a1b2 + 3a2b1) + (5&%()1 + a1bia; — alb%) — [a3 — (2(11(12 + 3&2&1) + 5&%].

We now prove that the loop of formal diffeomorphisms is proalgebraic over associative alge-
bras, and give its representative coloop bialgebra.
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5.2 Faa di Bruno coloop bialgebra

To describe the codivisions we need to introduce some sets of sequences and two types of related
integer coefficients.

Definition 5.3 For any ¢ > 1, let M, denote the set of sequences m = (my, ...,my) such that
my+ -+ my =4, and mi+---4+mj=j for j=1,..,0—1 (5.1)
For instance, for ¢ = 1,2, 3, we have
My ={1)}, M={(20),1,1}, Ms=1{(3,00),(21,0),(2,0,1),(1,2,0),(1,1,1)}.

For any ¢ > 1 and any sequence (nq,...,ns11) of positive integers, we call Lagrange coeffi-
cient? the number

ny+1 ne+ 1\ (nes1 + 1
dpsr (N1, oy mepn) = ) < 1m1 )( Zmz )( “B )

me M,

For ¢ =0, M is empty and we set

di(ny) = <"1(;rl> ~ 1

For instance, for £ = 1,2, 3, we have

ny+1
dz(nl,nz)—< 11 )7

ny +1 ni+ 1\ (ng + 1
d3(n17n2,n3)—<12 )+(11 )(21 )’
ny +1 ny+ 1\ (ne+1 ny+ 1\ (n3+1
d4(n17n27n37n4):< 13 >+< 12 >< 21 >+< 12 >< 31 >
ny+ 1\ (n2+1 ny+ 1Y fng+ 1) fng +1
+<1)<2>+<1)<1><1>'

Definition 5.4 For any ¢ > 2, let §_; = {1,2}*"! be the set of sequences e = (eq,...,es_1)
such that

e;€{l,2} for i=1,...0—1. (5.2)
For any e € &_1, let M§ be the set of sequences m = (my,...,my) € M, such that
m; =0 if ej_1=2, for j=2.,[L

In particular, if e = (1,1,...,1) then M$ = My, while if e contains at least one value 2, the set
M7 is a proper subset of M.
For instance, for £ = 2, we have

M) = My = {(2,0),(1,1)},
MY = {(2,0)}.

3These coefficients appear in the Lagrange inversion formula [23], cf. [7].
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For ¢ = 3, we have
Mgl,n _ ={(3,0,0),(2,1,0),(2,0,1), (1,2,0),(1,1,1)}
{(3 0,0),(2,1,0),(1,2,0)}
{(3,0,0),(2,0,1)}
{(3,0,0)}.

For any ¢ > 1, any sequence e € £_1 and any sequence (ni, ...,ng41) of positive integers, we
call labeled Lagrange coefficient the number

np+1 ng+ 1\ (neg + 1
dfiq(n1,omepn) = ). <1m1 >< ng >< HB >

me M3

Of course, if e = (1,1, ...,1) then d5**(ny, ...,ngy1) = dgy1(n1, ..., ney1), and if e contains at least
one value 2 then d5™'(ny, ...,np1) < dop1(n1, .o, Nps1).
Here are the values of dj, ; for £ =1,2,3:

ny+1
dé”(m,m) = da(n1,n2) = ( 11 >;

ny+1 m A 1Y fnp +1
dél’l)(nl,m,n?,)=d3(”1’n2’n3) :< 1 >+< 1 >< 2 >’

2 1 1
1
dg(),l’z) (n1,n2,n3) = <n1 N >;

2
11,1
di )(nl,ng,ng,m) = da(n1,n2,n3,M4)

DO
()
dil’1’2)(n1’n2’n3’n4) _ <n1; 1) + <n12+ 1> <n21+ 1> + <n11+ 1> <n22+ 1>,
A0 (01 . ng,ma) — <n1?:I- 1> + <n12-l- 1> <n31+ 1>,

1
di1,2,2) (1, ng, n3, na) — <n1;r >

For any n > 1, let x,, be a graded variable, with degree n. For X = Spang{z,, n > 1},
the tensor algebra H = T'(X) can be seen as the set of non-commutative polynomials in the
variables x1, xa, ..., that we denote by F{(x,, n = 1). It is then useful to denote the unit 1 of H
by Zg-

The unital associative coproduct algebra H 11 H is then the tensor algebra T'(X™ @ X)) on

two identical sets of variables. To simplify the notations, in this section we denote by x,, = xg)

(2)

and y, = x,  the generators taken in the two sets.
Definition 5.5 We call Faa di Bruno coloop bialgebra the free unital associative algebra
HIIEIdB = |F<$n7 n = 1>7 xo =1

of non-commutative polynomials in the graded variables x,, with the following graded co-
operations:
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e comultiplication ARyp : Hpgg — Hpgp U Hpgp given by
n—1
ny+ 1
A]l:LdB(xn) =Tn + Yn + Z Z ( ) > Tny Yng " " Yngyrs
{=1 pe C,{fl
where C/*!is the set of compositions of n of length £ + 1, cf. (4.1);
e counit ¢ : Hpyz — [ given by e(z,,) = 0p0;

e right codivision 0, : Hgg — Hpgp I Hpgp given by

n—1
5r(xn) = Z <_1)£ Z d€+1(n17 vy n£+1) (xm - ym) Yng " Yngyqs
£=0 nEC,g+1

where the Lagrange coefficients dyy; are given in Def. 5.3;

e left codivision ¢; : Hpyy — Hpqp U Hpyp given by

0i(xn) = (Yn — zn) — Z da(n1,M2) Tny (Yny — Tny)

neC?
N (ee-1)
e €r—1
Z Z Z dé+1 ni,.. "’L£+1) xnlgpg;) T Tny (ynz+1 - $ne+1)
=2 necitlee&o

where the set of sequences & 1 and the labeled Lagrange coefficients dj, ; are given in
Def. 5.4, and where we set

(_1)e _ (_1)61+"'+65717(£71)

and, according to the previous convention, we set

xglei) _ In lf €; = 1
Yn ife; =2

For instance, on the first five generators, the comultiplication is

ARgp(21) = 21+ 11

Afap(T2) = 22 + Y2 + 22131

Afgp(zs) = 23 +y3 + (2351?42 + 3352?41) + 195

FdB(a:4) = x4+ ya + (2213 + 32y2 + 423y1) + (71(¥192 + Yoy1) + 3T2y7)
ARgp(w5) = 25 + Y5 + (2x1y4 + 3x2y3 + 423y + 5r471)

+ (21 (y1ys + 3 + ysy1) + 32(y1ye + yoyr) + 623y1) + 220

the right codivision, with u, = x, — yn, is

Or(z1) = g

Or(T2) = ug — 2u1y

Or(x3) = us — (2u1y2 + 3u2y1) + 5u1y%

S (24) = ug — (2urys + Bugys + dugyr) + (Suryrye + Turyeyr + Jugy;) — 1wy}
6 (z5) = us — (2u1ya + 3usys + dugys + Suayr)

+ (Buryiys + Turys + uiysyr + Suoyiys + 12usyoyr + 14uzy?)
- (14u1y%y2 + 19u1y1y2y1 + 23u1y2y7 + 28qui1)’) + 42u1y]
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and the left codivision has additional terms which contain both variables z and y in alternative
order beside the first position which is always x, and last position which is always v, = yn, — Tn:

d(x1) = v

0i(x2) = vo — 22111

0i(x3) = vg — (2x1v2 + 3:1:21)1) + 5230 — T1y101

0i(xg) = vy — (2x1v3 + 3909 + 4:E3v1) + (5x%v2 + Tx1z90] + 9x2x1v1) - 14:17‘?’211

— (219102 + 219201 + 3z2y1v1) + (dafyivr + 221 y12101)
i(z5) = v5 — (2z1v4 + 3203 + 42309 + Bz 4v1)
+ (53:%1)3 + Tx12202 + 9212301 + 9T2210V2 + 12m%vl + 143:33:1?)1)
— (14x:1)’v2 + 19:13%:@111 + 23x11071 01 + 28:L'2$%U1) + 42:E‘11v1
- ($1y1v3 + T1Y2v2 + £1Y3v1 + 3T2Y1vV2 + 3T2Y2v1 + 6x3y1U1)
+ (4x%y1v2 + 4a:%y2fu1 + 9z 299101 + 10222197101
+ 221912102 + 3211201 + 22122101 + TToY1T1V1 — Toyiv1)

— (14:1:‘?’1/11)1 + 9:1:%y1:n1v1 + 5x1y1$%v1 — :E%y%vl — :Elylxlylvl).

We now want to prove that the algebra given above is indeed a coloop bialgebra. The only
difficulty is to prove that the codivisions satisfy the cocancellation properties (2.6) and (2.5),
which are equivalent to some recurrence relations on the Lagrange coefficients dyy1 and dg_ ;.

We prove in fact a stronger result, namely, that there exist some operators Ry, and Rj,
defined on the tensor space T(A) over any positively graded algebra A, which produce the La-
grange coefficients and which satisfy the wished recurrence relations. These operators provide an
alternative definition of the Faa di Bruno codivisions when applyed to the non-unital associative
coproduct algebra A = HE 11 HE - =T(X® @ X?).

5.3 Faa di Bruno co-operations in terms of recursive operators

Let A = @®,>14, be a positively graded associative algebra over a field [, and let us denote by
la| the degree of an element a € A, that is, the integer n such that a € A,,. The tensor algebra
T(A) = @e;oAGN is then bigraded, on one side by the tensor power ¢, that we call length,
and on the other side by the grading induced by that of A, that we call degree,

¢
a1 ®a2® -+ ®ay| = Z |a|.
i=1

Then T'(A) can be decomposed into the following direct sum with respect to the degree*:

T(A):[F@@ é’—j @ Ap ® - ®An, |,

nzl \/{l=1 neCf

where the compositions n e C’ are defined by eq. (4.1).

“Note that if A had a null degree component Ao, then T(A) would contain an infinite sum of terms in each
degree, namely T'(A)o = @, ASP and T(A)n = @), D,c ct D,=0 (equ) AP @ Ap, ® -+ @ Ay, for n > 1.
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Definition 5.6 Let us define a graded linear operation
>:TA)RT(A) —Fa® A

by setting

+1
a> (i ® - ®by) = <|“|£ )abl---bg

(a1®- ®ap)> (1 ® - Qbp) =a1 > (A2® -+ Qap b1 ® -+ ®byr)

al|+1
(L Y e

where the expressions on the right-hand side mean the product in the algebra A.
In particular, if we apply these rules to 1€ F = A®0, we have

1>1=1
1>b=0
1>(b1®---®by) =0 if¢>1
a>1l=a
al|+1
(1® - Rap) >1= <‘ 2|_1 >a1---ag.

Remark 5.7 The restriction > : AQ T(A) — A is a brace product on A which is symmetric
if A is commutative and generalises the natural pre-Lie product of the Lie subalgebra of strictly
positive generators in the Witt algebra (cf. [8, 15]). Note however that > on T (A)®T'(A) is not a
multibrace product (cf. [24]), even excluding the scalar component, because the first non-trivial
multibrace identity Ms;(a®b+ b®a;c) + My (Mii(a;b);c) = Myg(a; Ma1(b;c)) + Mya(a;b®@c +
c®b) is not satisfyed. Moreover, a unit for I> can not exist, because of length’s arguments, and
> is not associative, since for any a,b,c € A we have

(a>b)>c—ar> (b>c) = (|la|+1)|al abe # 0.

The algebraic structure described by the operator > in terms of generators and relations is an
open question.

Definition 5.8 We call left recursive operator L : T(A) — T(A) the collection L =
{Ly¢, ¢ > 0} of (non homogeneous) operations

Lo:F —TF

V4
L A®L . P A® rx1
A=1

defined recursively by Lg(1) = 1 and, for any ¢ > 1, by

-1

Ly(ar,...,ap) = Z(—l)#l*i <Li(a1, ey @) D> ai+1) Rai+2® - Qay,
i=0

where we denote Ly(ay,...,a7) := Ly(a1 ® -+ ®@ay).
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The first left operators give

Ll(a) = a,
La(a,b) =a>b—a®b

1
- (|a|1~|- ) ab—a®b,

Li(a,b,c) =(a>b)>c—(a®b)>c—(a>b)®@c+a®b®c

la|+ 1Y [|a|+]b|+1 la]+1 la]+1
= 1 1 — 5 abc — 1 ab@c+ab®ec.

The left operators L, can be easily described in a closed way.
Lemma 5.9 For any £ > 2 and any a1, ...,ap € A we have
Lg(al, ey ag) = Lg,l(al, e ag,l) > ap — Lg,l(al, e ag,l) Xay.

As a consequence, Ly(ay,...,ay) is the sum of the 2=1 possible multi-monomials obtained by

combining the operations > and ® with fized parenthesizing on the left, namely

L(ay,...,a¢) = Z (_1)M1+W+M71 ( T ((al *p1 az) * o a3) Fpz ¥ af—l) Frup_q A

B pe—1€{0,1}

where we set

. 1P ifu=20
Ple  difp=1

Proof. By induction on ¢. For ¢ = 2, we have
Li(a1) > a9 — Li(a1)®ag = a1 > az — a1 ®ag = La(ay, asz).
Now suppose that for any i = 2,...,¢ — 1 we have
Li(ay,...;a;) = Li—1(a1,...,a;—1) > a; — Li—1 (a1, ..., ai—1) ® a;.

Let us develop the sum defining Ly(ay, ..., ar). At each step, we separate the first two terms of
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the sum over ¢ =0, ..., — 1:
Ly(ay,...,ap) = Z 1= Z( al,...,ai)bai+1)®a,~+2®'--®ag
= (-1)" a1®a2®---®ae+(—1)H(a1>a2)®---@ae
+Z 1)1 Z( ala--~7ai)|>ai+l>®ai+2®"'®a£
= (_1)6—21’/2(@17@2)@@3@-.. ®as + (_1)6—?»([/2(@17@2) > a3) ® - ®ay
+Z 1)1 Z( ala--~7ai)|>ai+l>®ai+2®"'®a£
- (_1)6—3L3(a17a27a3)®a4® o @ap + (—1)¢ (Lg(al,CLQ,CLS) > a4) ® - Qay

+Z Z 1= Z( al,...,ai)DaiH)@aHg@-~®ag

= (1)L (ar, o ae-1) ®ag + (1) Loy (ar, .. ag1) > a
=Ly_1(ar,...,ap—1) > ar — Ly—1(ay,...,ap—1) @ay.
OJ

Definition 5.10 We call right recursive operator R : T(A) — T(A) the collection R =
{Ry, £ >0} of (non homogeneous) operations

Ry:F —F
L

R A®! — D A®N i1
A=1

defined recursively by Ry(1) =1 and, for any ¢ > 1, by

¢
R al, 5 a Z Z alepl,l(ag,...,apl)) (5.3)

peC]
® (alerl > RPQ*l(aler?’ ) ap1+p2)) -
® (ap1+---+pj71+1 > sz—l(ap1+---+pj71+2a e ap1+"'+pj))7

where we denote Ry(aq,...,a7) := Ry(a1® -+ ®ay).

For instance, the first right operators are

Ri(a)=a
Ro(a,b) =a>b+a®b
_ <‘a|1+1> ab+ a®b,

Rs(a,b,c) =a> (b>c)+ab> (b®c)+a®(b>c) + (a>b)@c+a®b®c

_ la|+1Y /]b|+1 N la|+1 abe + |b|+1 a@be
B 1 1 2 1
+ <|a|1+1> ab®c+ a®@b®c.
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The right operators R, can also be described in a closed way.

Definition 5.11 Let My be the set of sequences satisfying (5.1). For any m € My, let Ry, =
RS, : A®L T(A) be the operator which nests the operation > in an element a; ® - -+ ®@ay
according to the sequence m = (my,...,my) € M,y with the following algorithm:

e The length of RY (ay,...,a) is given by my, that is, R, (a1, ..., ar) € H®m,

e Start with a; on the leftmost position and proceed for increasing ¢ = 1,...,¢ — 1 to nest a
factor a; > Q;(ait+1, ait2,...) where @Q; is a multi-monomial of length ;1.

e For i = 2,...,¢ — 1, the role of the variable a; in the monomial is either determined by the
action of the previous variables aq, ..., a;_1, or it is the first variable of a new tensor factor.

e The last variable ay is ruled by a value m,,, 41 = 0, omitted in the sequence m, which says
that ay acts on 0 variables by > and allows it to close the monomial.

Example 5.12 Let us give some examples of this algorithm, for ¢ = 5. Fix ay,...,a5 € A and

set n; = |a;| for ¢ = 1,....,5. For m = (2,1,0,2,0), the multi-monomial R?271707270)(a1,...,a5)

is composed of two tensor factors (because m; = 2). The variable a; acts by > on a multi-
monomial of length 1 (because mg = 1) which starts necessarily by ay, and since ay does not act
by > (because m3 = 0), the first tensor factor is necessarily of the form aj > as. Then the second
tensor factor starts with ag acting by > on a multi-monomial of length 2 (because m4 = 2),
which starts necessarily by a4. Since a4 does not act by > (because ms = 0), the second tensor
factor is necessarily of the form ag > (a4 ® az). Therefore we finally have

R?2,170,270)(a1’ . CL5) = (a1 > CLQ) ® (CL3 > (CL4®CL5))

ny+1 ng + 1
= 1 9 a1a2 @ aza4as.

For m = (2,1,2,0,0), the variable a; still acts by > on a multi-monomial of length 1 which
starts necessarily by ao, but this time ao itself acts by > on a multi-monomial of length 2, and
this exhausts the possible > operations. Finally, this time we have

R?2,1,2,0,0)(a17 ey ) = (a1 > (a2 > (a3 ®a4)) ®as

ny+1 no + 1
= 1 9 a1a2a304 Q as.

Note that the binomial coefficients given by a sequence m € My can be determined directly
from the last ¢ — 1 digits, plus an extra null value. For (2,1,0,2,0) we have exactely

ny+1 ng + 1 ng+ 1 ng+1 ns + 1
1 0 2 0 0 ’
and for (2,1,2,0,0) we have
ny+1 no + 1 ng + 1 ng + 1 ns + 1
1 2 0 0 0 '
Two more examples of the algorithm: for m = (3,0,2,0,0),
R?370,270,0)(a17 e CL5) =1 ® (a2 > (a3 ®a4)) ®as

ng + 1
= 9 a1 ®aza3zaq @ as,

34



and for m = (4,0, 1,0,0),

R?4,071,070) (a1,...;a5) = a1®(az > a3) ®as ®as

no + 1
= 1 a1 ®aza3@as @ as.

Lemma 5.13 For any ¢ > 1 and any (aq, ...,a¢), we have

R[(Gl,...,af) = Z an(alw‘waf)’
mEMz

For instance, for £ = 1,2,3 we have
R:(ll) (a) = a,
RYy0)(a,b) = a®b

R%Ll)(a,b) =ab>b= <n11+ 1) ab

Ri300)(a,b,¢) = a@b®c

ny 1

_l’_
R?2’170)(a,b,c) =(a>b)®c= ( 1 >ab®c
1
R?2,0,1)(‘17 byc) =a®((b>c) = <n21+ )a@bc
1
R?1,2,0)(a, b,c) =ar> (b®c) = (n12+ >abc

R?l,l,l)(% byc)=ar (b>c) = (n11+ 1) <n21+ 1) abe.

Comparing with the value of Ry, Ry and R3 given above, the assertion is easily verified.

Proof. Let us call Rg(al, ..., ag) the sum over m € My of Lemma 5.13, and prove that it solves
equation (5.3) by induction on /.
For ¢ = 1,2,3 the assertion was proved in the examples. For any ¢ = 1, we then suppose
that on the right-hand side of eq. (5.3) we have R, _1 = R, 1 for any 1 <1i < j, and we set
Pi=pi+p2+--+pi

so that
J
Rg(al,...,ag) = Z Z Z (a1 DRZ};I(GQ,...,CLM))@)

Hp2—1 ~pi—1
® ((Ip1+1 > RZ2(2) (ap, 42, -r ap2)) QR ® (CLP]»,1+1 > qu(j) (apj71+2, ey (ij)).
In this sum, we can note the following things:

e The running value j gives the length of the corresponding multi-monomial.

e In the first tensor factor, the value qgl) represents the length of RZ 0 Yag, ..., ap, ), that is,

a sequence number associated to a;, and more generally g rules the nested operations
up to the variable a,, 1. The last variable a,, does not act on further variables and so it
should be associated to a missing value 0. Therefore, the nested operations in the whole
first tensor factor are ruled by the sequence (q(l),O).
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e Similarly, for any ¢ < j, the nested operations in the ith tensor factor are ruled by the
sequence (q(l),O).

Let us then associate to this expression the sequence

m = (,]7 q(1)707q(2)707 teey q(j))a

that is,
my =j
mo =g,y = a0y mpr =0
mp, 42 = qgi), ce., mp, = ql(,?_l ,mpy1 =0, forl<i<j—1
ey ez =0 e s py = g9

which has precisely length
L+ —D+1+(pe—1)+-+1+(pj—1)=p ++p; =P =L

Note that in the sum over the sequences p = (pi,...,pj) € CZ, where p; = 1 for i = 1,..., 7,
there occur the terms with p; — 1 = 0. In this case the multipolynomial Rpi_l = Ry =1 has no
variables, and the set M, _1 = My is empty. The corresponding sequence q) is then absent
in m, but its associated null value must be present, for any ¢ = 1, ..., j — 1, to preserve the total
length ¢. Following the rules of the algorithm given in Def. 5.11, we can therefore write

~p1—1 ~pa—1
(al > Rﬁ%l) <a27 ceey ap1)) ® (apﬁ-l > RZZ(2) (aP1+27 ey aPz)) -
®(apj71+1 DRZJ(j) (apj71+2,...,apj)) = Rm(al,...,ag).
Let us call
Ne=1{m = (j,q",0,d?,0,...q") | 1<j <t pe ], V) e My, for 1 <i < j}

the set of sequences obtained in this way. Then the equality

Ri(ay,az,...,ar) = Z RE (ay, ..., ap) = Ry(ay, az, ..., ap)
mENg

holds if we show that Ny = M,.
Let us first show that Ay € M,. For fixed j, p and qV, ..., q¥), we have

] . .
mi+ o tmg=j+ > (@ + -+ ql))
i=1
=) (2= )b (= 1)
=j+tm+-+pi—j="L
For any h = 1,..., £, suppose that h belongs to the rth block, for some r < j, that is,

h=PFP _1+1+k=p+- +p—1+1+k,

with 1 < k < p, — 1. Then we have
r—1
i=1

4+ (pro1—1) + (QY) +--t qi(:))

=j+i—D+p2—1)+-
= (pr+ -+ peo) + (@ +
ZPrfl"‘l‘Fk‘:h

)~|—(j—r)+1
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because qy) + - +q,(:) >kand j—r=0.

Finally, let us show that there is a bijection between N, and M,. The set M, is well known
to be in bijection with the set PBTy,, of planar binary trees with £+ 1 leaves (and a root). An
explicit bijection ® : My — PBTyy; is described in [7], Definition 2.16, using the over and
under grafting operations on trees, namely

¢ s

\ 7/

t/s = s and t\s= t

The first values of @, for the empty sequence in M and for (1) € M; and (2,0),(1,1) € Mo,
are

o()=1, @)=Y, ®(20=7%, B1,1)=Y.

So, for our purpuse, it is enough to show that A is in bijection with PBT}y,;. For this, since
Ny € My, consider the map ® restricted to Ny and let us show that the image ®(Ny) coincides
with PBTyy .

For a given sequence m = (j,q",0,q®,0,...,q¥)) € NV, we have:

e The sequence m is decomposable as m = (m’, q(j)) into the two well-defined sequences
m' = (5,q1M,0,q®.0,...q" "1, 0) € Mp,_,+1 and q) € My, 1. In fact, if we set
0" = P;_1 + 1, we have

mi+-mp=j+m—-)+-+pa-1)=j+P_1—(G—-1)=1¢,
and for any h = 1,...,¢' one can see that m} + ---mj > h with a computation similar to

that used to show that m e Mj.

According to the definition of ®, we then have ®(m) = ®(m’)\®(q")). Graphically, if we
denote the trees by t = ®(m), t' = ®(m’) and t; = ®(q"7)), this means that

L
/

t= 1t

e The sequence m’ is surely not decomposable because it is of the form

m’ = (m] +1,mj,...,my,,0)
with ‘
IIl” = (]_17 q(1)707 q(2)707 [E) q(jil)) € MZ”a Eﬂ = El — L
The sequence m” indeed belongs to M~ for the same reason used to show that m € M.
Then, the sequence m’ is not decomposable in position 1 because mj = mj +1 > 2,
and it is not decomposable in any position h = 2, ...,¢ because m” € M, implies that
my+---4+mj =m{+1+mf+---+mj] > h+1, and therefore surely m} + - -- +mj, # h.

Finally, according to the definition of ®, we then have ®(m’) = ®(m”)/Y . If we set
t" = ®(m"), this means that

and therefore
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e The same arguments can be applyed to the sequence m” and its new components, until
we reach a full description of the tree ¢ = ®(m) in terms of the trees t; = ®(q(®), for
1 =1,...,j, namely
tq

to
t =
Let us denote this tree by G’ (t1, ..., t;).

In conclusion, if we let j run from 1 to ¢, we consider all possible sequences p € CZ and for any
i =1,..,7 all trees t; € ®(M,,_1) = PBT,,, the result G/(ty,...,t;) is any possible tree with
number of leaves given by

|GI(t1,nty)| =1+ 1|+ + |t =14+p1+-+p;=C+1.
In other words, we have

= {t=G(t1,..nt;) | j=1,..,f, pE C}, t; € PBT),, 1 <i<j}=PBI.

Corollary 5.14 For any { = 0 and any aq,...,ap41 € A, set n; = |a;| =1 fori=1,...,0+ 1.
Then, for any sequence m € My, we have

ny+1 ng+ 1\ /n +1
a1>Rm(a27~-,ae+1)—<1 )(Z ><HB >a1a2"'az+1-

mq my
Therefore
a1 > Ry(ag,...,ap41) = d(ni,...;npr1) aras - apyq,
where the Lagrange coefficients d(ny, ...,ngr1) are given in Def. 5.3.

To describe the left codivision we introduce a last set of operators corrisponding to the
labeled Lagrange coefficients.

Definition 5.15 For any ¢ > 2, let &_1 be the set of sequences given by (5.2). We call
labeled right recursive operator R® : T(A) — T(A) the collection of operations R® =
{Ro,R1,Rj, { =2, e &_1}, where Ry and R; are the unlabeled right recursive operations
and, for £ > 2 and e € &£/_1, the operation

V4
Ry : A®L (—B A®A
A=1

is defined recursively by

Ré ai, ..., Z Z 561, aq I>R(627 o1 1)(a2,...,ap1)) (5.4)
] 1p€C]
(e reens€ 1)
®5ep1+1,1 (ap1+1 > Rp;ETQ Pripa—l (ap1+2, ceey (Ip1+p2)) X -

(ep 1+27~~~76Pj71)(

' ®56pj71+1,1 (an,1+1 > R ]71 ap;_1+2, "'7an))7
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where we set P; = py +--- +p; fori = 1,..., 7, and where d, 1 is the Kronecker delta, equal to 1
if e, =1 and equal to 0 if ¢; = 2.

Ife=(1,1,...,1), then R = Ry. If e contains at least one value e; = 2, then Ry is obtained
from R, by removing the terms which contain any factor of the form a; > Q.

For instance, starting with Rj(a) = a, the first terms of the recursion are as follows. For
¢ =2, we have & = {(1),(2)} and

R (a,b) = a> Ryi(b) + a®b
=a>b+a®bd

Rgz) (a,b) = a®b.
For ¢ = 3, we have & = {(1,1),(1,2),(2,1),(2,2)} and therefore

Rél’l)(a, b,c) =ar Rél)(b,c) + (a > Rl(b))®c+a®(b> Rl(c)) +a®b®c
=ab> (b>c)+ar> (b®c)+ (a>b)@c+a®(b>c) +a®@b®c

R8P (ab,¢) = a> RY(b,¢) + (a> R (b)) ®c + a®@b®c
=ab> (b®c)+ (a>b)®c+a®b®c

R:(f’l)(a, bc)=a®(br>Ri(c)) + a®b®c
=a®((b>c)+ab®c

R:(f’z) (a,b,c) =a®b®ec.
For ¢ = 4, the set &5 contains 8 sequences, and we have

R (a,b,e,d) = a> RV (b, ¢, d)
+ (a> R (b,0)@d + (a> R (b)) ® (> Ri(d)) + a® (b> RSV (¢, d))
+ (a> R1(b)®c®d+a® (b> Ri(c)) ®d + a®b® (c > Ry (d))
+a®b®c®d

R (a,b,¢,d) = a> RSP (b,¢,d) + (a> BV (b,¢) @d + a® (b> RS (¢, d))
+ (a> Ri(b)®c®d+a® (b> Ri(c)) ®d + a®b®c®d

RV (a,b,¢,d) = a> RV (b,e,d) + (a> RY (b,¢)) @d + (a > Ri(b)) ® (¢ > Ry (d))
+ (a> Ri(b)@c®d+ a®b® (c> Ri(d)) + a®b®c®d

RP"(a,b,¢,d) = a® (b> B (¢, d)) + a® (b> Ri(c)) ®d + a®b® (¢ > Ry (d))
+a®@b®c®d

R (a,b,¢,d) = a> R (b,e,d) + (a> BRY (b, ¢)) @d + (a> Ri(b)) ®@c®d + a®@b@c®d
(2,1,2) (2)

R; (a,b,¢,d) = a® (br> Ry (c,d)) +a® (br> Ri(c)) ®d + a®b®c®d

Rf’z’l)(a, b,c,d) =a®b® (c> Ri(d)) + a®b@c®d

Rf’m) (a,b,c,d) = a®b®c®d
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The labeled right operations can also be given by a closed formula.

Lemma 5.16 For any ¢ = 2, for any sequence e € E_1 and for any aq,...,ap € A, we have

R}?(al,...,az): Z an(al,...,ag).
me M§

As a consequence, if for ay,...,ap11 € A we denote n; = |a;| fori=1,...,0 + 1, we then have
ay > R?(a% EX3) aé-ﬁ-l) = d?+l(n17 "'7”@-}-1) ap---Qpy1 € Av

where the labeled Lagrange coefficients dj, ,(n1,...,ne1) are given in Def. 5.4.

Proof. If e = (1,1,...,1) there is nothing to prove. Otherwise, for any value e¢; = 2 in e, we
obtain Rj (a1, ...,ae) from Ry(ai,...,ar) by removing the terms containing a factor a; > @Q;. B

Lemma 5.13, such a term is associated to a sequence m € My, and by Def. 5.11 the factor a;>Q);
corresponds to a non-zero value m; 1. Therefore, in order to remove such terms, it suffices to
consider sequences m with m;,q = 0 whenever e; = 2. O

Theorem 5.17 The co-operations of the Faa di Bruno coloop bialgebra can be equivalently de-
fined in terms of the recursive operators as follows:

AII_JI‘dB(‘Tn) =TntyYnt Z Z Tny B (yn2® t @yne+1)7

=1 neCffl
n—1
57‘($n) = (mn - yn) + Z (_1)£ Z LZ(:Enl —Yn1yYna>s "'7yn5) > Yngpiq
=1 ne it

= Z Z xnl_ynl)DRZ(yn27’”7yng+1)7

necit!
oi(xn) = — Tn) Z Ty B (Yo —Tng)
neC2
n—
(er—1)
Z Z Z xnl > RZ( 512 )7 o lng T Yng _xn£+1)
=2 neCZJrl ee&y_1

e

where the set of sequences Ey_1 is given in Def. 5.15 and the conventions on the sign (—1)¢ and

(ei)

the value of xy, "’ is given in Def. 5.5.

Proof. It follows from the definition of > given in Def. 5.6, the expression of R, given in
Cor. 5.14, and that of R} given in Lemma 5.16. The equivalence of the presentations of the
right codivision in terms of R, and Ly is proved in Cor. 5.20 in next section. O

5.4 Functoriality of the diffeomorphisms loop

To prove the main theorem of this section we need some preliminary recurrence relations for the
recursive operators, and consequently for the Lagrange coefficients.
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Corollary 5.18 For any { > 1 and any sequence (ni,...,ngy1) of positive integers, the coeffi-
cients dpi1(a1, ..., ap) satisfy the following recursive equation:

0

ny+1

dg+1(n1, ”"ng) - Z Z ( ; ) dpl(n2= "'7np1+1) dpz(npl+27-'-anpl+172+l) T
j=tpect v 7

e dpj (np1+~~~+pj71+27 R né-‘rl)‘

Proof. Applying a1 > Ry(asz,as, ...,ary1) to the recursive equation (5.3) immediately gives the
result. ]

Lemma 5.19 For any ¢ = 0 and any aq,...,ap11 € A, the following recursive equation holds:

-1

a1 > Ry(ag, ..., apr1) = Z(—l)#l*i(al > Ri(az, ., ai+1)) > (@i12® -+ ®@agy1).
i=0

Modulo the factor aijas - --apqq, this means that

-1
(it +ni+1
doy1(ng, .o py1) = Z(—l)g ! Z< é—z’H ) div1(n1, ..., niy1).
i=0

Proof. The two assertions are equivalent, and the second one appears as recursion for the
coefficients in the non-commutative Lagrange inversion formula. It is essentially based on the
Chu-Vandermonde identity and can be proved® using the hypergeometric function 9} or using
some trick as in [7], Lemma 2.15. O

Corollary 5.20 For any £ = 0 and any a1, ...ap11 € A we have

a1 > Ry(az, ..., apr1) = Ly(ar, ..., ap) > agyq

Proof. By induction on ¢. For ¢ = 0,1 the identity is easily verified, because

ai>l=a1=1>a;
aq I>R1(CL2) =a1>ag = Ll(al) > as.

Now suppose that for ¢ = 1,...,¢ — 1 we have a; > R;(az,...,a;4+1) = Li(a1,...,a;) > a;41. Then
by Lemma 5.19 and Def. 5.8 we have

-1
a1 > Ry(az, yari1) = Y (=1 (a1 > Ri(ag, ooy ai41)) B (a42® -+ @agi1)
i=0
-1 ‘
= 2 (=D (Lilar, o a0) B aig1) > (@142 ® - ®agsr)
i=0
-1

(_1)6_1_i<(Li(a17 ) D> ai+1) Rai12® -+ ®a£) > apiq
0

Z(ala ...,CLZ) > ag+1-

<.
Il

I
h

5We warmly thank Jiang Zeng for pointing out this method to us.
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Remark 5.21 In the case e # (1,1, ..., 1), whether there exists an operator Ly : A®L T(A)
such that
a1 > Ry (az, ...,ae1) = Li(ar, ..., ar) > agsq

is an open question.

Lemma 5.22 For any ¢ = 1 and any aq,...,ap11 € A, the following recursive equation holds:

4

ar > Ry(az,...,ap41) = Z(—l)ifl(m > (a2® - ®ai+1)) D> Ri—i(@it2® -+ @aps1).
i=1

Modulo the factor ajay - --agy1, and if we call n; = |a;| fori=1,...,0 + 1, this means that

¢
i f(n1+1
dpy1(na, . nep1) = Z(—l)l 1( ; > doy1—i(ni+- N1, Mig2, o Mg 1) (5.5)
i=1

Proof. The two assertions are equivalent. Let us prove the second one by induction on ¢. Let
us call dgi1(nq,...,ne41) the right-hand side of equation (5.5).
For ¢ = 1, since M = {(1)} by definition we have

d (. n3) = <n11+ 1> <TL2(;|- 1) _ <n11+ 1>,

and the sum in dg(nl, ny) has only one term for ¢ = 1, which gives

~ ny+1
dg(nl,ng) = < 11 > dl(nl +n2)

_ ny+1 ny+n9+ 1 _ ny+1
L1 0 L1 )

therefore da(nq,ng) = d~2(n1, ngy).
Now suppose that eq. (5.5) holds for any 1 < k < ¢ — 1, that is, we have

k

4 (n1+1
di1(n1, oy Mpeg1) = Z(—l)l 1( ; ) dpp1—i(N1+- N1, N2, o, Npg1)s
i=1

and prove it for £. For this, we write dgy1(n1, ..., ngr1) using the recursion given in Lemma 5.19
as asum over 0 < k < £—1, and separate the term k = 0 to which we can not apply the inductive
hypothesis. Then we expand the factor di,1(n,...,ng+1) using the inductive hypothesis and
exchange the sums over k and 7. We finally obtain

N Cefmit g + 1 o /ng+1
desr (01, s Mp1) = Z ne k( ' g_gﬂ > di1(n1, e mpin) + (=1)° 1< 16 )
k=1

_ 1
ni+1 ik fmte g+l
= Z ) 1< ) Z(—l)g ! '“< g_k+ drp1—i(P1+- 11, Mg 2, e M1 1)
i=1 k=1

w0 (M),
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Then, dyy1(nq,...,n041) is equal to

-1

- i (ni+1
dev1(na, oo nugn) = Z(—l)z 1( i > doy1—i(mi+- - +1ip1,Mig2, 0 ey 1)
i=1

w0 (M)

if and only if, for any 1 < i < ¢ — 1, we have

-1
i fni+ngii+1
Z(_l)g ! k( é_kJr > dir1—i(N1i4- - FNig1, Ny 2, ooy Nieg1)
k=1

=dpr1—i(ni+- N1, i, s Mg 1)

This identity is easily verifyed by setting j = k& — 4, p1 = n1 + --- + n;41 and p; = n;y; for
2<j<¥l—1—1, since it gives

0—i—1
ZZ: (—1)fi1 (pl AP+l

e — _] > dj+l(p17p27 "'7pj+1) = d€7i+1<p17p27 "'7pffi+1)

J=0

which holds again by Lemma 5.19. O

Corollary 5.23 For any ¢ > 1 and any aq,...,ay € A, the following recursive equation holds:

-1

Ly(ay,...,ap) = Z(—l)FlLZ—i(al > (a2® - ®i11), Qig2,-.r ar) + -D"'a® - ®a.
i=1

Proof. It suffices to write

-1

ay > Ry(az, ..., ap1) = Z(—l)i_l(m > (a2® - ®ait1)) > Ry—i(aiy2® -+ ®agq1)
i=1

+(—Dfar > (a2® - ®ags1)

after Lemma 5.22, and to apply the equality b1>R;(ba, ..., bj4+1) = L;(bi1, ..., b;)>bj1 everywhere.
]

Lemma 5.24 For any £ > 3, any e € &_1 and any aq,...,ay € A, we have

R?(al, veey ag) = 56171 <a1 > Réefl’m’eeil)(ag, veey ag)>
{—1

+ Z Rgel’“"eifl)(ah ey G7) @0y 1 <(1i+1 > Rge_ii*_z’l'“’ez’l)(aprg, ...,ag)>.
i=1

Proof. The term j = 1 in the defining recursion (5.4) gives

56171 (al > Réefim’eeil)(ag, veey ag)) s
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se it remains to prove that

¢
SN S G (a1 > R (ag, ) (5.6)

=2 J
J=2peC)

(eP1+27 +€py+py— 1)(

®6ep1+171 (apl-i-l DR ap1+2a'--7apl+p2))®

( 1+27 HEP; 71)<

'®65Pj71+171 (aPJ 1+1 DR ; an—1+2=”"an)) -

€1,0yCim €it 2y sCl—
= Z RZ( ! ay, '-'7ai)®5ei+1,1<ai+l > Réjfl ‘ 1)(ai+27 ---,az)).
i=1

Let us prove this identity by induction. For ¢ = 3 and ¢ = 4, it is easy to verify on the above
examples that
RS(a,b,¢) = 6ey1 at> RY? (b,¢) + R1(a)®0up1 (b1> Ri(c)) + RSV (a,b) @ c
R$(a,b,¢,d) = 6e,1 at> RY>(b,c,d) + a®0e,1 (b> RS (¢, d))
+ RS (a,0)®6es1 (c1> Ri(d)) + RYV™ (a,b,¢) @ d.

Now suppose it holds up to order £ — 1, and let us prove at order /.
Consider the left-hand side of eq. (5.6). Since j > 2, we can write

CZ = U Cz‘j_l x Cj_;

and decompose p € CZ into (p1,...,pj—1) € CZ and (p]) € C} ,; for any value i = j —1,...,0 — 1.
We then have p; + -+ +pj_1 =iand p; = € — (p1 + - +p],1) = { —i. Therefore the left hand
side can be written as

[y

J4
Z Z Z 561,1 (al > Rz(iiihi.’eplil)(a% i) apl)) ® -
Jj=2i=j—

j—1
L(p1,epj_1)eCl
(epj 9 +25s€p;_1—1)

: ®5epj72+1,1 ((IPJ 2+1 |>R -1 (an72+27"-7ai))®

®0e, 11 (Gis1 > Réem’ e 1)(ai+27---,a£)) =
{—1 A ( )
€2,. 76
5SS e A e
i=1 k=1 (p177pk)eclc
(e 25:44,€ )
: ®56Pj72+171 (apj—erl > Rp:k11+ o (an2+2,---7ai))> ®
®5ei+171 (ai+1 > R(Elz“i i 1)(ai+27”‘7a£))'

Applying the inductive hypothesis to the sum over k leads to the result. Ol

Theorem 5.25 The associative algebra Hpyy is indeed a coloop bialgebra and represents the
loop of formal diffeomorphisms Diff as a functor Diff : As — Loop.

As a consequence, given an associative algebra A, a series a = Y, _qan A" € Diff (4) can
be seen as an algebra homomorphism a : Hpz —> A defined on the generators of Hpys by
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a(zy) = an, and the right and left division a/b and a\b are given at any order n by the following
closed formulas:

(a/b)n = pa(allb)d,(zn)

= ap — bn + Z (_1)£ Z dﬁ-‘rl(”la ...,7”L4+1) (anl - b”l) an e b”(+1’

ne Cﬁ“

(@\b)n = pa (a11) 6 (xn)

n—1
= bn — an + Z ( Z Z d£+1 ni, '-'7n€+1) anlcszegl) cslele 1) (bn£+1 - anl+1)7

neCZJrl ee&y_1

(e:)

where ¢y’ = an, if e, =1 and c(el) = by, if ; = 2.

Proof. The free associative algebra Hpp clearly represents the sets Diff(A) over associative
algebras A, and the comultiplication A}, is just the Faa di Bruno comultiplication Apqp seen
with values in Hpgp I Hpgp instead of Hpgg ® Hpgp, therefore it clearly represents the loop law
given in Definition 5.1. Thus, the theorem is proved if we show that Hp,g is indeed a coloop
bialgebra.

The comultiplication AR, satisfies the compatibiity relation with the standard counit, be-
cause Apgp does, and coassociativity is not required. So it remains to check that the codivisions
0, and 0; given in Def. 5.1 satisfy the identities (2.5) and (2.6). Since these maps are algebra
morphisms, it suffices to verify these identities on the generators x,,, for any n > 1.

i) Let us start with the right codivision and show that it satisfies the first identity (2.5), namely
(id 1 p) (6, 1id) ARgg(zn) = n,

which explicitely gives the recurrence
O (xn) = up — Z Z Z O () > (Y, ® -+ @Yk, )- (5.7)
Expanding 0, (z,,) in terms of the left recursive opeators, this equation becomes

n
Up + Z <_1)é Z Lf(unlaynzy -'-7yng) > Yngiq
g_

CZ+1

n—1 n—m

Z Z Z Z Z <Li(up17yp2""7ypi) > ypi+]) > (yq1® ®yqj)

m=1 j=1 quJ . 1=0 pecz‘+1
n—1
z+1
= Un + Z Z Z Z Z < ’U«pl,pr, '7ypz‘) I>ypz‘+1) > (ylh® ®er7i)'
l=i+j=11=0 m=i+1pecit! qufL ’L’UL
Now, since
n—1
i+1 l—i €+1
U citx e, =cy
m=i+1

let us call n = (p,q), that is,

(n17n27 ---yné-l-l) = (pb <y Dit1,41, 7qj)
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Then, the recursion (5.7) is equivalent, for any n > 1, any 1 < £ <n — 1 and any n e C:*!, to
the equation

J4
Lf(“npynza ceey yne) > yng+1 = (_1)6_1_7' (Li(un1ayn27 eeey ?an) > yni+1) > (yni+2 ® - ®yne+1)

|
—_

~ S
[
= O

(_1)57172‘ <(Li(un1yyn2y ooy ynl) > yni+1) QUYnip o ® -+ @ynl> > Yngyqs

|
=}

i

which holds by definition of L,.
The second identity (2.5), namely

(d 1 p) (ARqg 1id) 6, (z5) = 2y,

is better developped using the expansion over the right recursive operators, and explicitely gives
the recurrence

n—1
Z Z (_1)6 Tny B RZ(fgnQa '-'7yne+1) (58)

=1 pe Cf;rl

Z Z (_1)j+1(gjm> (yp1® ®ypi)) DRj(ythv'“’yqj)'

Rewriting the sums in terms of m = 1,. -1, l=i+5j=1,..,n—m,i=1,...,0land j = £ —1,
this gives a sum over p € C, and q € Cf; ’m p for p=1i,...,n —m. That is, we get a sum over

k = (p,q) € C’_,, and consequently a sum over n = (m, k) e C51:

n—1
Z Z (_1)6 Tpy B> Ré(ynw ---vyng+1)

(=1 mecﬁ+1
n—1ln—-m £ n—m '
- Z Z Z Z Z Z (_1)Z_Z+1(xm > (Yp ® - ®ypi)) > Rj(Ygys e Ygo_s)
=l LIS = peCaect,
n—1 n—m
- Z Z é Z+1 I> <yk1 ® e ®yk1)) > RZ*i(ykiJFl? "’7yk()
m=1 £=1 kect,_,,

MN HMN

xm (ynz - ®yni+1)) > R57i<ym‘+27 BaS) yne+1)'

I
HM\

<.
Il

DI

Therefore, for any n > 2, any £ = 1,...,n — 1 and any sequence n € C5™!, eq. (5.8) is equivalent
to the recurrence equation

¢

Tny > Rg(ynza ceey yne+1) = Z<_1)Z71 (xnl > (yTLQ & - ®y7h+1)) > RZ*Z'(yTLH,za ceey yne+1)7
i=1

which is proved in Lemma 5.22.

ii) Let us show now that the left codivision given in Def. (5.5) satisfies the identities (2.6). The
first identity (2.6), namely
(pirid) (id 116;) Apap(Tn) = Yn,
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explicitely gives the recurrence

n—1 n—m

5 = Un — Z Z Z Ty B> 51 ykl) c ®5l(ylﬂ))7 (59)

m=1 A=1 kec?

n—m

where yy, is just the kth generator x;, in the second copy of the free product algebra Hp g IHR 5,
therefore the formula for §;(yx) is just the same as for 0;(zy).
Let us rewrite the expansion of §;(x, ) over the labeled right recursive operators as

n—1 n—m
Bi(en) = v+ 2 @ | —vasm+ 25 (<10 Y D (-D° BRI, et ) |,
m=1 =2 neCt ee&y 1

n—m

then eq. (5.9) is clearly verified for n = 1, because §;(z1) = v;, and for any n > 2 and any
m =1,...,n — 1, it is equivalent to the equation

i >, uen)® - @ (ax,) = (5.10)

A=1keC)

I
— RN X (DT B i o),
(=2

neCf, e€& 1

where weset uy=n—m-=1,....n — 1.

Let us prove this equation by induction on pu. For g = 1 we again have 0;(z1) = v1. So,
suppose that eq. (5.10) holds up to order p — 1 and prove it at order .

On the left-hand side of eq. (5.10), we separate the term A = 1 and observe that, for A > 2
we can decompose k = (ky,...,kx_1,k)) € C;) into (q,v) € Cﬁ L ¢l with

q =k; fori=1,...,A—1

VvV = k)\.
Since
p—A+1
= |J cixcal,

v=1

the left-hand side of eq. (5.10) can then be written as

0u() Z Z D, Gilzg)® - ®h(zy,) | @(x).

v=1 i=1 qu'L

v

We can then apply the inductive hypothesis (5.10) on the sum over i = 1, ..., 4 — v, and develop
the single factors d;(z,) and ¢;(x,) in terms of the labeled right recursive operations, thus

47



obtaining

I
Z Z 0(zh,)® - @ (xky ) =

A=1keC)
1)e Re (e1) (ex—1)
Ty B Uny + (=1)¢ zp, > )\(xnz yeees Ly U%\H)
neC2 neCpttee
p—1 B
(61) (ef-1)
+Z Vy—v — Z Z Z z Lpr™ .- ‘szll 7UP1) ®

v=1 =2 peC27 ee& 1

1

Z Zg B Vg + Z Z Z G Zg B R? (33«(12 )7 - 7ijj71)7UQj+1)

qeC2 quﬂ‘Ll e’e&j

Now we develop the tensor product, and expand its left-hand side factors with respect to the
variables v, = ¥, — x,. Beside v,, which is the first term of eq. (5.10), the other terms are:

pn—1

pn—1
- Z Tpy B> Uny — Z Tp—r Uy + Z Yu—v @Vy
neC2 v=1 v=1
Py DR E, ),

ne(32 el)E 51

which corresponds to the term ¢ = 2 of eq. (5.10); then

p—1

B=Y(10" 3 Y (-1 > B, ozl vny )

A=2 nec[i\““l eec‘f)\,l

SN Y S 0 dn (o 5 Bl )
(=3

neCf e€ &y

Furthermore, setting (p,v) = n and A = ¢, we have

i / e (1 )
C=- 0 Y S ()€ R ) @0,
v=1 =2 pechfu ee&_
o
= - 2D Y Y D RETI @Y Y e o
£=3 neCf ee &

because —v,, = xl(,p — azg) and £, = £,_1 x & . With similar manipulations, we then have the

terms

pn—1
D= - Z Z UM—V®<xQ1 > Vgy)
I/=lqu2
P Y 2 (1 el @b (@l o),
neC} e€ &>
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and

/

pw—1p—v ,
E=Y Y1) Y Y (1) Y R, v @ (g, 5 vg,)
v=1 i=2

PE CL—V e'e 51'71 qe Cg
m
)e (61 1-€0—3) (ee—2) (€e—1)
==Y S (DR @), al ) @6, (6 B ),
=4 neCf e€ &1

then also

:ZZ DI VR S R AR )

e”eé?J 1 qecitt
p ( ) (ee—1)
€3,-.,€0—1 s
— XY N U@ (ol o B @l el o)
=4 neCf €&

and finally

c-—-F0 ¥ N e Ter s ¥

peCz e’e& 1 qGCZJ,.+1 e”E(‘:jfl

(e ; ) ” el e’_)
R? (xl(hl)v ey Ty 3 ) Up;) ® <xq1 > R;? (xt(zzl)v -'-vx‘Zj] '

YE Y S () 2 erntion) (yfe) | (e g

=5 neCf e€ &1

7qu+1))

(eiv1) (€it2sere0—1) (, (€it2) (ee—1)
®0e;41,1 <517nf+1 > R," (Tniys s s Ty 5 Vny) |-

We now observe that the sum C extends E to the value ¢ = 3, and the sum C + E extends G
to the value £ = 3,7 = ¢ — 2 and ¢ = £ — 1. Similarly, D extends F' to the value ¢ = 3, and the
sum D + I extends G to the value £ > 3 and ¢ = 1. Therefore, we have

C+E+D+F+G:—i(—1)€ Y= Z Rt e (glen) gy g

=3 neCf e€ &1
(€i+1) (€i+2,se0—1) (, (€it2) (er—1)
®de; 11 (x”wl >Ry (Tnits s s Tng ) Uny) )-

Finally, eq. (5.10) is then equivalent, for any £ > 3, any n € C% and any e € £_1, to the following
recursion

ny " n2

R?(:E(el) iﬂgzef 11)’,[)“2) _ 56171 <$(61) R(e2’ Hep— 1)(33( )’ JESLe; 11)’2}”[))

LY RO () )

ny
®0e;i1,1 (x’(le:ll) > Rée—i:—z’l.“’qﬂ)(x;eﬁzz)v - x%eze 11)vvne)>
which is proved in Lemma 5.24.

The second identity (2.6), namely

(n11id) (id 0 ARgp) 61 (2n) = Y,
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can not be expressed as a recurrence on R}, because these operators do not show up explicitely
to which factor of Hi I Hyp the variables belong. Then, let us use the recursion (5.9) to
describe §; and prove the second identity by induction on n.

The identity is verified for n = 1 because we have

(pid) (id 1 ARgg) 61(z1) = 1 + y1 — 21 = Y1.

Then, suppose it holds up to the degree n — 1 Since AR,z and p are algebra homomorphisms,
if we apply the operator D = (p11id) (id I AR ) to the expression

n—1 n—m

Sn) =va— > D D am (k) ® - ®0(Yry)),

m=1 A=1 ke (327

m

we obtain, for D(&;(zy)), the sum of

n—1 n—m

Dlwp) =yn+ Y, D, D, TmD> Ur® - Quk,)

m=1 A=1 kecC?

and of

_ Z Ty > <D(5l<yk1))®"'®D(5z(ykk))>.

m=1 A=1 kecC?

n—m

Therefore the second identity is satisfied if, for any m = 1,....,.n — 1, any A = 1,...,n — m and
any ke C} we have

D(01(yk,)) ® - @D (61(yny) = Uy ® - @Yiy»

which is true by inductive hypothesis. O

5.5 Properties of the diffeomorphisms loop
Proposition 5.26 The coloop bialgebra HRyp has a two-sided antipode S such that

5y = (iduS) Abyg,

while the identity 6 = (S1id) ARy does not hold. Moreover, the antipode in the Fad di Bruno
coloop bialgebra coincide with that in the non-commutative Faa di Bruno Hopf algebra given in
[7], that is,

n—1
S(‘Tn) = Z <_1)é Z d£+1(n17 e n£+1) Tnyg Tng * " Tnyyq-
£=0 nEszJr1

Proof. i) In a coloop bialgebra, the left and right antipodes are given respectively by
S; = (id1e) and Sy = (e11id) 6,

cf. (2.9). Let us show that for Hp  these two operators coincide, and therefore the two-sided
antipode is well defined by S := 5; = S,.
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Indeed, let us fix n > 1. For the right antipode we have

n

—
—

Z dZJrl(nla ceey n£+1) (€<xn1) - yn1) Yng * - yne+1
£=0 neCffl

n—1

4

=— Z (—1) Z dog1(N1, ooy M4 1) Ty Trg =~ Tigy g s
£=0 mecﬁ+1

where n; > 0 implies &(z,,) = 0, and where we renamed the variables y as x because S, takes
values in Hj . For the left antipode we have

Sl(xn) =& yn — Tn — Z dl nl x”l (ym) _xnz)

ne C2

Z Z Z )€ df i (nas s nggr) (d1HE) (@n, 2 (e1) ... glee- 1)1}”[“).
(=2

ng © Ty
ne C“‘l ee&y_1

Since ¢ kills the terms where some y appears, in the sum over the sequences e € £,_; there only

remains the sequence e = (1,1,...,1), for which df,; = d¢y1 and (—1)® = +, and therefore we
have

Si(zy) = —xn + Z dy(n1) Tpy Tny

neC2

- Z(_l)e Z dZJrl(nla'-'ynZJrl) Tn1Tng = Tnyyy
l= ne C4iH1
= Sr(zn)

ii) Let us now prove the identity §, = (id11S) Af,5. For any generator z,, of Hp,p, we have

(d115) Albys () = 20 + S(a) + 2 5 (") s S S0m,0)

CJ+1 J
n—1
=Tn —Yn — Z (_1)£ Z d@-i—l(nlv "'7nf+1) Yni Yno " Ynypiq
=1 meCHl

nj+1

I I HETETD IS 1l (S PAC RIS

- J
.7 1necj+1p1 1 p;j= 1 qecnz q] C]+1

Set { =p1+---+pj,then 1 <j<{<n-—1. Since

Tj+1

U Lj U Cflll X Cﬁé Koo X Cng+1 C1l;+17

ni=1 p1=1 pi=1

because ni + ng + --- + njy1 = n, if we rename the sequence (nl,q%,

1 J J
s @y s Q1 oy Gy ) 8BS
ne Cf*1 the sum over j becomes

n—1

ny+1
Z(_l)e Z Z Z ( > P1<n27” np1+1) dpj<nPj—1+27”'7n£+1) Tny Yno """ Yngyqs

=1 necptt \7=1pec)

o1



where Pi = p1+---+p; for i = 1,..., j. Using the recurrence proved in Corollary 5.18, we finally
obtain

n—1
(id11.S) Apqp () = T — Yn — Z (—1)6 Z A1 (N1, - 1) Yny Yno * Yngys
=1 neCffl
n—1
+ Z (_1)£ Z d@-‘rl(nlv ceey nf—i—l) Lny Yng " " Yngpiq
=1 mecﬁ+1

= 0p(zp).

iii) The first counterexample to the analogue identity 6; = (S'11id) AR5 is on the generator
x3, for which we have

(S1id) Alyp(z3) = v3 — (2z1v9 + 39v1) + Brivy — V1Y,
where v, = y, — z,, while
0(z3) = v3 — (2z1v2 + 3x201) + 5x%v1 — T1Yy1v1.

]

This result allows on one side to deduce some properties of the loop of formal diffeomor-

phisms, and on the other side to compare the Faa di Bruno coloop bialgebra with the non-
commutative Faa di Bruno Hopf algebra.

Corollary 5.27 1. The proalgebraic loop Diff is not right alternative, nor power associative.

2. Newvertheless, Diff has two-sided inverses and, for a given an associative algebra A and
an element a € Diff(A), the inverse a=' = a\e = e/a is given by the usual Lagrange
coefficients, namely

n—1
(ail)n == Z(_]‘)Z Z dﬁ-ﬁ-l(nl?“‘?nf-i-l) Unq Ang "'an(Jrl-
=0 I'IEC,,ZL+1

3. The inversion allows to construct the right division, that is, a/b = a o (e/b) for any a,b €
Diff (A), but it does not allow to construct the left division, because b\a # (b\e)oa if a, # 0
and b,, # 0 for some n,m > 1.

Proof. 1. The loop Diff (A) is right alternative if and only if the coloop bialgebra Hpp is right
coalternative, that is (id I u) K = 0, where K = (AR, Iid) AR g — (id 1 AR ) ARgp is the
coassociator.

The first default from right alternativity appears on the generator zs. If we temporarily

denote by x, = ZES), Yn = :17%2) and z, = xg’) the three copies of the generators in H 1 H 11 H,

we get
K(z5) = 6z3(y121 — 2191)
+ 22[3(y221 — 2001) + 3(y122 — 2192) + Byt 21 — Tyrz1y1 — 2197)
+ (8y127 — Tzrynzn — 21y1) |
+ wl[(y3z1 — 23y1) + (Y222 — 22y2) + (Y123 — 21y3) + 3(y2y121 — Y221Y1)
+ 2(y1y221 — Y12291) + 2(yiz2 — y12132) + 2(y12122 — 21Y122)
+ (3y22i — 22011 21) + (212221 — 3219221)
+ (55 2% + 12} — dyiz1yiz — gty — z21y12h) |
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and therefore
(id 11 p) K (25) = 21(y2y7 — y1y291) # 0.

The default from right alternativity on the generator x5 corresponds to the power X% of usual
series with substitution law, and can be detected comparing (aob) ob and ao (bob) for the two
series

aN) = A+aA? and b)) = A+ b A% 4+ boA3

with a1 = 1 and be% # biboby. For instance®, by taking the 2 x 2 elementary matrices b = Epq
and bg = Egl, for which bgb% = bg and blbgbl =0.

The same computation shows that Diff(A) is not power associative, because
p(dinp) K(xs) = mle:E% - l‘%iﬂgﬂ?l # 0.

For a series ¢(A) = A + c1A2 + A3, we then have (coc)oc # co(coc) if cieac? # c3cacy. For
instance, this is verified for the two 2 x 2 matrices

(11 1 (10
“a=\lo 1 an “2=\10)
2 4 3 3
61626%=<1 2) and 6%6261=<1 1).

2. The left and right inverses of a € Diff (A) can be found using respectively the left antipode
S; and right antipode S, of H{l , according to the standard rule

(e/a)n = a(Si(zn)) and (a\e)n = a(Sy(zy)).

By Proposition 5.26 we have S, = S, therefore e/a = a\e.

for which we have

3. The identity a/b = a o (e/b) in the loop Diff(A) is equivalent to the identity 4, =
(id 11 S,) AR4p in Hpyp, proved in Proposition 5.26. The analogue identity for the left division
does not hold. ]

The commutative Faa di Bruno Hopf algebra which represents the classical proalgebraic
group Diff, mentioned at the beginning of section 5, admits a non-commutative lift [7]

Hpip = Fxp, n > 1), (kg =1)

n

E‘%B(xn) = Z Tm ®Zxko”'ka7

m=0 (k)

where the sum is over the set of tuples (ko, k1, k2, ..., kp) of non-negative integers such that
ko+ki+ko+---+kyn = n—m. Since Diff is not a group over associative algebras, the existence
of this Hopf algebra is not a priori ensured by the extention of the functor Diff from Comy to
AS[F.

Corollary 5.28 The image of the coloop bialgebra Hyyp under the canonical projection m given
in Def. 2.8 is the non-commutative Faa di Bruno Hopf algebra Hygy, that is,

(Hpan)® = Hygs.

5The authors warmly thank J. M. Pérez-Izquierdo for comunicating this example.
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Proof. Indeed, we have (Hi )% = HESp as an algebra, and eventhough Al o is not coasso-
ciative, the comultiplication (A} 5)® coincides with AL, and therefore it is coassociative with
respect to the component-wise multiplication in Hpip ® Hpgp.

The assertion is then proved because, by Prop. 5.26, the antipode in H{ p is unique and
coincides with that in Hgjp on generators. OJ

6 Appendix: Categorical proofs with tangles

Tangle diagrams are an efficient tool to prove formal (categorical) properties. Tangles are draw-
ings suitable to represent operations and co-operations in a monoidal category, cf. [26] [42], and
therefore can be used to encode the structure of coloops in a category (C,11,I). In the context
of non-associative algebras they have been used in [34] to code deformations of the enveloping
algebra of a Malcev algebra, seen as the infinitesimal structure of a Moufang loop.

Tangles are drawings to be read from the top to the bottom as concatenation of operations
acting on objects related by the monoidal product, and not by a cartesian (or tensor) product.
Here is the list of the tangles needed to represent all the operations and the co-operations in
coloops, with their defining identities.

Categorical maps

T twist N invertible </ = ‘ ‘ Sect. 2.2

p folding map N associative ﬂ = QJ Sect. 2.2
commutative é = u Sect. 2.2
unital D = Lj = ‘ Sect. 2.2

u  unit T folding morphism U = T Sect. 2.2

Coloop structure maps

A comultiplication A folding morphism :[i = CXLJ Sect. 2.2
unital i = T T Sect. 2.2
counital p = (il = ‘ Eq. (2.4)

€ counit é folding morphism T = 4> <L Sect. 2.2
unital I = Sect. 2.2
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6, right codivision fi\ folding morphism I = m Sect. 2.2
unital i = T T Sect. 2.2
right cocancellation @ = @ = ‘ T Eq. (2.5)

é; left codivision KZL\ folding morphism I = C/\/j Sect. 2.2
unital i = T T Sect. 2.2
left cocancellation @ = @ :T ‘ Eq. (2.6)

Further coloop maps

S, right antipode = D folding morphism = Sect. 2.2
unital CL = T Sect. 2.2

:

S; left antipode @ = q folding morphism = Sect. 2.2

unital CL = T Sect. 2.2

Properties of coloops

o = o =ue TO = lO —% Eq. (2.7)
r I
-0

partial counitality (idue)d, = (eu1id) §; = id = ‘ Eq. (2.8)

five-terms identities
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Proof of Eq. (2.7): For J,

and similarly for ¢;.

Proof of Eq. (2.8): For §,

and similarly for ¢;.

Proof of Eq. (2.10): For S,

|
I
_OO_

and similarly for .5;.

Properties of cogroups

coassociative (Aid) A = (idITA) A m = m Eq. (2.14)
r l

unique antipode S,=85 =8 m = rl =: @ Prop. 2.4

five-terms identity p(SUid)A = p(idIUS)A =ue [sé} = st = % Eq. (2.16)

right coinverse . T

Droporty 5, = (iduS) A H»] - @) Eq. (2.15)

left coinverse § = (S11id) A H.)l = @Q Eq. (2.15)

property

Lemma 6.1 (cf. Prop. 2.4) If a coloop H is coassociative, then it has a two-sided antipode
satisfying the five-terms identity (2.16) and the coinverse properties (2.15). Therefore it is a
cogroup.

Proof. Assume that A is coassociative. Then we have S; = S, because

6 -39 -do-0[p-93-0
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and therefore S := S; = S, satisfies the five-terms identity becuase of (2.10).
For the the coinverse properties, let us show that the operator R := (id 11 S)A satisfies the
right cocancellations (2.6), and therefore it coincides with d,. In fact, we have

and

R@

—0

@J
-

R
m:

Similarly, the operator (S11id)A satisfies the left-cocancellations (2.6), and therefore it coincides

with 5[. O]
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