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Abstract

Covering problems belong to the foundation of graph theory. There are several

types of covering problems in graph theory such as covering the vertex set by stars

(domination problem), covering the vertex set by cliques (clique covering problem),

covering the vertex set by independent sets (coloring problem), and covering the

vertex set by paths or cycles. A similar concept which is partitioning problem is

also equally important. Lately research in graph theory has produced unprece-

dented growth because of its various application in engineering and science. The

covering and partitioning problem by paths itself have produced a sizable volume

of literatures. The research on these problems is expanding in multiple directions

and the volume of research papers is exploding. It is the time to simplify and

unify the literature on different types of the covering and partitioning problems.

The problems considered in this article are path cover problem, induced path cover

problem, isometric path cover problem, path partition problem, induced path par-

tition problem and isometric path partition problem. The objective of this article is

to summarize the recent developments on these problems, classify their literatures

and correlate the inter-relationship among the related concepts.

Keywords: Survey, covering and partitioning problems, paths, induced paths and

isometric paths.

AMS Subj. Class.: 05C12, 05C70, 05C76; 68Q17
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1 Introduction

An undirected connected graph is represented by G(V,E) where V is the vertex set and

E is the edge set. There are several types of covering problems such as covering the

vertex set by stars (domination problem), covering the vertex set by cliques (the clique

covering problem), covering the vertex set by independent sets (the coloring problem),

and covering the vertex set by path-types. A path-type means a path, an induced path

or an isometric path. A path P is an induced path in G if the subgraph induced by the

vertices of P is a path. An induced path is also called a chordless path [56]. Let us

recall that isometric path and geodesic are other names for shortest path.

Mathematicians agree that the term “covering” is over-used or inappropriately-

used in graph theory. In set theory, there are two different terminologies: set covering

problem and set hitting problem. The edge cover problem is a special case of set

covering problem while the vertex cover problem is a special case of set hitting problem.

While set theorists distinguished the two concepts by “covering” and “hitting”, graph

theorists chose to use the same term “covering” to mean two different concepts. Thus,

right in the beginning, the term “cover” was over-used. The trend has been continuing.

It is not uncommon that researchers use the term “path cover problem” to mean “path

partition problem” and use the same term to mean “induced path cover problem”. It

is observed that the concepts “cover” & “partition” and the terms “path” & “induced

path” are used inappropriately. There is no consistency in the usage of notations

too. For example, while some authors use the notation π to represent the path cover

number, others use the notation µ to represent the same concept of path cover number.

These “inconsistent notation” and “inappropriate terminologies” lead novice readers to

confusion. This situation demands an article that classifies and simplifies the notations

and terminologies of path-type covering and partitioning problems.

In this article, we divide the “theory of decomposition” into six problems and classify

the literatures accordingly. We also bring their related concepts together under one

umbrella. This article targets young researchers in graph theory. The benefit of this

article is that it exposes the gap and open space in research area under each problem.

The article highlights that there is plenty of research to be done in this topic. In

addition, this article will save time for young researchers to choose a right research topic

in this domain and it may be a reference to apply common notations and appropriate

terminologies in their research articles.

In section 3, some relevant problems such as the k-path cover problem, the S-path
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cover problem and k-path vertex cover problem are discussed. Since these topics are

not our main focus, we do not provide elaborate literature survey for these problems.

In section 4, the significance of Gallai-Milgram theorem and Berge path partition con-

jecture is highlighted. The three cover problems are discussed in section 5 and the

three partition problems are studied in section 6.

2 Path-type covering and partitioning problems

Brause and Krivoš-Belluš [13] state that the cover problem and the partition problem

are central problems in graph theory. One such well-known concept in graph theory

is “clique covering” and “clique partitioning” [23]. A path cover of G is a set of paths

such that every vertex v ∈ V belongs to at least one path, whereas a path partition of

G is a set of paths such that every vertex v ∈ V belongs to exactly one path [35]. In

a path partition, the paths are mutually vertex-disjoint. A few authors use the term

“vertex-disjoint path cover” to mean “path partition” [9]. The following six invariants

(See Figure 1) are defined here:

(1) The path cover number of G, denoted by πc(G), is the cardinality of a minimum

path cover of G. The path cover problem is to find a path cover of minimum

cardinality in G.

(2) The induced path cover number of G, denoted by ρc(G), is the cardinality of a

minimum induced path cover of G. The induced path cover problem is to find an

induced path cover of minimum cardinality in G.

(3) The isometric path cover number of G, denoted by ipc(G), is the cardinality of a

minimum isometric path cover of G. The isometric path cover problem is to find

an isometric path cover of minimum cardinality in G.

(4) The path partition number of G, denoted by πp(G), is the cardinality of a mini-

mum path partition of G. The path partition problem is to find a path partition

of minimum cardinality in G.

(5) The induced path partition number of G, denoted by ρp(G), is the cardinality of

a minimum induced path partition of G. The induced path partition problem is

to find an induced path partition of minimum cardinality in G.
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(6) The isometric path partition number of G, denoted by ipp(G), is the cardinality of

a minimum isometric path partition of G. The isometric path partition problem

is to find an isometric path partition of minimum cardinality in G.

Figure 1: Six types of covering / partitioning problems

While some authors [2, 19, 23, 34, 35, 63, 69, 70, 75, 76] use the term “path par-

tition”, others [6, 9, 16, 20, 38, 53, 58, 59, 67, 73, 79] use the term “path cover” (or

vertex-disjoint path cover) in the place of “path partition”. Some authors use the term

“decomposition” for “partition” [3, 65].

A simple example in Figure 2 demonstrates the different behaviors of six different

problems:

Figure 2: Illustration how the six problems are different

πc(G) = 1; ρc(G) = 2; ipc(G) = 3; πp(G) = 1; ρp(G) = 2; ipp(G) = 4;

πc(H) = 2; ρc(H) = 2; ipc(H) = 2; πp(H) = 3; ρp(H) = 3; ipp(H) = 3;
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The inequalities in Lemma 2.1 are true because of the following facts:

(1) An isometric path is an induced path. An induced path is a path.

(2) A path partition is a path cover.

Lemma 2.1 For a given graph G,

(1) πc(G) ≤ ρc(G) ≤ ipc(G); πp(G) ≤ ρp(G) ≤ ipp(G);

(2) πc(G) ≤ πp(G); ρc(G) ≤ ρp(G); ipc(G) ≤ ipp(G);

3 Some generalized concepts

In this section, we discuss some problems which are closely related to the six problems.

3.1 The k-path cover problem

A k-path is a path having at most k vertices. Here is a word of caution: While defining

a k-path, some authors define k-path as a path of at most k vertices [41, 72] and some

authors define k-path as a path of length at most k [45]. Korpelainen [45] states that

the 3-path partition problem is NP-complete on comparability graphs. According to

his definition of k-path, the correct statement is that the 2-path partition problem is

NP-complete on comparability graphs.

A k-path cover is a set of k-paths that cover V . The k-path cover problem is to find

a k-path cover of minimum cardinality in G. This is a generalized version of path cover

problem [72]. When k = 2, the k-path cover problem becomes the edge cover problem.

It is straightforward to define other five problems in the same way [45, 57, 72].

The k-path partition problem is solved for trees [77], cacti [41], cographs for a fixed

k [71], threshold graphs [71], bipartite permutation graphs [72]. The 3-path partition

problem is NP-complete on general graphs [31] and comparability graphs [72]. The

k-path partition problem is NP-complete on the class of cographs [71] and chordal bi-

partite graphs [72] if k is part of the input. The k-path partition problem as well as the

induced k-path partition problem remains NP-complete on bipartite graphs of maxi-

mum degree three [57]. The k-path partition problem remains NP-complete for a graph

class defined by finitely many minimal forbidden induced subgraphs [45]. Korpelainen

[45] has nicely analyzed the differences between the k-path cover problem and induced

k-path cover problem. The author also provides a good account of literature survey on

k-path cover problems and their related topics [45].
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3.2 The S-path cover problem

Here is another generalization of the path cover problem. For a set S of vertices in

a graph G = (V,E), an S-path cover is a path cover P in which every vertex of S is

an endpoint of a path in P . The S-path cover problem is to find an S-path cover of

minimum cardinality in G. Some authors [4, 5, 7, 47] call it k-fixed-endpoint path cover

problem (or kPC problem) where k = |S|. Notice that, when S is empty, the S-path

cover problem coincides with the classical path cover problem [78].

It is shown that the 1-Fixed-Endpoint path cover problem is polynomial on interval

graphs [47] and the k-fixed-endpoint path cover problem is polynomial on cographs [4],

proper interval graphs [5]. The S-path partition number is polynomially solvable for

bipartite distance-hereditary graph [78]. The PhD thesis by Baker [7] is a good source

of information on this problem.

3.3 The k-path vertex cover problem

There is another concept in the literature called k-path vertex cover (which is denoted

by k-(All-) Path Cover) [30]. A set C of vertices is a k-path vertex cover if every k-path

on k vertices contains at least one vertex from C [48]. While the k-path cover problem

is an extension of edge cover problem, the k-path vertex cover problem is an extension

of vertex cover problem. Brause and Krivoš-Belluš [13] have studied the relationship

between the k-path vertex cover problem and the k-path partition problem. Both

these problems are completely different from the computational complexity point of

view. The k-path vertex cover problem is NP-complete for cubic planar graphs of girth

3 for k = 3 [74]. Funke, Nusser and Storandt [30] have provided a list of applications

of this problem on different domains.

4 A discussion on the Gallai-Milgram theorem

One of the earliest contributions to the path partition problem is the Gallai-Milgram

theorem. While surveying the Gallai-Milgram theorem, Berge states that the Gallai-

Milgram theorem has been independently extended by Las Vergnas and Linial [11, 34,

35, 50]. The Gallai-Milgram theorem illustrates the differences among the three path-

types such as path, induced path and isometric path. The Gallai-Milgram theorem is

true only for path covers and path partitions in undirected graphs. Let α(G) denote

the independence number of G.
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Theorem 4.1 (Gallai-Milgram) Let P be a minimal path partition of an undirected

graph G. Then there is an independent set S in G such that S contains exactly one

vertex from each path in P . The vertex set V of G can be partitioned by at most α(G)

paths.

Theorem 4.2 (Gallai-Milgram) Let G be an undirected graph. Then πc(G) ≤ πp(G)

≤ α(G).

Figure 3: The Gallai-Milgram theorem fails for induced paths and isometric paths in

undirected graphs

The Figure 3 demonstrates how the Gallai-Milgram theorem is NOT true for induced

path cover and isometric path cover. Let us make some interesting observations on the

Gallai-Milgram theorem. While the Gallai-Milgram theorem fails for the induced path

cover and the isometric path cover on chordal graphs, it is true on bipartite graphs.

Theorem 4.3 Let G be an undirected chordal graph without any pendant vertices.

Then

α(G) ≤ ρc(G) ≤ ρp(G);

α(G) ≤ ipc(G) ≤ ipp(G);

Proof. In chordal graphs, ρc(G) = ipc(G) and ρp(G) = ipp(G). It is enough to prove

that α(G) ≤ ρc(G). The inequality can be proved by induction on the number q of

maximal cliques of a chordal graph G. The base case is a single clique. Applying

perfect elimination ordering, a few simplicial vertices (a minimum of two vertices) can

be removed from G in such a way that the remaining graph G′ is a chordal graph

with q − 1 maximal cliques. Since there are no pendant vertices of G, it is necessary

to remove a minimum of two vertices from G to build G′. Since α(G′) ≤ ρc(G
′) by

induction assumption, it follows that α(G) ≤ ρc(G). �

Notice that the inequalities in Theorem 4.3 are not true for trees. The following

result is straightforward and does not require any proof:
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Theorem 4.4 Let G be an undirected bipartite graph. Then

ρc(G) ≤ ρp(G) ≤ α(G);

ipc(G) ≤ ipp(G) ≤ α(G)

In undirected graphs, the Gallai-Milgram theorem illustrates how the behavior of iso-

metric and induced paths changes from the dense graphs (such as chordal graphs with-

out pendant vertices) to sparse graphs (such as bipartite graphs).

Following Las Vergnas and Linial, Berge takes the Gallai-Milgram theorem to the

next level which is the famous Berge path partition conjecture [11, 34, 35] and weak

path partition conjecture [51]. Hartman [35] has provided a survey on the Berge path

partition conjectures.

As we have discussed the behavior of the Gallai-Milgram theorem on bipartite

graphs and chordal graphs, a similar discussion on the Berge path partition conjecture

will be interesting. It will also be useful to study the behavior of the Berge path

partition conjecture for different path-types such as paths, induced paths, and isometric

paths on special classes of undirected graphs.

5 The three cover problems

In this section, we shall discuss three problems: the path cover problem, the induced

path cover problem and the isometric path cover problem.

5.1 The path cover problem

The Hamiltonian path problem, and hence the path cover problem is NP-complete for

planar graphs, bipartite graphs, chordal graphs, chordal bipartite graphs, and strongly

chordal graphs [78]. Lin, Olariu and Pruesse [49] have presented an optimal algorithm

for determining a minimum path cover for cographs. Unfortunately, there is no record

of any significant research work on the path cover problem. But there is a variant of

path cover problem which is called the identifying path cover problem. A path cover

P̃ is an identifying path cover if for each pair u, v of vertices, there is a path P of P̃

such that exactly either u or v belongs to P . Foucaud and Kovše [29] have given lower

and upper bounds on the minimum size of an identifying path cover for general graphs

and discuss the tightness of the bounds. They have also illustrated that any connected

graph G has an identifying path cover of size at most d2|V |/3e+ 5.
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5.2 The induced path cover problem

The induced path cover problem is NP-complete for general graphs [31]. There is no

record of any significant research work on the induced path cover problem too.

5.3 The isometric path cover problem

There may not be vast difference between paths and induced paths. But there is

distinct difference between induced paths and isometric paths. The following problems

illustrate the difference:

(1) The problem of finding an induced path between a vertex s and a vertex t con-

taining a vertex v remains NP-complete in bipartite graphs [56]. However, the

problem of finding an isometric path between a vertex s and a vertex t containing

a vertex v is polynomially solvable for general graphs.

(2) Given a positive integer k, the problem of finding an induced path of length at

least k is NP-complete [31]. However, the problem of finding an isometric path

of length at least k is a trivial problem.

(3) The problem of deciding, given a graph G and two vertices s and t, whether there

exists an induced path of given parity between s and t in G is NP-complete [43].

But the corresponding isometric problem is polynomially solvable.

Fitzpatrick [25] has introduced the concept of the isometric path cover problem in

her PhD thesis [61]. The isometric path cover number is computed for tress, cycles,

complete bipartite graphs, the Cartesian product of paths (including hypercubes) under

some restricted cases [24, 25, 26, 28]. Fisher and Fitzpatrick [24, 27] have derived a

lower bound that ipc(G) ≥ d|V |/(diam(G) + 1)e and have shown that the isometric

path cover number of an r × r grid is d2r/3e and the isometric path cover number of

a tree with ` leaves is d`/2e . Fitzpatrick et al. [28] have shown that the isometric

path number of hypercube Qr is at least 2r/(r+ 1). In addition, they have also shown

that ipc(Qr) = 2r−log2(r+1) when r + 1 is a power of 2. Pan and Chang have given a

linear-time algorithm to solve the isometric path cover problem on block graphs [61],

complete r-partite graphs and Cartesian products of 2 or 3 complete graphs [62].

The strong geodetic problem is a variation of the geodetic problem which is to find a

minimum set S of vertices of a graph G such that each vertex of G lies on some isometric

path between a pair of vertices from S [33]. A strong geodetic set of a graph G is a set
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S of vertices such that each vertex of G lies on a fixed isometric path between a pair of

vertices from S [55]. For a graph G, its strong geodetic number sg(G) is the cardinality

of a minimum strong geodetic set of G. The relationship between the isometric path

cover number and the strong geodetic number is given below:

Theorem 5.1 ([55]) Let G be a graph.

(1) When G is an undirected graph,
1+
√

(8×ipc(G)+1)

2 ≤ sg(G) ≤ 2× ipc(G).

(2) When G is a tree or block graph, ipc(G) = dsg(G)/2e.

Even though the isometric path cover problem is a fundamental concept in graph

theory, to our knowledge, there are no literatures on the computational complexity

status of the isometric path cover problem for general graphs.

6 The three partition problems

In this section, we discuss the other set of three problems: the path partition problem,

the induced path partition problem and the isometric path partition problem.

6.1 The path partition problem

The path partition problem was introduced by Ore in 1961 [59]. The Hamiltonian

path problem is NP-complete and hence the path partition problem is NP-complete for

planar graphs, bipartite graphs, chordal graphs, chordal bipartite graphs, and strongly

chordal graphs [78]. Nakano, Olariu and Zomaya [58] call this problem as notoriously

difficult and have reported an NC-algorithm to solve the path partition problem for

cographs. Dinh [22] has studied the path partition problem for graphs with toughness

greater than or equal to 1. Asdre, Nikolopoulos and Papadopoulos [6] have presented

an optimal parallel algorithm for the path partition problem on P4-sparse graphs. Pan

and Chang [60] have designed a linear-time algorithm for the path-partition problem

in graphs whose blocks are complete graphs, cycles or complete bipartite graphs. The

path-partition problem is polynomially solvable for forests [69], interval graphs [2, 18,

40], circular arc graphs [38], distance-hereditary graphs [39], bipartite permutation

graphs [70], block graphs [75, 76], cographs [17], bipartite distance-hereditary graphs

[78], co-comparability graphs [20, 44]. Given a connected graph G, there is a spanning

tree T of G such that πp(G) = πp(T ) [12]. The relationship between the path partition
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number and L(2, 1)-labeling number of graphs have been studied by several authors

[17, 52].

6.1.1 Graffiti.pc conjecture

The number of edges in a maximum matching of a graph G is called the matching

number of G, denoted by α′(G). The total domination number of G, denoted by γt(G),

is a minimum set S of vertices such that every vertex of G is adjacent to some vertex in

S. The Graffiti.pc conjectures are well-known for total domination number [21]. Some

of the conjectures are related to path partition number. DeLaViña et al. [21] have

positively answered to some Graffiti.pc conjectures which are related to path partition

numbers.

Theorem 6.1 ([21]) For every graph G with no isolated vertex, γt(G) ≤ α′(G) +

πp(G). When G is a connected 3-regular graph, γt(G) ≥ 2πp(G).

Henning and Wash [36] have improved Graffiti.pc conjectures and shown that the

bounds are tight.

Theorem 6.2 ([36]) If G is a graph of order n, then α′(G) + (1/2)πp(G) ≥ (n/2).

Moreover, when δ(G) ≥ 3, then γt(G) ≤ α′(G) + (1/2)(πp(G)− 1).

6.1.2 Some bounds on the path partition number πp(G)

While introducing the path partition problem, Ore [59] has produced the following

bound:

Theorem 6.3 ([59]) Given a graph G of order n, the path partition number πp satis-

fies πp(G) ≤ n−σ2(G), where σ2(G) is the minimum sum of degrees of two nonadjacent

vertices.

According to Magnant and Martin [53], the above bound by Ore is sharp. There is

another strong bound on the path partition number due to Hartman [34]. The Gallai-

Milgram theorem with respect to the path partition number which is πp(G) ≤ α(G) is

improved by Hartman [34] under certain conditions:

Theorem 6.4 ([34]) Let G be a graph with connectivity k. If α(G) > k, then the path

partition number satisfies πp(G) ≤ α(G)− k.

Magnant and Martin [53] have posed the following conjecture:
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Conjecture 6.5 ([53]) Given a k-regular graph G of order n, the path partition num-

ber satisfies πp(G) ≤ n/(k + 1).

The bound in the Conjecture 6.5 is sharp [53]. In support of their conjecture, they

have provided the following result:

Theorem 6.6 ([53]) Given a k-regular graph G of order n with 0 ≤ k ≤ 5, the path

partition number satisfies πp(G) ≤ n/(k + 1).

Magnant, Wang and Yuan [54] have recently revised the Conjecture 6.5 as follows:

Conjecture 6.7 ([54]) Given positive integers δ and ∆ with δ ≤ ∆, if G is a graph of

order n with δ ≤ δ(G) ≤ ∆(G) ≤ ∆, then πp(G) ≤ max{n/(δ + 1), (∆− δ)n/(∆+ δ)}.

They have also proved this conjecture when δ = 1, 2. They have also provided another

bound as follows:

Theorem 6.8 ([54]) Suppose G is a graph of order n with ∆(G) = ∆ < 2δ = 2δ(G),

then πp(G) ≤ ((∆− 2)n/(2(∆+ δ − 4)).

While pointing out that Conjecture 6.5 is true even for k ≥ (n − 1)/2, Han [32] has

provided a tight bound for bipartite graphs as follows:

Theorem 6.9 ([32]) Given a bipartite k-regular graph G of order n, the path partition

number satisfies πp(G) ≤ n/2k.

For 3-regular graphs, Reed [66] has provided a bound which is sharper than the bound

in Conjecture 6.5.

Theorem 6.10 ([66]) Given a connected 3-regular graph G of order n, the path par-

tition number satisfies πp(G) ≤ n/9.

Reed [66] also demonstrates that these results are tight. Furthermore, Reed has con-

jectured in the same paper that

Conjecture 6.11 ([66]) Given a 2-connected 3-regular graph G of order n, the path

partition number satisfies πp(G) ≤ dn/10e.

This conjecture has been recently settled by Yu [79]. In addition, Yu has given an

interesting lower bound for πp(G):

Theorem 6.12 ([79]) There are infinitely many 2-connected 3-regular n-vertex graphs

whose path cover numbers are at least n/14.
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6.2 The induced path partition problem

Chartrand et al. [19] have introduced the concept of induced path partition problem

and have produced the induced-path number of complete bipartite graphs, complete

binary trees, 2-dimensional meshes, butterflies, and general trees. They have shown

that ρp(Pm×Pn) = 2. In addition, they have also derived upper bounds for hypercubes

and conjectured that ρp(Qr) ≤ r for the r-dimensional hypercube Qr with r ≥ 2 [19].

Alsardary [1] has answered to the conjecture that ρp(Qr) ≤ 16 [63]. The induced

path partition problem is concluded to be NP-complete by showing that it is NP-

complete to determine whether the vertex set of a graph can be partitioned into two

induced paths [46]. Pan and Chang [63] have presented a linear-time algorithm for the

induced path partition problem on graphs whose blocks are complete graphs, cycles or

complete bipartite graphs. Broere, Jonck and Domke [14] have determined ρp(G) for

G = Km ×Kn and have shown that ρp(Cm × Cn) < 3.

Broere et al. [15] have studied the induced path partition problem on the comple-

ments of some graphs such as cycles, paths, product of complete graphs, and product of

cycles. They have also produced an elegant Nordhaus-Gaddum type relation in terms

of induced path partition number ρp as follows:

Theorem 6.13 ([15]) Given an undirected graph on n vertices,

(1)
√
n ≤ ρp(G) + ρp(G) ≤ d3n/2e for arbitrary graph G

(2) 1 + dn/4e ≤ ρp(G) + ρp(G) ≤ d3n/2e for bipartite graph G.

(3) |`| ≤ ρp(T ) + ρp(T ) ≤ d3(n− 1)/2e for trees T where ` is the # of leaves of T .

Several authors [8, 37, 64, 67, 73] have studied the relationship between the zero-

forcing number z(G) and the induced path partition number ρp(G). Hogben [37] have

shown that ρp(G) ≤ z(G) for general graphs. It is shown that ρp(G) = z(G) when G

is a block-cycle graph, unicyclic graph, double path, and series of double paths [73], a

tree [8] and a cactus [67].

Catral et al. [16] have studied the induced path partition problem for edge subdi-

vision graphs. Let e = uv be an edge of G. An edge subdivision graph Ge is obtained

from G by inserting a new vertex w into V , deleting the edge e and inserting edges uw

and wv.

Let us recall that M(G) denotes the maximum nullity of G. Johnson and Duarte

[42] have shown that M(G) = ρp(G) when G is a tree. Barioli, Fallat and Hogben [10]
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have proved that M(G) = ρp(G) or M(G) = ρp(G) − 1 for unicyclic graphs. Sinkovic

[68] have derived that M(G) ≤ ρp(G) for any outerplanar graph G and M(G) = ρp(G)

for any partial 2-path G. Barioli, Fallat and Hogben [9] have studied the relationship

between minimum rank and the induced path partition number and have derived that

∆(G) ≤ ρp(G) where ∆(G) = max{p − q/ there are q vertices of G whose deletion

leaves p induced paths}.

6.3 The isometric path partition problem

It is quite a big surprise that there is no literature on the isometric path partition

problem including the computational complexity status of isometric path partition

problem for general graphs.

7 Conclusion

This article is meant for young researchers in graph theory. It identifies the gaps

and open space in “covering and partitioning by path-types” as potential research

topics. Among all the six problems, the most attractive and interesting problem is

path partition problem. The literatures on the path partition problem are larger than

those of the other five problems. The reason may be due to the Gallai-Milgram theorem

and Berges path partition conjecture. There are a very few literatures in path cover

problem, induced path problem and isometric partition problem. Between the covering

and partitioning problems, it is observed that researchers are more active on path-type

partition problems than path-type cover problems.

In addition to the six problems, we have also considered several problems which are

related to these six problems. We have also discussed the correlation among these six

problems and their related problems. We have covered the literatures for the last 30

years.

Chang and his teammates have carried out significant research on paths [17, 60,

76, 77, 78], induced paths [63] and isometric paths [61, 62]. Young researchers are

encouraged to read these papers to understand how Chang and his teammates apply

different techniques to solve different path-type problems.

We have discussed only vertex version of the covering and partitioning problems.

The edge version of these problems is equally popular among the researchers. In the

same way, covering and partitioning by cycles or trees are other well-known subtopics

15



of research in graph theory.
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