
HAL Id: hal-01849166
https://hal.science/hal-01849166v3

Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eliminating Reflection from Type Theory
Théo Winterhalter, Matthieu Sozeau, Nicolas Tabareau

To cite this version:
Théo Winterhalter, Matthieu Sozeau, Nicolas Tabareau. Eliminating Reflection from Type Theory:
To the Legacy of Martin Hofmann. CPP 2019 - 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, Jan 2019, Lisbonne, Portugal. pp.91-103, �10.1145/3293880.3294095�.
�hal-01849166v3�

https://hal.science/hal-01849166v3
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Eliminating Reflection from Type Theory
To the Legacy of Martin Hofmann

Théo Winterhalter

Gallinette Project-Team, Inria

Nantes, France

theo.winterhalter@inria.fr

Matthieu Sozeau

Pi.R2 Project-Team, Inria and IRIF

Paris, France

matthieu.sozeau@inria.fr

Nicolas Tabareau

Gallinette Project-Team, Inria

Nantes, France

nicolas.tabareau@inria.fr

Abstract
Type theories with equality reflection, such as extensional

type theory (ETT), are convenient theories in which to for-

malise mathematics, as they make it possible to consider

provably equal terms as convertible. Although type-checking

is undecidable in this context, variants of ETT have been

implemented, for example in NuPRL and more recently in

Andromeda. The actual objects that can be checked are not

proof-terms, but derivations of proof-terms. This suggests

that any derivation of ETT can be translated into a typecheck-

able proof term of intensional type theory (ITT). However,

this result, investigated categorically by Hofmann in 1995,

and 10 years later more syntactically by Oury, has never

given rise to an effective translation. In this paper, we pro-

vide the first effective syntactical translation from ETT to

ITT with uniqueness of identity proofs and functional ex-

tensionality. This translation has been defined and proven

correct inCoq and yields an executable plugin that translates
a derivation in ETT into an actual Coq typing judgment. Ad-

ditionally, we show how this result is extended in the context

of homotopy type theory to a two-level type theory.

Keywords dependent types, translation, formalisation

1 Introduction
Type theories with equality reflection, such as extensional

type theory (ETT), are convenient theories in which to for-

malise mathematics, as they make it possible to consider

provably equal terms as convertible, as expressed in the fol-

lowing typing rule:

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A
(1)

Here, the type u =A v is Martin-Löf’s identity type with

only one constructor refl u : u =A u which represents proofs

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

of equality inside type theory, whereas u ≡ v : A means

that u and v are convertible in the theory—and can thus

be silently replaced by one another in any term. Several

variants of ETT have been considered and implemented, for

example in NuPRL [Allen et al. 2000] and more recently in

Andromeda [Bauer et al. 2016]. The prototypical example of

the use of equality reflection is the definition of a coercion

function between two types A and B that are equal (but not

convertible) by taking a term of typeA and simply returning

it as a term of type B:

λ A B (e : A = B) (x : A). x : Π A B. A = B → A→ B.

In intensional type theory (ITT), this term does not type-

check because x of type A can not be given the type B by

conversion. In ETT, however, equality reflection can be used

to turn the witness of equality into a proof of conversion and

thus the type system validates the fact that x can be given the

type B. This means that one needs to guess equality proofs

during type-checking, because the witness of equality has

been lost at the application of the reflection rule. Guessing it

was not so hard in this example but is in general undecidable,

as one can for instance encode the halting problem of any

Turing machine as an equality in ETT. That is, the actual

objects that can be checked in ETT are not terms, but instead

derivations of terms. It thus seems natural towonderwhether

any derivation of ETT can be translated into a typecheckable

term of ITT. And indeed, it is well know that one can find

a corresponding term of the same type in ITT by explicitly
transporting the term x of type A using the elimination of

internal equality on the witness of equality e , noted e∗:

λ A B (e : A = B) (x : A). e∗ x : Π A B. A = B → A→ B.

This can be seen as a way to make explicit the silent use
of reflection. Furthermore, by making the use of transport

as economic as possible, the corresponding ITT term can

be seen as a compact witness of the derivation tree of the

original ETT term.

This result has first been investigated categorically in the

pioneering work of Hofmann [1995, 1997], by showing that

the term model of ITT can be turned into a model of ETT by

quotienting this model with propositional equality. However,

it is not clear how to extend this categorical construction

to an explicit and constructive translation from a derivation

in ETT to a term of ITT. In 2005, this result has been in-

vestigated more syntactically by Oury [2005]. However, his

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

presentation does not give rise to an effective translation.

By an effective translation we mean that it is entirely con-

structive and can be used to deterministically compute the
translation of a given ETT typing derivation. Two issues

prevent deriving an effective translation from Oury’s presen-

tation, and it is the process of actual formalisation of the

result in a proof assistant that led us to these discoveries.

First, his handling of related contexts is not explicit enough,

which we fix by framing the translation using ideas coming

from the parametricity translation (section 1.2). Addition-

ally, Oury’s proof requires an additional axiom in ITT on

top of functional extensionality and uniqueness of identity

proofs, that has no clear motivation and can be avoided by

considering an annotated syntax (section 2.1).

Contributions. In this paper, we present the first effective

syntactical translation from ETT to ITT (assuming unique-

ness of identity proofs (UIP) and functional extensionality in

ITT). By syntactical translation, we mean an explicit transla-

tion from a derivation Γ ⊢x t : T of ETT (the x index testifies
that it is a derivation in ETT) to a context Γ′, term t ′ and
type T ′ of ITT such that Γ′ ⊢ t ′ : T ′ in ITT. This translation

enjoys the additional property that if T can be typed in ITT,

i.e., Γ ⊢ T , then T ′ ≡ T . This means in particular that a theo-

rem proven in ETT but whose statement is also valid in ITT

can be automatically transferred to a theorem of ITT. For

instance, one could use a local extension of the Coq proof

assistant with a reflection rule, without being forced to rely

on the reflection in the entire development.

This translation can be seen as a way to build a syntac-

tical model of ETT from a model of ITT as described more

generally in Boulier et al. [2017] and has been entirely pro-

grammed and formalised in Coq [Coq development team

2017]. For this, we rely on TemplateCoq1 [Anand et al. 2018],
which provides a reifier for Coq terms as represented in

Coq’s kernel as well as a formalisation of the type system of

Coq. Thus, our formalisation of ETT is just given by adding

the reflection rule to a subset of the original type system

of Coq. This allows us to extract concrete Coq terms and

types from a closed derivation of ETT, using a little trick to

incorporate Inductive types and induction. We do not treat

cumulativity of universes which is an orthogonal feature of

Coq’s type theory.

Outline of the Paper. Before going into the technical devel-
opment of the translation, we explain its main ingredients

and differences with previous works. Then, in Section 2,

we define the extensional and intensional type theories we

consider. In Section 3, we define the main ingredient of the

translation, which is a relation between terms of ETT and

terms in ITT. Then, the translation is given in Section 4. Sec-

tion 5 describes the Coq formalisation and Sections 6 and 7

1https://template-coq.github.io/template-coq/

discuss limitations and related work. The main proofs are

given in detail in Appendices B and C.

The Coq formalisation can be found in https://github.com/
TheoWinterhalter/ett-to-itt.

1.1 On the Need for UIP and Functional
Extensionality.

Our translation targets ITT plus UIP and functional exten-

sionality, which correspond to the two following axioms

(where □i denotes the universe of types at level i):

UIP : Π(A : □i) (x y : A) (e e ′ : x = y). e = e ′

FunExt : Π(A : □i) (B : A→ □i) (f д : Π(x : A). B x).
(Π(x : A). f x = д x) → f = д

The first axiom says that any two proofs of the same equality

are equal, and the other one says that two (dependent) func-

tions are equal whenever they are pointwise equal
2
. These

two axioms are perfectly valid statements of ITT and they

can be proven in ETT. Indeed, UIP can be shown to be equiv-

alent to the Streicher’s axiom K

K : Π(A : □i). Π(x : A). Π(e : x = x). e = reflx

using the elimination on the identity type. But K is provable

in ETT by considering the type

Π(A : □i). Π(x y : A). Π(e : x = y). e = reflx

which is well typed (using the reflection rule to show that e
has type x = x) and which can be inhabited by elimination of

the identity type. In the same way, functional extensionality

is provable in ETT because

Π(x : A). f x = д x
→ x : A ⊢ f x ≡ д x by reflection

→ (λ(x : A). f x) ≡ (λ(x : A).д x) by congruence of ≡

→ f ≡ д by η-law
→ f = д

Therefore, applying our translation to the proofs of those

theorems in ETT gives corresponding proofs of the same

theorems in ITT. However, UIP is independent from ITT, as

first shown by Hofmann and Streicher using the groupoid

model [Hofmann and Streicher 1998], which has recently

been extended in the setting of univalent type theory using

the simplicial or cubical models [Bezem et al. 2013; Kapulkin

and Lumsdaine 2012]. Similarly, Boulier et al. have shown
that functional extensionality is independent from ITT using

a simple syntactical translation [Boulier et al. 2017].

Therefore, our translation provides proofs of axioms in-

dependent from ITT, which means that the target of the

translation already needs to have both UIP and functional

extensionality. Part of our work is to show formally that they

are the only axioms required.

2
In Homotopy Type Theory (HoTT) [Univalent Foundations Program 2013],

the functional extensionality axiom is stated in a more complete way, using

the notion of adjoint equivalences, but this more complete way collapses to

our simpler statement in presence of UIP.

2

https://template-coq.github.io/template-coq/
https://github.com/TheoWinterhalter/ett-to-itt
https://github.com/TheoWinterhalter/ett-to-itt

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

1.2 Heterogeneous Equality and the Parametricity
Translation.

The basic idea behind the translation from ETT to ITT is

to interpret conversion using the internal notion of equal-

ity, i.e., the identity type. But this means that two terms of

two convertible types that were comparable in ETT become

comparable in ITT only up-to the equality between the two

types. One possible solution to this problem is to consider a

native heterogeneous equality, such as John Major equality
introduced by McBride [2000]. However, to avoid adding

additional axioms to ITT as done by Oury [2005], we prefer

to encode this heterogeneous equality using the following

dependent sums:

t T �U u := Σ(p : T = U).p∗ t = u .

During the translation, the same term occurring twice can

be translated in two different manners, if the corresponding

typing derivations are different. Even the types of the two

different translations may be different. However, we have

the strong property that any two translations of the same

term only differ in places where transports of proof of equal-

ity have been injected. To keep track of this property, we

introduce the relation t ∼ t ′ between two terms of ITT, of

possibly different types. The crux of the proof of the transla-

tion is to guarantee that for every two terms t1 and t2 such
that Γ ⊢ t1 : T1, Γ ⊢ t2 : T2 and t1 ∼ t2, there exists p such that

Γ ⊢ p : t1 T1�T2 t2. However, during the proof, variables of

different but (propositionally) equal types are introduced and

the context cannot be maintained to be the same for both t1
and t2. Therefore, the translation needs to keep track of this

duplication of variables, plus a proof that they are heteroge-

neously equal. This mechanism is similar to what happens

in the (relational) internal parametricity translation in ITT

introduced by Bernardy et al. [2012] and recently rephrased

in the setting of TemplateCoq [Anand et al. 2018]. Namely, a

context is not translated as a telescope of variables, but as a

telescope of triples consisting of two variables plus a witness

that they are in the parametric relation. In our setting, this

amounts to consider telescope of triples consisting of two

variables plus a witness that they are heterogeneously equal.

We can express this by considering the following dependent

sums:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x A1
�A2

y.

This presentation inspired by the parametricity translation

is crucial in order to get an effective translation, because

it is necessary to keep track of the evolution of contexts

when doing the translation on open terms. This ingredient

is missing in Oury’s work [Oury 2005], which prevents him

from deducing an effective (i.e., constructive and computable)

translation from his theorem.

2 Definitions of Extensional and
Intensional Type Theories

This section presents the common syntax, typing and main

properties of ETT and ITT. Our type theories feature a uni-

verse hierarchy, dependent products and sums as well as

Martin Löf’s identity types.

2.1 Syntax of ETT and ITT
The common syntax of ETT and ITT is given in Figure 1. It

features: dependent products Π(x : A). B, with (annotated)

λ-abstractions and (annotated) applications, negative depen-

dent sums Σ(x : A). B with (annotated) projections, sorts □i ,

identity types u =A v with reflection and elimination as

well as terms realising UIP and functional extensionality. An-

notating terms with otherwise computationally irrelevant

typing information is a common practice when studying the

syntax of type theory precisely (see [Streicher 1993] for a

similar example). We will write A → B for Π(_ : A). B the

non-dependent product / function type.

We consider a fixed universe hierarchy without cumula-

tivity, which ensures in particular uniqueness of typing (2.2)

which is important for the translation.

About Annotations. Although it may look like a technical

detail, the use of annotation is more fundamental in ETT

than it is in ITT (where it is irrelevant and doesn’t affect

the theory). And this is actually one of the main differences

between our work (and that of Martin Hofmann [1995] who

has a similar presentation) and the work of Oury [2005].

Indeed, by using the standard model where types are inter-

preted as cardinals rather than sets, it is possible to see that

the equality nat → nat = nat → bool is independent from
the theory, it is thus possible to assume it (as an axiom, or for

those that would still not be convinced, simply under a λ that
would introduce this equality). In that context, the identity

map λ(x : nat). x can be given the type nat→ bool and we

thus type (λ(x : nat). x) 0 : bool. Moreover, the β-reduction
of the non-annotated system used by Oury concludes that

this expression reduces to 0, but cannot be given the type

bool (as we said, the equality nat → nat = nat → bool is
independent from the theory, so the context is consistent).

This means we lack subject reduction in this case (or unique-

ness of types, depending on how we see the issue). Our

presentation has a blocked β-reduction limited to matching

annotations: (λ(x : A).B. t)@x :A.Bu = t[x←u], from which

subject reduction and uniqueness of types follow.

Although subtle, this difference is responsible for Oury’s

need for an extra axiom. Indeed, to treat the case of equality

of applications in his proof, he needs to assume the congru-

ence rule for heterogeneous equality of applications, which

is not provable when formulated with John Major equality

(Fig. 2). Thanks to annotations and our notion of hetero-

geneous equality, we can prove this congruence rule for

applications.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

s ::= □i (i ∈ N) sorts (universes)

T ,A,B, t ,u,v ::= x | λ(x : A).B.t | t @x :A.B u | Π(x : A). B | s dependent λ-calculus
| ⟨u;v⟩x :A.B | πx :A.B

1
p | πx :A.B

2
p | Σ(x : A). B dependent pairs

| reflA u | J(A,u,x .e .P ,w,v,p) | u =A v propositional equality

| funext(x : A,B, f ,д, e) | uip(A,u,v,p,q) equality axioms

Γ,∆ ::= • | Γ,x : A contexts

Figure 1. Common syntax of ETT and ITT

JMAPP

f1 ∀(x :U1).V1
�∀(x :U2).V2

f2 u1 U1
�U2

u2

f1 u1 V1[x←u1]�V2[x←u2] f2 u2

Figure 2. Congruence of heteogeneous equality

2.2 The Typing Systems
As usual in dependent type theory, we consider contexts

which are telescopes whose declarations may depend on any

variable already introduced. We note Γ ⊢ t : A to say that t
has type A in context Γ. Γ ⊢ A shall stand for Γ ⊢ A : s for
some sort s and similarly Γ ⊢ A ≡ B stands for Γ ⊢ A ≡ B : s .

We use two relations (s, s ′) ∈ Ax (written (s, s ′) for short)
and (s, s ′, s ′′) ∈ R (written (s, s ′, s ′′)) to constrain the sorts

in the typing rules for universes, dependent products and

dependent sums, as is done in any Pure Type System (PTS).

In our case, because we do not have cumulativity, the rules

are as follows:

(□i ,□i+1) ∈ Ax (□i ,□j ,□max(i, j)) ∈ R

We give the typing rules of ITT in Figure 3. The rules are

standard andwe do not explain them. Let us just point out the

conversion rule, which says that u : A can be given the type

u : B when A ≡ B, i.e., when A and B are convertible. As the

notion of conversion is central in our work—the conversion

of ETT being translated to an equality in ITT—we provide an

exhaustive definition of it, with computational conversion

rules (including β-conversion or reduction of the elimination

principle of equality over reflexivity, see Figure 4), however

congruence conversion rules can be found in Appendix A

(Figure 6). Note that we use Christine Paulin-Möhring’s vari-

ant of the J rule rather thanMartin-Löf’s original formulation.

Although pretty straightforward, being precise here is very

important, as for instance the congruence rule for λ-terms

is the reason why functional extensionality is derivable in

ETT. Congruence of equality terms is a standard extension of

congruence to the new principles we add (UIP and functional

extensionality).

ETT is thus simply an extension of ITT (we write ⊢x for

the associated typing judgment) with the reflection rule on

equality, which axiomatises that propositionally equal terms

are convertible (see Equation 1). Note that, as already men-

tioned, in the presence of reflection and J, UIP is derivable

so we could remove it from ETT, but keeping it allows us

to share a common syntax which makes the statements of

theorems simpler and does not affect the development.

2.3 General Properties of ITT and ETT
We now state the main properties of both ITT and ETT. We

do not detail their proof as they are standard and can be

found in the Coq formalisation.

First, although not explicit in the typing system, weaken-

ing is admissible in ETT and ITT.

Lemma 2.1 (Weakening). If Γ ⊢ J and ∆ extends Γ (possibly
interleaving variables) then ∆ ⊢ J .

Then, as mentioned above, the use of a non-cumulative

hierarchy allows us to prove that a term t can be given at

most one type in a context Γ, up-to conversion.

Lemma 2.2 (Uniqueness of typing). If Γ ⊢ u : T1 and Γ ⊢ u :

T2 then Γ ⊢ T1 ≡ T2.

Finally, an important property of the typing system (seen

as a mutual inductive definition) is the possibility to deduce

hypotheses from their conclusion, thanks to inversion of

typing. Note that it is important here that our syntax is

annotated for applications and projections as it provides a

richer inversion principle.

Lemma 2.3 (Inversion of typing).
1. If Γ ⊢ x : T then (x : A) ∈ Γ and Γ ⊢ A ≡ T .
2. If Γ ⊢ □i : T then Γ ⊢ □i+1 ≡ T .
3. If Γ ⊢ Π(x : A). B : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′

and Γ ⊢ s ′′ ≡ T for some (s, s ′, s ′′).
4. If Γ ⊢ λ(x : A).B.t : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′

and Γ,x : A ⊢ t : B and Γ ⊢ Π(x : A). B ≡ T .
5. If Γ ⊢ u @x :A.B v : T then Γ ⊢ A : s and Γ,x : A ⊢

B : s ′ and Γ ⊢ u : Π(x : A). B and Γ ⊢ v : A and
Γ ⊢ B[x←u] ≡ T .

6. . . . Analogous for the remaining term and type construc-
tors.

Proof. Each case is proven by induction on the derivation

(which corresponds to any number of applications of the

conversion rule following one introduction rule). □

3 Relating Translated Expressions
Wewant to define a relation on terms that equates two terms

that are the same up to transport. This begs the question of

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Well-formedness of contexts.

⊢ •

⊢ Γ Γ ⊢ A

⊢ Γ,x : A
(x < Γ)

Types.

⊢ Γ

Γ ⊢ s : s ′
(s, s ′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Π(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Σ(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ ⊢ u : A Γ ⊢ v : A

Γ ⊢ u =A v : s

Structural rules.
⊢ Γ (x : A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ u : A Γ ⊢ A ≡ B : s

Γ ⊢ u : B

λ-calculus terms.
Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B

Γ ⊢ λ(x : A).B.t : Π(x : A). B

Γ ⊢ A : s
Γ,x : A ⊢ B : s ′ Γ ⊢ t : Π(x : A). B Γ ⊢ u : A

Γ ⊢ t @x :A.B u : B[x←u]

Γ ⊢ u : A
Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ ⟨u;v⟩x :A.B : Σ(x : A). B

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
1

p : A

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
2

p : B[x←πx :A.B
1

p]

Equality terms.

Γ ⊢ A : s Γ ⊢ u : A

Γ ⊢ reflA u : u =A u

Γ ⊢ e1, e2 : u =A v

Γ ⊢ uip(A,u,v, e1, e2) : e1 = e2

Γ ⊢ A : s Γ ⊢ u,v : A Γ,x : A, e : u =A x ⊢ P : s ′

Γ ⊢ p : u =A v Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]

Γ ⊢ f ,д : Π(x : A). B
Γ ⊢ e : Π(x : A). f @x :A.B x =B д@x :A.B x

Γ ⊢ funext(x : A,B, f ,д, e) : f = д

Figure 3. Typing rules

what notion of transport is going to be used. Transport can

be defined from elimination of equality as follows:

Definition 3.1 (Transport). Given Γ ⊢ p : T1 =s T2 and
Γ ⊢ t : T1 we define the transport of t along p, written p∗ t , as
J(s,T1,X .e . T1 → X , λ(x : T1).T1.x ,T2,p) @T1 .T2 t such that

Γ ⊢ p∗ t : T2.

However, in order not to confuse the transports added by

the translation with the transports that were already present

in the source, we consider p∗ as part of the syntax in the

reasoning. It will be unfolded to its definition only after the

complete translation is performed. This idea is not novel as

Hofmann already had a Subst operator that was part of his
ITT (noted TTI in his paper [Hofmann 1995]).

We first define the (purely syntactic) relation ⊏ between

ETT terms and ITT terms in Figure 5 stating that the ITT

term is simply a decoration of the first term by transports. Its

purpose is to state how close to the original term its transla-

tion is. Then, we extend this relation to a similarity relation∼

on ETT terms by taking its symmetric and transitive closure:

∼B (⊏ ∪ ⊏−1)+

Lemma 3.2 (∼ is an equivalence relation). ∼ is reflexive,
symmetric and transitive.

Proof. For reflexivity we proceed by induction on the term.

□

The goal is to prove that two terms in this relation, that

are well-typed in the target type theory, are heterogeneously

equal. As for this notion, we recall the definition we previ-

ously gave: t T �U u := Σ(p : T = U).p∗ t = u. This defini-
tion of heterogeneous equality can be shown to be reflexive,

symmetric and transitive. Because of UIP, heterogeneous

equality collapses to equality when taken on the same type.

Lemma 3.3. If Γ ⊢ e : u A�A v then there exists p such that
Γ ⊢ p : u =A v .

Proof. This holds thanks to UIP on equality, which implies K,

and so the proof of A = A can be taken to be reflexivity. □

Note. In particular, � on types corresponds to equality. This is
not as trivial as it sounds, one might be concerned about what
happens if we have Γ ⊢ e : A s�s ′ B with two distinct sorts
s and s ′. We would thus have s = s ′, however, for this to be
well-typed, we need to give a common type to s and s ′, which
can only be achieved if s and s ′ are actually the same sort.

Before we can prove the fundamental lemma stating that

two terms in relation are heterogeneously equal, we need

to consider another construction. As explained in the intro-

duction, when proving the property by induction on terms,

we introduce variables in the context that are equal only

up-to heterogeneous equality. This phenomenon is similar

to what happens in the parametricity translation [Bernardy

et al. 2012]. Our fundamental lemma on the decoration re-

lation ∼ assumes two related terms of potentially different

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Computation.

Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ (λ(x : A).B.t) @x :A.B u ≡ t[x←u] : B[x←u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A, e : u =A x ⊢ P : s ′ Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,u, reflA u) ≡ w : P[x←u, e← reflA u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
1

⟨u;v⟩x :A.B ≡ u : A

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
2

⟨u;v⟩x :A.B ≡ v : B[x←u]

Conversion.
Γ ⊢ t1 ≡ t2 : T1 Γ ⊢ T1 ≡ T2

Γ ⊢ t1 ≡ t2 : T2

Figure 4. Main conversion rules (omitting congruence rules)

types T1 and T2 to produce an heterogeneous equality be-

tween them. For induction to go through under binders (e.g.

for dependent products and abstractions), we hence need to

consider the two terms under different, but heterogeneously

equal contexts. Therefore, the context we produce will not

only be a telescope of variables, but rather a telescope of

triples consisting of two variables of possibly different types,

and a witness that they are heterogeneously equal. To make

this precise, we define the following macro:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x � y

together with its projections

Proj
1
p := π .

1
p Proj

2
p := π .

1
π .
2
p Proje p := π .

2
π .
2
p.

We can then extend this notion canonically to contexts of

the same length that are well formed using the same sorts:

Pack (Γ1,x : A1) (Γ2,x : A2) :=
(Pack Γ1 Γ2),x : Pack (A1[γ1]) (A2[γ2])

Pack • • := •.

When we pack contexts, we also need to apply the correct

projections for the types in that context to still make sense.

Assuming two contexts Γ1 and Γ2 of the same length, we can

define left and right substitutions:

γ1 := [x ← Proj
1
x | (x : _) ∈ Γ1]

γ2 := [x ← Proj
2
x | (x : _) ∈ Γ2].

These substitutions implement lifting of terms to packed

contexts: Γ,Pack Γ1 Γ2 ⊢ t[γ1] : A[γ1] whenever Γ, Γ1 ⊢ t : A
(resp. Γ,Pack Γ1 Γ2 ⊢ t[γ2] : A[γ2] whenever Γ, Γ2 ⊢ t : A).

For readability, when Γ1 and Γ2 are understood we will

write Γp for Pack Γ1 Γ2.

Implicitly, whenever we use the notation Pack Γ1 Γ2 it

means that the two contexts are of the same length and

well-formed with the same sorts. We can now state the fun-

damental lemma.

Lemma 3.4 (Fundamental lemma). Let t1 and t2 be two terms.
If Γ, Γ1 ⊢ t1 : T1 and Γ, Γ2 ⊢ t2 : T2 and t1 ∼ t2 then there exists
p such that Γ,Pack Γ1 Γ2 ⊢ p : t1[γ1] T1[γ1]�T2[γ2] t2[γ2].

Proof. The proof is by induction on the derivation of t1 ∼ t2.
We show the three most interesting cases:

• Var

x ∼ x

If x belongs to Γ, we apply reflexivity—together with

uniqueness of typing (2.2)—to conclude. Otherwise,

Proje x has the expected type (since x[γ1] ≡ Proj
1
x

and x[γ2] ≡ Proj
2
x).

• Application

t1 ∼ t2 A1 ∼ A2 B1 ∼ B2 u1 ∼ u2

t1 @x :A1 .B1
u1 ∼ t2 @x :A2 .B2

u2

Wehave Γ, Γ1 ⊢ t1@x :A1 .B1
u1 : T1 and Γ, Γ2 ⊢ t2@x :A2 .B2

u2 : T2 which means by inversion (2.3) that the sub-

terms are well-typed. We apply the induction hypoth-

esis and then conclude.

• TransportLeft

t1 ∼ t2

p∗ t1 ∼ t2

We have Γ, Γ1 ⊢ p∗ t1 : T1 and Γ, Γ2 ⊢ t2 : T2. By inver-

sion (2.3) we have Γ, Γ1 ⊢ p : T ′
1
= T1 and Γ, Γ1 ⊢ t1 : T

′
1
.

By induction hypothesis we have e such that Γ, Γp ⊢ e :

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

t1 ⊏ t2

t1 ⊏ p∗ t2

x ⊏ x

A1 ⊏ A2 B1 ⊏ B2

Π(x : A1). B1 ⊏ Π(x : A2). B2

A1 ⊏ A2 B1 ⊏ B2

Σ(x : A1). B1 ⊏ Σ(x : A2). B2

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2

u1 =A1
v1 ⊏ u2 =A2

v2 s ⊏ s

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2

λ(x : A1).B1.t1 ⊏ λ(x : A2).B2.t2

t1 ⊏ t2 A1 ⊏ A2 B1 ⊏ B2 u1 ⊏ u2

t1 @x :A1 .B1
u1 ⊏ t2 @x :A2 .B2

u2

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2 u1 ⊏ u2

⟨t1;u1⟩x :A1 .B1
⊏ ⟨t2;u2⟩x :A2 .B2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

1
p1 ⊏ πx :A2 .B1

1
p2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

2
p1 ⊏ πx :A2 .B2

2
p2

A1 ⊏ A2 u1 ⊏ u2

reflA1
u1 ⊏ reflA2

u2

A1 ⊏ A2 B1 ⊏ B2 f1 ⊏ f2 д1 ⊏ д2 e1 ⊏ e2

funext(x : A1,B1, f1,д1, e1) ⊏ funext(x : A2,B2, f2,д2, e2)

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2 p1 ⊏ p2 q1 ⊏ q2

uip(A1,u1,v1,p1,q1) ⊏ uip(A2,u2,v2,p2,q2)

A1 ⊏ A2

u1 ⊏ u2 P1 ⊏ P2 w1 ⊏ w2 v1 ⊏ v2 p1 ⊏ p2

J(A1,u1,x .e .P1,w1,v1,p1) ⊏ J(A2,u2,x .e .P2,w2,v2,p2)

Figure 5. Relation ⊏

t1[γ1] � t2[γ2]. From transitivity and symmetry we

only need to provide a proof of t1[γ1] � p[γ1]∗ t1[γ1]
which is inhabited by ⟨p[γ1]; refl (p[γ1]∗ t1[γ1])⟩_._.

The complete proof can be found in Appendix B. □

We can also prove that ∼ preserves substitution.

Lemma 3.5. If t1 ∼ t2 and u1 ∼ u2 then t1[x←u1] ∼
t2[x←u2].

Proof. We proceed by induction on the derivation of t1 ∼
t2. □

4 Translating ETT to ITT
4.1 The Translation
We now define the translations (let us stress the plural here)

of an extensional judgment. We extend ⊏ canonically to

contexts (Γ ⊏ Γ when they bind the same variables and the

types are in relation for ⊏).
Before defining the translation, we define a set JΓ ⊢x t : AK

of typing judgments in ITT associated to a typing judgment

Γ ⊢x t : A in ETT. The idea is that this set describes all

the possible translations that lead to the expected property.

When Γ ⊢ t : A ∈ JΓ ⊢x t : AK, we say that Γ ⊢ t : A realises

Γ ⊢x t : A. The translation will be given by showing that this

set is inhabited by induction on the derivation.

Definition 4.1 (Characterisation of possible translations).
• For any ⊢x Γ we define J⊢x ΓK as a set of valid judg-

ments (in ITT) such that ⊢ Γ ∈ J⊢x ΓK if and only if

Γ ⊏ Γ.
• Similarly, Γ ⊢ t : A ∈ JΓ ⊢x t : AK iff ⊢ Γ ∈ J⊢x ΓK and
A ⊏ A and t ⊏ t .

In order to better master the shape of the produced realiser,

we state the following lemma which shows that it has the

same head type constructor as the type it realises. This is

important for instance for the case of an application, where

we do not know a priori if the translated function has a

dependent product type, which is required to be able to use

the typing rule for application.

Lemma 4.2. We can always choose types T that have the
same head constructor as T .

Proof. Assume we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K. By definition
of ⊏, T ⊏ T means that T is shaped p∗ q∗ ... r∗ T

′
with T

′

having the same head constructor asT . By inversion (2.3), the

subterms are typable, including T
′
. Actually, from inversion,

we even get that the type of T
′
is a universe. Then, using

lemma 3.4 and lemma 3.3, we get Γ ⊢ e : T = T
′
. We conclude

with Γ ⊢ e∗ t : T
′
∈ JΓ ⊢x t : T K. □

Finally, in order for the induction to go through, we need to

know that when we have a realiser of a derivation Γ ⊢x t : T ,
we can pick an arbitrary other type realising Γ ⊢x T and

still get a new derivation realising Γ ⊢x t : T with that type.

This is important for instance for the case of an application,

where the type of the domain of the translated function may

differ from the type of the translated argument. So we need

to be able to change it a posteriori.

Lemma 4.3. When we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K and
Γ ⊢ T

′
∈ JΓ ⊢x T K then we also have Γ ⊢ t ′ : T

′
∈ JΓ ⊢x t : T K

for some t ′.
7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Proof. By definition we have T ⊏ T and T ⊏ T
′
and thus

T ∼ T and T ∼ T
′
, implying T ∼ T

′
by transitivity (3.2). By

lemma 3.4 (in the case Γ1 ≡ Γ2 ≡ •) we get Γ ⊢ p : T � T
′
for

some p. By lemma 3.3 (and lemma 4.2 to give universes as

types to T and T
′
) we can assume Γ ⊢ p : T = T

′
. Then Γ ⊢

p∗ t : T
′
is still a translation since ⊏ ignores transports. □

We can now define the translation. This is done by mutual

induction on context well-formedness, typing and conver-

sion derivations. Indeed, in order to be able to produce a

realiser by induction, we need to show that every conver-

sion in ETT is translated as an heterogeneous equality in

ITT.

Theorem 4.4 (Translation).
• If ⊢x Γ then there exists ⊢ Γ ∈ J⊢x ΓK,
• If Γ ⊢x t : T then for any ⊢ Γ ∈ J⊢x ΓK there exist t and
T such that Γ ⊢ t : T ∈ JΓ ⊢x t : T K,
• If Γ ⊢x u ≡ v : A then for any ⊢ Γ ∈ J⊢x ΓK there
exist A ⊏ A,A ⊏ A

′
,u ⊏ u,v ⊏ v and e such that

Γ ⊢ e : u A�A′ v .

Proof. We prove the theorem by induction on the derivation

in the extensional type theory. We only show the two most

interesting cases of application and conversion. The complete

proof is given in Appendix C.

• Application

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x t : Π(x : A). B Γ ⊢x u : A

Γ ⊢x t @x :A.B u : B[x←u]

Using IH together with lemmata 4.2 and 4.3 we get

Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ ⊢ t : Π(x : A). B
and Γ ⊢ u : Ameaning we can conclude Γ ⊢ t@x :A.Bu :

B[x←u] ∈ JΓ ⊢x t @x :A.B u : B[x←u]K.
• Conversion

Γ ⊢x u : A Γ ⊢x A ≡ B

Γ ⊢x u : B

By IH and lemma 3.3 we have Γ ⊢ e : A = B which

implies Γ ⊢ A ∈ JΓ ⊢x AK by inversion (2.3), thus,

from lemma 4.3 and IH we get Γ ⊢ u : A, yielding

Γ ⊢ e∗ u : B ∈ JΓ ⊢x u : BK.
□

4.2 Meta-theoretical Consequences
We can check that all ETT theorems whose type are typable

in ITT have proofs in ITT as well:

Corollary 4.5 (Preservation of ITT). If ⊢x t : T and ⊢ T then
there exist t such that ⊢ t : T ∈ J⊢x t : T K.

Proof. Since ⊢ • ∈ J⊢x •K, by Theorem (4.4), there exists t

and T such that ⊢ t : T ∈ J⊢x t : T K But as ⊢ T , we have

⊢ T ∈ J⊢x T K, and, using Lemma 4.3, we obtain ⊢ t : T ∈ J⊢x
t : T K. □

Corollary 4.6 (Relative consistency). Assuming ITT is con-
sistent, there is no term t such that ⊢x t : Π(A : □0). A.

Proof. Assume such a t exists. By the Corollary 4.5, because

⊢ Π(A : □0). A, there exists t such that ⊢ t : Π(A : □0). A
which contradicts the assumed consistency of ITT. □

4.3 Optimisations
Up until now, we remained silent about one thing: the size

of the translated terms. Indeed, the translated term is a deco-

ration of the initial one by transports which appear in many

locations. For example, at each application we use a transport

by lemma 4.2 to ensure that the term in function position

is given a function type. In most cases—in particular when

translating ITT terms—this produces unnecessary transports

(often by reflexivity) that we wish to avoid.

In order to limit the size explosion, in the above we use a

different version of transport, namely transport′ such that

transport′A1,A2

(p, t) = t when A1 =α A2

= p∗t otherwise.

The idea is that we avoid trivially unnecessary transports (we
do not deal with β-conversion for instance). We extend this

technique to the different constructors of equality (symmetry,

transitivity, . . .) so that they reduce to reflexivity whenever

possible. Take transitivity for instance:

transitivity′(refl u,q) = q

transitivity′(p, refl u) = p

transitivity′(p,q) = transitivity(p,q).

We show these defined terms enjoy the same typing rules

as their counterparts and use them instead. In practice it is

enough to recover the exact same term when it is typed in

ITT.

5 Formalisation with Template-Coq
We have formalised the translation in the setting of Tem-
plateCoq [Anand et al. 2018] in order to have a more precise

proof, but also to evidence the fact that the translation is in-

deed constructive and can be used to perform computations.

TemplateCoq is a Coq library that has a representation of

Coq terms as they are in Coq’s kernel (in particular using de

Bruijn indices for variables) and a (partial) implementation

of the type checking algorithm (not checking guardedness

of fixpoints or positivity of inductive types). It comes with

a Coq plugin that permits to quote Coq terms into their

representations, and to produce Coq terms from their rep-

resentation (if they indeed denote well-typed terms). We

have integrated our formalisation within that framework in

order to ensure our presentations of ETT and ITT are close

to Coq, but also to take advantage of the quoting mechanism

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

to produce terms using the interactive mode (in particular

we get to use tactics). Note that we also rely on Mangin

and Sozeau’s Equations [Sozeau 2010] plugin to derive nice

dependent induction principles.

Our formalisation takes full advantage of its easy interfac-

ing with TemplateCoq: we define two theories, namely ETT

and ITT, but ITT enjoys a lot of syntactic sugar by having

things such as transport, heterogeneous equality and pack-

ing as part of the syntax. The operations regarding these

constructors—in particular the tedious ones—are written in

Coq and then quoted to finally be realised in the translation

from ITT to TemplateCoq.

Interoperability with TemplateCoq. The translation we

define from ITT to TemplateCoq is not proven correct, but

it is not really important as it can just be seen as a feature to

observe the produced terms in a nicer setting. In any case,

TemplateCoq does not yet provide a complete formalisa-

tion of CIC rules, as guard checking of recursive definitions

and strict positivity of inductive type declarations are not

formalised yet.

We also provide a translation from TemplateCoq to ETT

thatwewill describemore extensivelywith the examples (5.4).

5.1 Quick Overview of the Formalisation
The file SAst.v contains the definition of the (common) ab-

stract syntax of ETT and ITT in the form of an inductive

definition with de Bruijn indices for variables (like in Tem-
plateCoq). Sorts are defined separately in Sorts.v and we will

address them later in Section 5.3.

Inductive sterm : Type :=
| sRel (n : nat)
| sSort (s : sort)
| sProd (nx : name) (A B : sterm)
| sLambda (nx : name) (A B t : sterm)
| sApp (u : sterm) (nx : name) (A B v : sterm)
| sEq (A u v : sterm)
| sRefl (A u : sterm)
| (* ... *) .

The files ITyping.v and XTyping.v define respectively the

typing judgments for ITT and ETT, using mutual inductive

types. Then, most of the files are focused on the meta-theory

of ITT and can be ignored by readers who don’t need to see

yet another proof of subject reduction.

The most interesting files are obviously those where the

fundamental lemma and the translation are formalised: Fun-

damentalLemma.v and Translation.v. For instance, here is

the main theorem, as stated in our formalisation:

Theorem complete_translation Σ :
type_glob Σ ->
(forall Γ (h : XTyping.wf Σ Γ),

∑
Γ', Σ |--i Γ' # J Γ K) *

(forall Γ t A (h : Σ ;;; Γ |-x t : A)
Γ' (hΓ : Σ |--i Γ' # J Γ K),∑

A' t', Σ ;;;; Γ' |--- [t'] : A' # J Γ |--- [t] : A K) *
(forall Γ u v A (h : Σ ;;; Γ |-x u = v : A)
Γ' (hΓ : Σ |--i Γ' # J Γ K),∑

A' A'' u' v' p', eqtrans Σ Γ A u v Γ' A' A'' u' v' p').

Herein type_glob Σ refers to the fact that some global con-

text is well-typed, its purpose is detailed in Section 5.2. The

fact that the theorem holds in Coq ensures we can actually

compute a translated term and type out of a derivation in

ETT.

5.2 Inductive Types and Recursion
In the proof of Section 4, we didn’t mention anything about

inductive types, pattern-matching or recursion as it is a bit

technical on paper. In the formalisation, we offer a way to

still be able to use them, and we will even show how it works

in practice with the examples (5.4).

The main guiding principle is that inductive types and in-

duction are orthogonal to the translation, they should more

or less be translated to themselves. To realise that easily,

we just treat an inductive definition as a way to introduce

new constants in the theory, one for the type, one for each

constructor, one for its elimination principle, and one equal-

ity per computation rule. For instance, the natural numbers

can be represented by having the following constants in the

context:

nat : □0

0 : nat
S : nat→ nat
natrec : ∀P , P 0→ (∀m, P m → P (Sm)) → ∀n, P n
natrec0 : ∀P Pz Ps , natrec P Pz Ps 0 = Pz
natrecS : ∀P Pz Ps n,

natrec P Pz Ps (S n) = Ps n (natrec P Pz Ps n)

Here we rely on the reflection rule to obtain the computa-

tional behavior of the eliminator natrec.
This means for instance that we do not consider inductive

types that would only make sense in ETT, but we deem this

not to be a restriction and to the best of our knowledge isn’t

something that is usually considered in the literature. With

that in mind, our translation features a global context of

typed constants with the restriction that the types of those

constants should be well-formed in ITT. Those constants are

thus used as black boxes inside ETT.

With this we are able to recover what we were missing

from Coq, without having to deal with the trouble of proving
that the translation doesn’t break the guard condition of fixed

points, and we are instead relying on a more type-based

approach.

5.3 About Universes and Homotopy
The experienced reader might have noticed that our treat-

ment of universes (except perhaps for the absence of cumu-

lativity) was really superficial and the notion of sorts used

is rather orthogonal to our main development. This is even

more apparent in the formalisation. Indeed, we didn’t fix a

specific universe hierarchy, but instead specify what proper-

ties it should have, in what is reminiscent to a (functional
3
)

PTS formulation.

3
Meaning the sort of a sort, and the sort of a product are functions, necessary

to the uniqueness of types (2.2).

9

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/SAst.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Sorts.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/ITyping.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/XTyping.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/FundamentalLemma.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/FundamentalLemma.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Translation.v

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Class Sorts.notion := {
sort : Type ;
succ : sort -> sort ;
prod_sort : sort -> sort -> sort ;
sum_sort : sort -> sort -> sort ;
eq_sort : sort -> sort ;
eq_dec : forall s z : sort, {s = z} + {s <> z} ;
succ_inj : forall s z, succ s = succ z -> s = z

}.

From the notion of sorts, we require functions to get the sort

of a sort, the sort of a product from the sorts of its arguments,

and (crucially) the sort of an identity type. We also require

some measure of decidable equality and injectivity on those.

This allows us to instantiate this by a lot of different no-

tions including the one presented earlier in the paper or

even its extension with a universe Prop of propositions (like

CIC [Bertot and Castéran 2004]). We present here two in-

stances that have their own interest.

Type in Type. One of the instances we provide is one with
only one universe Type, with the inconsistent typing rule

Type : Type. Although inconsistent, this allows us to inter-

face with TemplateCoq, without the—for the time being—

very time-consuming universe constraint checking.

Homotopy Type System and Two-Level Type Theory. An-
other interesting application (or rather instance) of our for-

malisation is a translation from Homotopy Type System

(HTS) [Voevodsky 2013] to Two-Level Type Theory (2TT) [Al-

tenkirch et al. 2016; Annenkov et al. 2017].

HTS and 2TT arise from the incompatibility between UIP—

recall it is provable in ETT—and univalence. The idea is

to have two distinct notions of equality in the theory, a

strict one satisfying UIP, and a fibrant one corresponding
to the homotopy type theory equality, possibly satisfying

univalence. This actually induces a separation in the types

of the theory: some of them are called fibrant and the fibrant
or homotopic equality can only be eliminated on those. HTS

can be seen as an extension of 2TT with reflection on the

strict equality just like ETT is an extension of ITT.

We can recover HTS and 2TT in our setting by taking

Fi and Ui as respectively the fibrant and strict universes

of those theories (for i ∈ N), along with the following PTS

rules:

(Fi , Fi+1) ∈ Ax (Ui ,Ui+1) ∈ Ax
(Fi , Fj , Fmax(i, j)) ∈ R (Fi ,Uj ,Umax(i, j)) ∈ R
(Ui , Fj ,Umax(i, j)) ∈ R (Ui ,Uj ,Umax(i, j)) ∈ R

and the fact that the sort of the (strict) identity type on A : s
is the strictified version of s , i.e., Ui for s = Ui or s = Fi . In
order to have the fibrant equality, one simply needs to do as

in Section 5.2.

In short, the translation from HTS to 2TT is basically the

same as the one from ETT to ITT we presented in this paper,

and this fact is factorised through our formalisation.

5.4 ETT-flavoured Coq: Examples
In this section we demonstrate how our translation can bring

extensionality to the world of Coq in action. The examples

can be found in plugin_demo.v.

First, a pedestrian approach. We would like to begin by

showing how one can write an example step by step before

we show how it can be used in practice. For this we use a self-

contained example without any inductive types or recursion,

illustrating a very simple case of reflection. The term we

want to translate is the following:

λ A B e x . x : Π A B. A = B → A→ B

This is, in some sense the identity, relying on the equality

e : A = B to convert x : A to x : B. Of course, this definition
isn’t accepted in Coq because the conversion doesn’t hold

in ITT.

Fail Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := x.

However, we still want to be able to write it in some way, in
order to avoid manipulating de Bruijn indices directly. For

this, we use a little trick by first defining a Coq axiom to

represent an ill-typed term:

Axiom candidate : forall A B (t : A), B.

candidate A B t is a candidate t of type A to inhabit type

B. We complete this by adding a notation that is reminiscent

to Agda’s [Norell 2007] hole mechanism.

Notation "'{!' t '!}'" := (candidate _ _ t).

We can now write the ETT function within Coq.
Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := {! x !}.

We can then quote the term and its type to TemplateCoq
thanks to the Quote Definition command provided by the

plugin.

Quote Definition pseudoid_term :=
ltac:(let t := eval compute in pseudoid in exact t).

Quote Definition pseudoid_type :=
ltac:(let T := type of pseudoid in exact T).

The terms that we get are now TemplateCoq terms, repre-

senting Coq syntax. We need to put them in ETT, meaning

adding the annotations, and also removing the candidate
axiom. This is the purpose of the fullquote function that

we provide in our formalisation.

Definition pretm_pseudoid :=
Eval lazy in fullquote (2^18) Σ [] pseudoid_term empty empty nomap.

Definition tm_pseudoid :=
Eval lazy in match pretm_pseudoid with

| Success t => t
| Error _ => sRel 0
end.

Definition prety_pseudoid :=
Eval lazy in fullquote (2^18) Σ [] pseudoid_type empty empty nomap.

Definition ty_pseudoid :=
Eval lazy in match prety_pseudoid with

| Success t => t
| Error _ => sRel 0
end.

tm_pseudoid and ty_pseudoid correspond respectively to

the ETT representation of pseudoid and its type. We then

produce, using our home-brewed Ltac type-checking tactic,

10

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/plugin_demo.v

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

the corresponding ETT typing derivation (notice the use of

reflection to typecheck).

Lemma type_pseudoid : Σi ;;; [] |-x tm_pseudoid : ty_pseudoid.
Proof.

unfold tm_pseudoid, ty_pseudoid.
ettcheck. cbn.
eapply reflection with (e := sRel 1).
ettcheck.

Defined.

We can then translate this derivation, obtain the translated

term and then convert it to TemplateCoq.
Definition itt_pseudoid : sterm :=

Eval lazy in
let '(_ ; t ; _) :=
type_translation type_pseudoid istrans_nil

in t.

Definition tc_pseudoid : tsl_result term :=
Eval lazy in
tsl_rec (2 ^ 18) Σ [] itt_pseudoid empty.

Once we have it, we unquote the term to obtain a Coq term

(notice that the only use of reflection has been replaced by a

transport).

fun (A B : Type) (e : A = B) (x : A) => transport e x
: forall A B : Type, A = B -> A -> B

Making a Plugin with TemplateCoq. All of this work

is pretty systematic. Fortunately for us, TemplateCoq also

features a monad to reify Coq commands which we can use

to program the translation steps. As such we have written a

complete procedure, relying on Coq type checkers we wrote

for ITT and ETT, which can generate equality obligations.

Thanks to this, the user doesn’t have to know about the

details of implementation of the translation, and stay within

the Coq ecosystem.

For instance, our previous example now becomes:

Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := {! x !}.

Run TemplateProgram (Translate ε "pseudoid").

This produces a Coq term pseudoid' corresponding to the

translation. Notice how the user doesn’t even have to pro-

vide any proof of equality or derivations of any sort. The

derivation part is handled by our own typechecker while the

obligation part is solved automatically by the Coq obligation

mechanism.

About inductive types. As we promised, our translation is

able to handle inductive types. For this consider the inductive

type of vectors (or length-indexed lists) below, together with

a simple definition (we will remain in ITT for simplicity).

Inductive vec A : nat -> Type :=
| vnil : vec A 0
| vcons : A -> forall n, vec A n -> vec A (S n).

Arguments vnil {_}.
Arguments vcons {_} _ _ _.

Definition vv := vcons 1 _ vnil.

This time, in order to apply the translation we need to extend

the translation context with nat and vec.
Run TemplateProgram (
Θ <- TranslateConstant ε "nat" ;;
Θ <- TranslateConstant Θ "vec" ;;

Translate Θ "vv"
).

Here, ε is the empty translation context and the command

TranslateConstant enriches it with the types the induc-

tives and of their constructors. The translation context then

also contains associative tables between our own represen-

tation of constants and those of Coq. Unsurprisingly, the
translated Coq term is the same as the original term.

Reversal of vectors. Next, we tackle a motivating example:

reversal on vectors. Indeed, if you want to implement this

operation, the same way you would do it on lists, you end

up having a conversion problem:

Fail Definition vrev {A n m} (v : vec A n) (acc : vec A m)
: vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc)
(fun a n _ rv m acc => rv _ (vcons a m acc))
n v m acc.

The recursive call returns a vector of length n + S m where

the context expects one of length S n + m. In ITT these

types are not convertible. This example is thus a perfect fit

for ETT where we can use the fact that these two expressions

always compute to the same thing when instantiated with

concrete numbers.

Definition vrev {A n m} (v : vec A n) (acc : vec A m)
: vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc)
(fun a n _ rv m acc => {! rv _ (vcons a m acc) !})
n v m acc.

Run TemplateProgram (
Θ <- TranslateConstant ε "nat" ;;
Θ <- TranslateConstant Θ "vec" ;;
Θ <- TranslateConstant Θ "Nat.add" ;;
Θ <- TranslateConstant Θ "vec_rect" ;;
Translate Θ "vrev"

).

This generates four obligations that are all solved automati-

cally. One of them contains a proof of S n + m = n + S m
while the remaining three correspond to the computation

rules of addition (as mentionned before, add is simply a con-

stant and does not compute in our representation, hence the

need for equalities). The returned term is the following, with

only one transport remaining (remember our interpretation

map removes unnecessary transports).

fun (A : Type) (n m : nat) (v : vec A n) (acc : vec A m) =>
vec_rect A
(fun n _ => forall m, vec A m -> vec A (n + m))
(fun m acc => acc)
(fun a n0 v0 rv m0 acc0 =>
transport (vrev_obligation_3 A n m v acc a n0 v0 rv m0 acc0)

(rv (S m0) (vcons a m0 acc0))) n v m acc
: forall A n m, vec A n -> vec A m -> vec A (n + m)

5.5 Towards an Interfacing between Andromeda
and Coq

Andromeda [Bauer et al. 2016] is a proof assistant implement-

ing ETT in a sense that is really close to our formalisation.

Aside from a concise nucleus with a basic type theory, most

things happen with the declaration of constants with given

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

types, including equalities to define the computational be-

haviour of eliminators for instance. This is essentially what

we do in our formalisation. Furthermore, their theory relies

on Type : Type, meaning, our modular handling of universes

can accommodate for this as well.

All in all, it should be possible in the near future to use our

translation to produce Coq terms out of Andromeda devel-
opments. Note that this would not suffer from the difficulties

in generating typing derivations since Andromeda does it
for you.

5.6 Composition with other Translations
This translation also enables the formalisation of translations

that target ETT rather than ITT and still get mechanised

proofs of (relative) consistency by composition with this ETT

to ITT translation. This could also be used to implement plu-

gins based on the composition of translations. In particular,

supposing we have a theory which forms a subset of ETT

and whose conversion is decidable. Using this translation,

we could formalise it as an embedded domain-specific type

theory and provide an automatic translation of well-typed

terms into witnesses in Coq. This would make it possible to

extend conversion with the theory of lists for example.

This would provide a simple way to justify the consistency

of CoqMT [Jouannaud and Strub 2017] for example, seeing

it as an extensional type theory where reflection is restricted

to equalities on a specific domain whose theory is decidable.

6 Limitations and Axioms
Currently, the representation of terms and derivations and

the computational content of the proof only allow us to deal

with the translation of relatively small terms but we hope

to improve that in the future. As we have seen, the actual

translation involves the computational content of lemmata of

inversion, substitution, weakening and equational reasoning

and thus cannot be presented as a simple recursive definition

on derivations.

As we already mentioned, the axioms K and functional

extensionality are both necessary in ITT if we want the trans-

lation to be conservative as they are provable in ETT [Hof-

mann 1995]. However, one might still be concerned about

having axioms as they can for instance hinder canonicity of

the system. In that respect, K isn’t really a restriction since

it preserves canonicity. The best proof of that is probably

Agda itself which natively features K—in fact, one needs

to explicitly deactivate it with a flag if they wish to work

without.

The case of functional extensionality is trickier. It is still

possible to realise the axiom by composing our translation

with a setoid interpretation [Altenkirch 1999] which vali-

dates it, or by going into a system featuring it, for instance

by implementing Observational Type Theory [Altenkirch

et al. 2007] like EPIGRAM [McBride 2004].

7 Related Works and Conclusion
The seminal works on the precise connection between ETT

and ITT go back to Streicher [1993] and Hofmann [1995,

1997]. In particular, the work of Hofmann provides a categor-

ical answer to the question of consistency and conservativity

of ETT over ITT with UIP and functional extensionality. Ten

years later, Oury [2005, 2006] provided a translation from

ETT to ITT with UIP and functional extensionality and other

axioms (mainly due to technical difficulties). Although a first

step towards amove from categorical semantics to a syntactic

translation, his work does not stress any constructive aspect

of the proof and shows that there merely exist translations

in ITT to a typed term in ETT.

van Doorn et al. [2013] have later proposed and formalised

a similar translation between a PTS with and without ex-

plicit conversion. This does not entail anything about ETT

to ITT but we can find similarities in that there is a wit-

ness of conversion between any term and itself under an

explicit conversion, which internalises irrelevance of explicit

conversions. This morally corresponds to a Uniqueness of

Conversions principle.

The Program [Sozeau 2007] extension of Coq performs

a related coercion insertion algorithm, between objects in

subsets on the same carrier or in different instances of the

same inductive family, assuming a proof-irrelevance axiom.

Inserting coercions locally is not as general as the present

translation from ETT to ITT which can insert transports in

any context.

In this paper we provide the first effective translation from

ETT to ITT with UIP and functional extensionality. The

translation has been formalised in Coq using TemplateCoq,
a meta-programming plugin of Coq. This translation is also

effective in the sense that we can produce in the end a Coq
term using the TemplateCoq denotation machinery. With

ongoing work to extend the translation to the inductive

fragment of Coq, we are paving the way to an extensional

version of the Coq proof assistant which could be translated

back to its intensional version, allowing the user to navigate

between the two modes, and in the end produce a proof term

checkable in the intensional fragment.

References
Stuart F. Allen, Robert L. Constable, Richard Eaton, Christoph Kreitz, and

Lori Lorigo. 2000. The Nuprl Open Logical Environment. In Automated
Deduction - CADE-17, 17th International Conference on Automated De-
duction, Pittsburgh, PA, USA, June 17-20, 2000, Proceedings (Lecture Notes
in Computer Science), David A. McAllester (Ed.), Vol. 1831. Springer,

170–176. https://doi.org/10.1007/10721959_12
T. Altenkirch. 1999. Extensional equality in intensional type theory. In Pro-

ceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
412–420. https://doi.org/10.1109/LICS.1999.782636

Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending

Homotopy Type Theory with Strict Equality. CoRR abs/1604.03799 (2016).

arXiv:1604.03799 http://arxiv.org/abs/1604.03799

12

https://doi.org/10.1007/10721959_12
https://doi.org/10.1109/LICS.1999.782636
http://arxiv.org/abs/1604.03799
http://arxiv.org/abs/1604.03799

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observa-

tional equality, now!. In Proceedings of the 2007 workshop on Programming
languages meets program verification. ACM, 57–68.

Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nico-

las Tabareau. 2018. Towards Certified Meta-Programming with Typed

Template-Coq. In Interactive Theorem Proving - 9th International Con-
ference, ITP 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings (Lecture Notes in Computer
Science), Jeremy Avigad and Assia Mahboubi (Eds.), Vol. 10895. Springer,

20–39. https://doi.org/10.1007/978-3-319-94821-8_2
Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. 2017. Two-Level Type

Theory and Applications. CoRR abs/1705.03307 (2017). arXiv:1705.03307

http://arxiv.org/abs/1705.03307
Andrej Bauer, Gaëtan Gilbert, Philipp G. Haselwarter, Matija Pretnar, and

Chris Stone. 2016. The ‘Andromeda’ prover. (2016). http://www.
andromeda-prover.org/

Jean-philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for

free: Parametricity for dependent types. Journal of Functional Program-
ming 22, 2 (2012), 107–152.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and

Program Development. (2004).

Marc Bezem, Thierry Coquand, and Simon Huber. 2013. A Model of Type

Theory in Cubical Sets. (December 2013). http://www.cse.chalmers.se/
~coquand/mod1.pdf

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next

700 Syntactical Models of Type Theory. In Certified Programs and Proofs
– CPP 2017. 182–194.

The Coq development team. 2017. The Coq proof assistant reference manual.
LogiCal Project. http://coq.inria.fr Version 8.7.

Martin Hofmann. 1995. Conservativity of equality reflection over inten-

sional type theory. In International Workshop on Types for Proofs and
Programs. Springer, 153–164.

Martin Hofmann. 1997. Extensional constructs in intensional type theory.
Springer.

Martin Hofmann and Thomas Streicher. 1998. The Groupoid Interpretation

of Type Theory. In Twenty-five years of constructive type theory (Venice,
1995). Oxford Logic Guides, Vol. 36. Oxford Univ. Press, New York, 83–

111. http://www.tcs.informatik.uni-muenchen.de/lehre/SS97/types-vl/
venedig.ps

Jean-Pierre Jouannaud and Pierre-Yves Strub. 2017. Coq without Type Casts:

A Complete Proof of Coq Modulo Theory. In LPAR-21, 21st International
Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7-12, 2017 (EPiC Series in Computing), Thomas

Eiter and David Sands (Eds.), Vol. 46. EasyChair, 474–489. http://www.
easychair.org/publications/paper/340342

Chris Kapulkin and Peter LeFanu Lumsdaine. 2012. The simplicial model of

univalent foundations. arXiv preprint arXiv:1211.2851 (2012).
Conor McBride. 2000. Dependently typed functional programs and their

proofs. Ph.D. Dissertation. University of Edinburgh.

Conor McBride. 2004. Epigram: Practical programming with dependent

types. In International School on Advanced Functional Programming.
Springer, 130–170.

Ulf Norell. 2007. Towards a practical programming language based on depen-
dent type theory. Vol. 32. Citeseer.

Nicolas Oury. 2005. Extensionality in the calculus of constructions. In Inter-
national Conference on Theorem Proving in Higher Order Logics. Springer,
278–293.

Nicolas Oury. 2006. Egalité et filtrage avec types dépendants dans le calcul
des constructions inductives. Ph.D. Dissertation. http://www.theses.fr/
2006PA112136 Thèse de doctorat dirigée par Paulin-Mohring, Christine

Informatique Paris 11 2006.

Matthieu Sozeau. 2007. Program-ing Finger Trees in Coq. In ICFP’07.
ACM Press, Freiburg, Germany, 13–24. https://doi.org/10.1145/1291151.
1291156

Matthieu Sozeau. 2010. Equations: A Dependent Pattern-Matching Compiler.

In Interactive Theorem Proving, First International Conference, ITP 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings (Lecture Notes in Computer
Science), Matt Kaufmann and Lawrence C. Paulson (Eds.), Vol. 6172.

Springer, 419–434. https://doi.org/10.1007/978-3-642-14052-5_29
Thomas Streicher. 1993. Investigations into intensional type theory.
The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent

Foundations of Mathematics. Institute for Advanced Study.

Floris van Doorn, Herman Geuvers, and Freek Wiedijk. 2013. Explicit

convertibility proofs in pure type systems. In Proceedings of the Eighth
ACM SIGPLAN international workshop on Logical frameworks & meta-
languages: theory & practice. ACM, 25–36.

Vladimir Voevodsky. 2013. A simple type system with two identity types.

(2013). https://ncatlab.org/homotopytypetheory/files/HTS.pdf

13

https://doi.org/10.1007/978-3-319-94821-8_2
http://arxiv.org/abs/1705.03307
http://arxiv.org/abs/1705.03307
http://www.andromeda-prover.org/
http://www.andromeda-prover.org/
http://www.cse.chalmers.se/~coquand/mod1.pdf
http://www.cse.chalmers.se/~coquand/mod1.pdf
http://coq.inria.fr
http://www.tcs.informatik.uni-muenchen.de/lehre/SS97/types-vl/venedig.ps
http://www.tcs.informatik.uni-muenchen.de/lehre/SS97/types-vl/venedig.ps
http://www.easychair.org/publications/paper/340342
http://www.easychair.org/publications/paper/340342
http://www.theses.fr/2006PA112136
http://www.theses.fr/2006PA112136
https://doi.org/10.1145/1291151.1291156
https://doi.org/10.1145/1291151.1291156
https://doi.org/10.1007/978-3-642-14052-5_29
https://ncatlab.org/homotopytypetheory/files/HTS.pdf

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

A Complementary rules

Equivalence relation.

Γ ⊢ u : A

Γ ⊢ u ≡ u : A

Γ ⊢ u ≡ v : A

Γ ⊢ v ≡ u : A

Γ ⊢ u ≡ v : A Γ ⊢ v ≡ w : A

Γ ⊢ u ≡ w : A

Congruence of type constructors.

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′

Γ ⊢ Π(x : A1). B1 ≡ Π(x : A2). B2 : s
′′

(s, s ′, s ′′)
Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s

′

Γ ⊢ Σ(x : A1). B1 ≡ Σ(x : A2). B2 : s
′′

(s, s ′, s ′′)

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A1

Γ ⊢ u1 =A1
v1 ≡ u2 =A2

v2 : s

Congruence of λ-calculus terms.

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ,x : A1 ⊢ t1 ≡ t2 : B1

Γ ⊢ λ(x : A1).B1.t1 ≡ λ(x : A2).B2.t2 : Π(x : A1). B1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ t1 ≡ t2 : Π(x : A1). B1 Γ ⊢ u1 ≡ u2 : A1

Γ ⊢ t1 @x :A1 .B1
u1 ≡ t1 @x :A1 .B1

u1 : B1[x←u1]

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ v1 ≡ v2 : B1[x←u1]

Γ ⊢ ⟨u1;v1⟩x :A1 .B1
≡ ⟨u2;v2⟩x :A2 .B2

: Σ(x : A1). B1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ p1 ≡ p2 : Σ(x : A1). B1

Γ ⊢ πx :A1 .B1

1
p1 ≡ πx :A2 .B2

1
p2 : A1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ p1 ≡ p2 : Σ(x : A1). B1

Γ ⊢ πx :A1 .B1

2
p1 ≡ πx :A2 .B2

2
p2 : B1[x←πx :A1 .B1

1
p1]

Congruence of equality terms.

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A

Γ ⊢ reflA1
u1 ≡ reflA2

u2 : u1 =A1
u1

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A1

Γ,x : A1, e : u1 =A1
x ⊢ P1 ≡ P2 : s

′ Γ ⊢ p1 ≡ p2 : u1 =A1
v1 Γ ⊢ w1 ≡ w2 : P1[x←u1, e← reflA1

u1]

Γ ⊢ J(A1,u1,x .e .P1,w1,v1,p1) ≡ J(A2,u2,x .e .P2,w2,v2,p2) : P[x←v1, e←p1]

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′

Γ ⊢ f1 ≡ f2 : Π(x : A1). B1 Γ ⊢ д1 ≡ д2 : Π(x : A1). B1 Γ ⊢ e1 ≡ e2 : Π(x : A1). f1 @x :A1 .B1
x =B1

д1 @x :A1 .B1
x

Γ ⊢ funext(x : A1,B1, f1,д1, e1) ≡ funext(x : A2,B2, f2,д2, e2) : f1 = д1

Γ ⊢ A1 ≡ A2 Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A2 Γ ⊢ p1 ≡ p2 : u1 =A1
v1 Γ ⊢ q1 ≡ q2 : u1 =A1

v1

Γ ⊢ uip(A1,u1,v1,p1,q1) ≡ uip(A2,u2,v2,p2,q2) : p1 = q1

Figure 6. Congruence rules

14

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

B Proof of the fundamental lemma
Lemma B.1 (Fundamental lemma). Let t1 and t2 be two terms. If Γ, Γ1 ⊢ t1 : T1 and Γ, Γ2 ⊢ t2 : T2 and t1 ∼ t2 then there exists p
such that Γ,Pack Γ1 Γ2 ⊢ p : t1[γ1] T1[γ1]�T2[γ2] t2[γ2].

For readability we will abbreviate the left and right substitutions _[γ1] and _[γ2] by ↿ and ↾ respectively.

Proof. We prove it by induction on the derivation of t1 ∼ t2.

• Var

x ∼ x

If x belongs to Γ, we apply reflexivity—together with uniqueness of typing (2.2)—to conclude. Otherwise, Proje x has the

expected type (since x[γ1] ≡ Proj
1
x and x[γ2] ≡ Proj

2
x).

• TransportLeft

t1 ∼ t2

p∗ t1 ∼ t2

We have Γ, Γ1 ⊢ p∗ t1 : T1 and Γ, Γ2 ⊢ t2 : T2. By inversion (2.3) we have Γ, Γ1 ⊢ p : T ′
1
= T1 and Γ, Γ1 ⊢ t1 : T

′
1
. Then by

induction hypothesis we have e such that Γ, Γp ⊢ e : t1 ↿� t2 ↾. From transitivity and symmetry we only need to provide

a proof of t1 ↿� p ↿∗ t1 ↿ which is inhabited by ⟨p ↿; refl (p ↿∗ t1 ↿)⟩_._.
• TransportRight

t1 ∼ t2

t1 ∼ p∗ t2

Similarly.

• Product

A1 ∼ A2 B1 ∼ B2

Π(x : A1). B1 ∼ Π(x : A2). B2

We have Γ, Γ1 ⊢ Π(x : A1). B1 : T1 and Γ, Γ2 ⊢ Π(x : A2). B2 : T2 so by inversion (2.3) we have Γ, Γ1 ⊢ A1 : s1 and
Γ, Γ1,x : A1 ⊢ B1 : s

′
1
and Γ, Γ1 ⊢ s

′′
1
≡ T1 for (s1, s

′
1
, s ′′

1
) ∈ R (and similarly with 2s). By induction hypothesis we have

Γ, Γp ⊢ pA : A1 ↿� A2 ↾ and Γ, Γp,x : Pack A1 A2 ⊢ pB : B1 ↿� B2 ↾ hence the result (using UIP and functional

extensionality, refer to the formalisation and especially to the file Quotes.v for more details on how to realise this

equality).

• Eqality

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2

u1 =A1
v1 ∼ u2 =A2

v2

Wehave Γ, Γ1 ⊢ u1 =A1
v1 : T1 and Γ, Γ2 ⊢ u2 =A2

v2 : T2 so, by inversion (2.3), we have Γ, Γ1 ⊢ A1 : s1 and Γ, Γ1 ⊢ u1 : A1 and

Γ, Γ1 ⊢ v1 : A1 as well as Γ, Γ1 ⊢ s1 ≡ T1 (and the same with 2s). By induction hypothesis we thus have Γ, Γp ⊢ pA : A1 � A2

and Γ, Γp ⊢ pu : u1 � u2 and Γ, Γp ⊢ pv : v1 � v2. We can thus conclude.

• Reflexivity

s ∼ s

This one holds by reflexivity and uniqueness of typing (2.2) (indeed, s ↿≡ s and s ↾≡ s).
• Lambda

A1 ∼ A2 B1 ∼ B2 t1 ∼ t2

λ(x : A1).B1.t1 ∼ λ(x : A2).B2.t2

We have Γ, Γ1 ⊢ λ(x : A1).B1.t1 : T1 and Γ, Γ2 ⊢ λ(x : A2).B2.t2 : T2, thus, by inversion 2.3 the subterms are well-typed and

we can apply induction hypothesis. The conclusion follows similarly to the Π case.

• Application

t1 ∼ t2 A1 ∼ A2 B1 ∼ B2 u1 ∼ u2

t1 @x :A1 .B1
u1 ∼ t2 @x :A2 .B2

u2

We have Γ, Γ1 ⊢ t1 @x :A1 .B1
u1 : T1 and Γ, Γ2 ⊢ t2 @x :A2 .B2

u2 : T2 which means by inversion (2.3) that the subterms are

well-typed. We apply the induction hypothesis and then conclude.

15

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Quotes.v

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

• Reflexivity

A1 ∼ A2 u1 ∼ u2

reflA1
u1 ∼ reflA2

u2

We have Γ, Γ1 ⊢ reflA1
u1 : T1 and Γ, Γ2 ⊢ reflA2

u2 : T2 so by inversion (2.3) we have Γ, Γ1 ⊢ A1 : s1 and Γ, Γ1 ⊢ u1 : A1

(same with 2s). By IH we have A1 ↿� A2 ↾ and u1 ↿A1↿�A2↾ u2 ↾. The proof follows easily.
• Funext

A1 ∼ A2 B1 ∼ B2 f1 ∼ f2 д1 ∼ д2 e1 ∼ e2

funext(x : A1,B1, f1,д1, e1) ∼ funext(x : A2,B2, f2,д2, e2)

Similar.

• UIP

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2 p1 ∼ p2 q1 ∼ q2

uip(A1,u1,v1,p1,q1) ∼ uip(A2,u2,v2,p2,q2)

Similar.

• J

A1 ∼ A2 u1 ∼ u2 P1 ∼ P2 w1 ∼ w2 v1 ∼ v2 p1 ∼ p2

J(A1,u1,x .e .P1,w1,v1,p1) ∼ J(A2,u2,x .e .P2,w2,v2,p2)

Similar.

□

C Correctness of the translation
Theorem C.1 (Translation).
• If ⊢x Γ then there exists ⊢ Γ ∈ J⊢x ΓK,
• If Γ ⊢x t : T then for any ⊢ Γ ∈ J⊢x ΓK there exist t and T such that Γ ⊢ t : T ∈ JΓ ⊢x t : T K,
• If Γ ⊢x u ≡ v : A then for any ⊢ Γ ∈ J⊢x ΓK there exist A ⊏ A,A ⊏ A

′
,u ⊏ u,v ⊏ v and e such that Γ ⊢ e : u A�A′ v .

Proof. We prove the theorem by induction on the derivation in the extensional type theory. In most cases we need to assume

some Γ, translation of the context, we will implicitly refer to Γ in such cases as the one given as hypothesis.

• Empty

⊢x •

We have ⊢ • ∈ J⊢x •K.
• Extend

⊢x Γ Γ ⊢x A

⊢x Γ,x : A
(x < Γ)

By IH we have ⊢ Γ ∈ J⊢x ΓK and, using Γ as well as lemma 4.2, Γ ⊢ A : s ∈ JΓ ⊢x A : sK. Thus ⊢ Γ,x : A ∈ J⊢x Γ,x : AK.
• Sort

⊢x Γ

Γ ⊢x s : s
′
(s, s ′)

We have Γ ⊢ s : s ′ ∈ JΓ ⊢x s : s ′K.
• Product

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x Π(x : A). B : s ′′
(s, s ′, s ′′)

By IH and lemma 4.2 we have Γ ⊢ A : s , meaning ⊢ Γ,x : A ∈ J⊢x Γ,x : AK, and then Γ,x : A ⊢ B : s ′. We thus conclude

Γ ⊢ Π(x : A). B : s ′′ ∈ JΓ ⊢x Π(x : A). B : s ′′K.
• Sigma

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x Σ(x : A). B : s ′′
(s, s ′, s ′′)

Similar.

16

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

• Eqality

Γ ⊢x A : s Γ ⊢x u : A Γ ⊢x v : A

Γ ⊢x u =A v : s

By IH and lemma 4.2 we have Γ ⊢ A : s , and—using lemma 4.3—we also have Γ ⊢ u : A and Γ ⊢ v : A. Then

Γ ⊢ u =A v : s ∈ JΓ ⊢x u =A v : sK.
• Variable

⊢x Γ (x : A) ∈ Γ

Γ ⊢x x : A

We have ⊢ Γ ∈ J⊢x ΓK (as we assumed, this is not an instance of the induction hypothesis) and (x : A) ∈ Γ. By definition

of Γ ⊏ Γ we also have some (x : A) ∈ Γ with A ⊏ A, thus Γ ⊢ x : A ∈ JΓ ⊢x x : AK.
• Conversion

Γ ⊢x u : A Γ ⊢x A ≡ B

Γ ⊢x u : B

By IH and lemma 3.3 we have Γ ⊢ e : A = B which implies Γ ⊢ A ∈ JΓ ⊢x AK by inversion (2.3), thus, from lemma 4.3 and

IH we get Γ ⊢ u : A, yielding Γ ⊢ e∗ u : B ∈ JΓ ⊢x u : BK.
• Lambda

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ,x : A ⊢x t : B

Γ ⊢x λ(x : A).B.t : Π(x : A). B

By IH and lemma 4.2 we have Γ ⊢ A : s and thus ⊢ Γ,x : A ∈ J⊢x Γ,x : AK, meaning we can apply IH and lemma 4.2 to

the second hypothesis to get Γ,x : A ⊢ B : s ′ ∈ JΓ,x : A ⊢x B : s ′K and then IH and lemma 4.3 to get Γ,x : A ⊢ t : B ∈

JΓ,x : A ⊢x t : BK. All of this yields Γ ⊢ λ(x : A).B.t : Π(x : A). B ∈ JΓ ⊢x λ(x : A).B.t : Π(x : A). BK.
• Application

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ ⊢x t : Π(x : A). B Γ ⊢x u : A

Γ ⊢x t @x :A.B u : B[x←u]

Using IH together with lemmata 4.2 and 4.3 we get Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ ⊢ t : Π(x : A). B and Γ ⊢ u : A

meaning we can conclude Γ ⊢ t @x :A.B u : B[x←u] ∈ JΓ ⊢x t @x :A.B u : B[x←u]K.
• Pair

Γ ⊢x u : A Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x ⟨u;v⟩x :A.B : Σ(x : A). B

Using IH with lemmata 4.2 and 4.3 we translate all the hypotheses to conclude Γ ⊢ ⟨u;v⟩x :A.B : Σ(x : A). B ∈ JΓ ⊢x
⟨u;v⟩x :A.B : Σ(x : A). BK.
• Proj1

Γ ⊢x p : Σ(x : A). B

Γ ⊢x π
x :A.B
1

p : A

Similar.

• Proj2

Γ ⊢x p : Σ(x : A). B

Γ ⊢x π
x :A.B
2

p : B[x←πx :A.B
1

p]

Similar.

• Reflexivity

Γ ⊢x A : s Γ ⊢x u : A

Γ ⊢x reflA u : u =A u

By IH we have Γ ⊢ u : A and thus Γ ⊢ reflA u : u =A u ∈ JΓ ⊢x reflA u : u =A uK.
• J

Γ ⊢x A : s Γ ⊢x u,v : A Γ,x : A, e : u =A x ⊢x P : s ′ Γ ⊢x p : u =A v Γ ⊢x w : P[x←u, e← reflA u]

Γ ⊢x J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]

By IH and lemma 4.2 we have Γ ⊢ A : s . From this and IH and lemma 4.3 we have Γ ⊢ u,v : A. We can thus deduce

⊢ Γ,x : A, e : u =A x ∈ JΓ,x : A, e : u =A xK which in turn gives us Γ,x : A, e : u =A x ⊢ P : s ′. Similarly we

17

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

Conference’17, July 2017, Washington, DC, USA Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

also get Γ ⊢ p : u =A v and Γ ⊢ w : P[x←u, e← reflA u]. All of this allows us to conclude Γ ⊢ J(A,u,x .e .P ,w,v,p) :
P[x←v, e←p] ∈ JΓ ⊢x J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]K.
• Funext

Γ ⊢ f ,д : Π(x : A). B Γ ⊢ e : Π(x : A). f @x :A.B x =B д@x :A.B x

Γ ⊢ funext(x : A,B, f ,д, e) : f = д

Similar.

• UIP

Γ ⊢x e1, e2 : u =A v

Γ ⊢x uip(A,u,v, e1, e2) : e1 = e2
Similar.

• Beta

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ,x : A ⊢x t : B Γ ⊢x u : A

Γ ⊢x (λ(x : A).B.t) @x :A.B u ≡ t[x←u] : B[x←u]

From IH and the lemmata, we even get the conversion, we conclude using reflexivity.

• Proj1-Red

Γ ⊢x A : s Γ ⊢x u : A Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x π
x :A.B
1

⟨u;v⟩x :A.B ≡ u : A

Likewise.

• Proj2-Red

Γ ⊢x A : s Γ ⊢x u : A Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x π
x :A.B
2

⟨u;v⟩x :A.B ≡ v : B[x←u]

Likewise.

• J-Red

Γ ⊢x A : Ui Γ ⊢x u : A Γ,x : A, e : u =A x ⊢x P : Uj Γ ⊢x w : P[x←u, e← reflA u]

Γ ⊢x J(A,u,x .e .P ,w,u, reflA u) ≡ w : P[x←u, e← reflA u]

Likewise.

• Conv-Refl

Γ ⊢x u : A

Γ ⊢x u ≡ u : A

We conclude from IH and reflexivity of �.
• Conv-Sym

Γ ⊢x u ≡ v : A

Γ ⊢x v ≡ u : A

We conclude from IH and symmetry of �.
• Conv-Trans

Γ ⊢x u ≡ v : A Γ ⊢x v ≡ w : A

Γ ⊢x u ≡ w : A

We conclude from IH and transitivity of �.
• Conv-Conv

Γ ⊢x t1 ≡ t2 : T1 Γ ⊢x T1 ≡ T2

Γ ⊢x t1 ≡ t2 : T2

By IH (and lemma 3.3) we have Γ ⊢ e : t1 T 1

�T ′
1

t2 and Γ ⊢ p : T
′′

1
= T 2. Also from lemmata 3.4 and 3.3 we have T

′

1
= T

′′

1

andT 1 = T
′′

1
, meaning we getT

′

1
= T 2 andT 1 = T 2. This allows us to conclude by transporting along the aforementioned

equalities.

• Conv-Prod

Γ ⊢x A1 ≡ A2 : s Γ,x : A1 ⊢x B1 ≡ B2 : s
′

Γ ⊢x Π(x : A1). B1 ≡ Π(x : A2). B2 : s
′′

(s, s ′, s ′′)

We conclude exactly like we did in the proof of lemma 3.4.

• All congruences hold like in proof of lemma 3.4.

18

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

Eliminating Reflection from Type Theory Conference’17, July 2017, Washington, DC, USA

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

• Conv-Eq

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A

By IH and lemma 4.2 we have Γ ⊢ e : u =A v ∈ JΓ ⊢x e : u =A vK which yields the conclusion we wanted.

□

19

	Abstract
	1 Introduction
	1.1 On the Need for UIP and Functional Extensionality.
	1.2 Heterogeneous Equality and the Parametricity Translation.

	2 Definitions of Extensional and Intensional Type Theories
	2.1 Syntax of ETT and ITT
	2.2 The Typing Systems
	2.3 General Properties of ITT and ETT

	3 Relating Translated Expressions
	4 Translating ETT to ITT
	4.1 The Translation
	4.2 Meta-theoretical Consequences
	4.3 Optimisations

	5 Formalisation with Template-Coq
	5.1 Quick Overview of the Formalisation
	5.2 Inductive Types and Recursion
	5.3 About Universes and Homotopy
	5.4 ETT-flavoured Coq: Examples
	5.5 Towards an Interfacing between Andromeda and Coq
	5.6 Composition with other Translations

	6 Limitations and Axioms
	7 Related Works and Conclusion
	References
	A Complementary rules
	B Proof of the fundamental lemma
	C Correctness of the translation

