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Adaptive LFT control of a civil aircraft

with on-line frequency domain parameter estimation

G. Ferreres and G. Hardier
ONERA/DTIS, Toulouse, France
gilles.ferreres@onera,fgeorges.hardier@onera.fr

Abstract: this paper describes the application ofidirect LFT-based state-space adaptive contcbesne

to a transport aircraft, within the context of tiropean project RECONFIGURE. The principle of the
scheme is to off-line design and validate a gaimesaled controller, depending on the plant paramste

be estimated, and to on-line combine it with a rhoelgimator, so as to minimize the on-board
computational time and complexity. A modal approaehy classical for the design of a flight contialv,

is used to directly synthesize the static outpetii@ck LFT controller depending on the control and
stability derivatives, i.e. the parameters of theeérized aerodynamic state-space model to be attin
Since the gain-scheduled LFT controller online deseon the parameter estimates instead of the true
values, its robustness to transient and asymptsionation errors needs to be assessed ygiagd 1QC
analysis techniques. A primary concern being op-limplementation, a fully recursive frequency damai
estimation technique is proposed, with a low oe-lbomputational burden and the capability to tréioke-
varying parameters. Full non-linear simulations iadp a trajectory validate the good performance
properties of the combined estimator and gain-satext! flight controller. To some extent, minimal
guaranteed stability and performance propertieshef adaptive scheme can be ensured, by switchiag to
robust controller when the parameter estimates ao¢ reliable enough, thus bypassing the Certainty
Equivalence Principle.

1. INTRODUCTION

Flight control has long been a privileged applieafield for robust and gain-scheduling controk seg.
[1,6,10,39,42,45], and more recently for fault-tale and adaptive control [3,5,8,13,25,31,40,44,A49-
54]. Noting that strong links exist between allgbdields. Indeed, robust and adaptive controllmageen
as competing/complementary techniques for solvregsame problem of controlling an uncertain pldra:
robust controller aims to stabilize the whole depassible plant instances, an adaptive contraigss on-
line measurements of the plant Inputs/Outputs (t®3tabilize the plant itself. On the other hagdin-
scheduling can be seen as a special case of ihduolaptive control, whose principle is to estintaie plant
parameters and to adjust the controller as a fomatf these on-line estimates: in the same wajneat
gain-scheduled controller adapts to the nonlinéamtpusing measured scheduling parameters.

Gain-scheduling is classically used to control aplane along a trajectory, where the controlleinga
depend on measured or estimated flight parametard) as airspeed, Mach, mass or Center of Gravity
(CoG) position. However, situations may occur whitie performance of the gain-scheduled controfler i
no more satisfactory, e.g. in the presence of jaotuator faults, or when a scheduling parameteoimes
unavailable due to a sensor fault, especially agdd15]. Adaptive control is an attractive solatia this
context to recover closed loop performance.



Most of the adaptive control literature focusestibe use of Input/Output (i.e. black box) models to
control the system [27]. Nevertheless, a physieabdynamic state-space model is available for soradt
(A/C), and state-space methods are typically usetksign robust or gain-scheduled flight contraldaso
that adaptive flight controllers are wusually desdn using state-space methods, see e.g.
[5,13,25,31,40,41,44,47,50-54].

Generally speaking, two main problems need to heedan adaptive control, namely to obtain a priori
guaranteed stability and performance propertiethefadaptive closed loop, and to decrease thenen-li
computational time and complexity. In the contelxindirect adaptive control, following [11,12], alation
based on robust and gain-scheduled control todts a$f-line design a gain-scheduled controller eleging
on the plant parameters to be estimated, to abheid¢dmplexity of implementing a control design aitdon
on-line.

On the other hand, LFT (Linear Fractional Transfation) representations of the plant (depending on
the parameters to be estimated) and controllerefilipg on the parameter estimates) are connected to
obtain an LFT closed loop depending on the truaasbf the plant parameters and on the estimation. e
Using i analysis with constant and frequency-depender Bealings [9,14], and more generally Integral
Quadratic Constraints (IQCs) [23,35], it is possitl study the stability andJA, performance properties
of the adaptive closed loop, considered as a gdinekiled closed loop with an error on the schedulin
parameters. As a specificity of this validationhieicue, the estimator is not included in the analyhich
just provides specifications, i.e. a maximal amoaohtthe allowable estimation error, and possibly a
maximal rate of variation of the estimates. Thisnestion error can be considered as time-invararime-
varying, thus studying the robustness of the adepsicheme in the face of an asymptotic or transient
estimation error.

Several gain-scheduling state-space control desiggmiques can be used, which assume time-varying
or time-invariant scheduling parameters, see [42]af survey. In the sequel, we will focus on thedaio
technique of [33] because this one appears espesidtable for aeronautical applications: a statitput
feedback controller placing the main closed loofepas synthesized under an LFT form. It only dejsen
on the main A/C parameters to minimize on-line clxipy, and to avoid an unsatisfactory transient
response of the adaptive closed loop. Indeed, taditg of the estimated secondary A/C parameters is
generally poor, so that a bad transient estimatroor would give a bad transient closed loop respoifihis
static LFT controller can be implemented eithengghe efficient recursive technique of [34], whaoids
any matrix inversion, or using a surrogate mocdss, section 6.

Another main issue is to develop a method for esimy the A/C model parameters on-line, with a low
computational burden and the capability to traoketivarying parameters despite measurement noises, p
data information contents (e.g. in cruise conditrdmen variables are likely to be almost constamtndu
long periods), and external disturbances (turbwend/hatever method used, residual errors can soet
be large and a measure of the parameter accurawyldshlso be provided, so that some logic can be
introduced: if the estimated scheduling paramedegsnot reliable enough, one can switch to a roback-
up controller ensuring minimal performance progexti

Algorithms for recursive parameter estimation hbgen developed for real-time applications in vasiou
fields such as industrial processes, robotics andspace [18,29]. Most theoretical aspects werereavby
early reference publications [2,30]. In aeronautite early attempts to benefit from on-line parsne
identification date back to the 80s, but they wiergted by the available computational power of oatul
processors. The common Time Domain (TD) methodsuaually based on recursive or sequential Least-
Squares (LS), or ExtendéhlmanFiltersto copewith nonlinearitied8,17]. More recently, this challenge
has also been addressed by recursive subspacdidd¢ion of linear or LPV (Linear Parameter-Vargin
models. However, the relevance of such advancedi-matlel or nonlinear schemes for on-board



implementations is dubioukieto thepresentimitationsof on-boardcomputersespeciallyfor A/C because
of certification issues and code verification. Thatwhy we look in this paper for a simple enough
approach, more likely to satisfy those real timastmints, and that could constitute a viable algve for
updating the models required by the most advan@d fFault Detection and Diagnosis) and FTC (Fault
Tolerant Control) schemes.

The paper is organized as follows. 82 presentsath@aft problem. The general principles of the
estimation process are described in 83, see [2(] foore complete presentation. An LFT flight cotiar
is synthesized in 85 using the tools briefly ddsedi in 84, and some issues related to implementatio
aspects are covered by 86. Adaptive control resudisig the realistic non linear simulator of the
RECONFIGURE project are presented in 87. Concludamgarks end the paper.

2. THEAIRCRAFT PROBLEM

The indirect adaptive control strategy presentethis paper has been applied in the framework effb/-
FP7 funded project RECONFIGURE (REconfiguration @®Ntrol in Flight for Integral Global Upset
REcovery). The goal of this project is to investeggaand to evaluate aircraft guidance and control
technologies that facilitate the automated handlfigoff-nominal/abnormal events, alleviate the pilo
workload, and that optimize the aircraft statusadayomatically reconfiguring the aircraft to an opei
flight condition (see http://reconfigure.deimos-spaom/). A detailed description of the benchmaddet
and the fault/failure scenarios is given in [15,2Fhe V&V process involves a nonlinear highly
representative model of a generic Airbus civil @ft The benchmark contains a baseline gain s¢eddrl
controller, actuator/sensor models, measuremeetdijl as well as control law protections. The défe
control designs developed during the project hadktmonstrate their performance and robustness shtank
the industrial benchmarking proposed by Airbusubing an extensive set of simulations includingidew
range of operational conditions (realistic fligidenarios, external disturbances, pilot maneuvérke
computational burden and complexity of the schelhaekalso to be compliant with stringent computation
constraints in order to be possibly implementeeéwiedded computers. Robustness issues were tdxgkled
using tools like a Functional Engineering Simulatoplemented during the project to achieve a trawial
Monte Carlo analysis as a preliminary step of tigustrial V&V process [24]. It is also noteworthyat
avenues do exist for improving the V&V of more cdexpcontrollers like the proposed adaptive scheme;
for instance, a practical approach for the worsecanalysis of a similar adaptive controller wasay
investigated by Airbus in [41].

The highly realistic nonlinear simulator of the RERFIGURE project, which is very close to a realilciv
aircraft, includes a nonlinear aerodynamic modéh\gilongitudinal states: the angle of attackthe pitch
rateq, the pitch angleg, the true airspeed and the altitude. The acceleratiomN, is also to be accounted
for as an additional outputTwo control loops are considered: the inner limpised to control the fast
longitudinal statesr andg, as well as the outputi,, using the flight controller. The outer loop isdso
control the other longitudinal states using an pilmb and an auto-throttle. In the context of the
RECONFIGURE project the autopilot and auto-throstte given, only the flight controller is allowedl lve
modified to recover the performance of the inn@ploe.g. in the presence of an actuator/sensarréaiAn
adaptive flight controller is synthesized in thappr.

In the context of our indirect adaptive controlecte, a linearized longitudinal aerodynamic modéh wi
statesa, q, 6,V and the outpuN, should be a priori estimated:

2 In the following, the variables, g and so on of the linearized models should be whoed as departures from trim variables, whereag th
correspond to global variables when using the meat simulator.



a=Zya+Zyq+Zs50m+2ZyNV

4=Mga +Mgq+Mgdy, + MV

6=q (1)
V = X + X0+ X5 9 + XyV

N, = Nga +Ngq+Nsdm + NyV

Oy, Is the elevator input. The effect of altitude, whhiis the slowest longitudinal state, is neglecidue
aircraft is supposed to move about a given fligittdition and a constant engine thrust is assumed.

Nevertheless, as explained in the following, ohly first two lines and the last line of model (&£ed to be
estimated in practice, i.e. those corresponding tajand N,. More precisely, the issue is to estimate the
control and stability derivatives, i.e. the paraenetz,, Z,... of the linearized aerodynamic model. A
linear in the parameters model is obtained, i.e.:

[c‘r q Nz]T =0[a q &, VI' 2)
The © matrix includes the 12 parameters to be estimatethe context of the adaptive scheme, the main
goal of the on-line estimator is to update the &alwf the 5 main control and stability derivatives

Zq,Mq, Mg, M5, Ng usedto schedulethe controller (85.1), although all the 12 coefficients have to be
estimated.

Only the first two lines and the last line of mo@E] need to be estimated because the linearizedihosed
to design the flight controller only contains tletflongitudinal states andg, as well as the outpuwt, :

a=2Z,0+Zy0+Z50
d=Mgya+Mqq+Msdny 3)
N, =Nya +Nggq+Nsom

The flight controller, designed using the 2 stdtesarized model above, is a posteriori validatedize 4
states linearized model (1). Its architecture is:

O = KNNZ+ Kqa+ K| [(Nz=Nz)dt+ LNz (4)
where Nz, is the reference acceleration input.

3. AFREQUENCY DOMAIN APPROACH FOR ON-LINE PARAMETER ESTIMATION

Adaptive control strategies are rather uncommothéaircraft field, even if they begin to develap f
UAVs, and this has to do with stringent certifioatissues. Otherwise, practical implementatiomdfrect
adaptive schemes mostly rely on TD algorithms &imeating time-varying or uncertain model paraneter
[48]. Actually, TD algorithms could seem preferabtdirst sight, as the basic ones only involvenample
operations (e.g., by replacing a matrix inversidthva scalar division). However, advanced strawegie
usually required for regularizing the estimatioongqess, and those advantages can thus be wasted §§ee
for an overview of the pros and cons of TD methods)contrast, FD techniqudtavemany desirable
features for on-line applications [16,19,26]. Themputation time can be reduced by processing only a
limited amount of frequencies within the bandwidthinterest, and the resulting indirect filtering the
wide-band disturbances (e.g., Low Frequency midmaia High Frequency noise) improves the estimation
accuracy. The standard deviation of the estimatioors can also be evaluated without any additioast.

Furthermore, the availability of efficient tools knag the transition from TD to FD possible, suchilzes
recursive Fourier Transform (FT), greatly facilgattheir use, and this was stressed in many ptiblsa
during the last 20 years[4,16,26,36-38,46]Fig. 1 givesa schematicrepresentatiorof the way the FD
information is linked to the estimation process.ri&tiver, many issues specific to on-line estimatos



mitigated when using FD approaches instead of T€spastimates are nearly unbiased even in therrese
of noisy I/O data in case of collinearity in th@ressors, the estimation errors do not requirestoriproved
afterwards due to possible colored residuals, armhgsee [37] for all these practical aspects).

Otherwise, TD/FD estimation schemes rely eitheremursive algorithms (making use of measurements
as soon as they are available), or alternativelgequential procedures, processing moving dataomad
with a lower rate to get a succession of piecewdsstant values [7,18]. In [19], a sequential pssceas
proposed for monitoring a civil aircraft, that pétsnpre and post-processing stages to be includdbe
procedure to prevent from and to filter out ina@terestimations. Even if both approaches have tveir
pros and cons [22], recursive schemes should berddvfor on-line implementation, and FD is more
suitable to define hybrid recursive/sequential pthoes because the information naturally accunsiliate
the signals' FT, which behave like storing memosres are managed with more flexibility (truncation,
forgetting, resetting).

Finally, one of the major reasons for which rectesiD algorithms are more popular than FD ones
comes from some additional computation complexityhich has prevented from developing a fully
recursive formulation of the FD approach, unlike thD case. This paper improves the state-of-the-art
existing approaches and proposes a recursive proeedom start to finish, permitting the practical
implementation constraints to be satisfied, andalgerithm to be possibly embedded in aircraft cotaps.
Other minor issues in the FT expressions of theasiderivatives are also properly settled, which @ften
disregarded for sequential processing thanks toléfrending achieved prior to FT computations,viduith
cannot as far as recursive algorithms are conceif@dum up, the point is that FD approaches csm la¢
simplified in order to reduce their computationafplexity, similarly to what is done for TD formtiens,
and they can also include similar advanced mechemniie data forgetting [18,30]. Before developthg
proposed algorithm in §3.2, section 3.1 recallslibsics of the usual sequential approach in spEees
form.

3.1. Standard formulation of a sequential algorithm

The transition to the FD is classically realized rogans of the standard FT. As the signals are only
available over a limited period of tim@,T], the finite FT is used instead, which permits Eie of any
signal x(t), time derivativex(t), or constant value to be easily computed in the($¢2 [20] for details).
Practically, from the sampled values xgf) , the finite FT can be computed via numerical iragign:

N-1
X(@)=At Y X mi) e A = At X (@ T) (5)

n=0
using N values equally spaced ov@g, T], with a sampling period\t (see for instance [26]). The term
X(w) represents the Discrete Fourier Transform (DFTjhef samples §(nAt),n=0,...,N -1}. Efficient
tools are available for computing this quantitymedy the Fast Fourier Transform (FFT) and the Chip
transform (CZT). As the aircraft model we are iet#ed in is expressed in state-space form (sedl&?),
stability and control derivative® to be estimated are included in the usual stateicea A B,C,D; they
are assumed to be constant or at least to varyhyskhwving the flight with respect to (w.r.t.) thetenation
process and updating rate. However, when applystgnation techniques, it is generally advisable to
estimate also state/output biadgg b, in order to cope with /O measurement offsets odeh structure
uncertainties [21]. By applying the FT to thesdestpace equations, if is chosen to be a multiple of the
frequency stepr« (which happens for instance when using the FFHE) RD model can be written as [19]:

jwX = AX +BU +b, Td(w) + x(0) = X(T) (6)
Y =CX +DU +by Td(w)

bydenoting X = X («),U =U (a), Y =Y(«). @and whered(«) is a Dirac function in the FD, such thafa) =1
for «=0, and d(a) =0 for w=2k/T #0 [20]. As a result, the discrepan@y=x(0)- x(T) between the



state initial and final conditions is translaiatb a biasthat impacts on all frequencies: localized effects
the TD are translated into broadband effects in EBe and vice versa. A contrario, the biases act as
broadband inputs in the TD and just modify the Zezquency. To get the most out of these spedeitit

is generally worthwhile to discard the zero frequenuring the estimation, which avoids the statd an
output biases having to be estimated. T(&isis further simplified and reduces to:

jwX = AX +BU + x(0) — x(T) @)
Y =CX+DU

Hence, the discrepancied should be estimated in addition to the other patars ©, if not zero.
However, this issue has not been paid much attemtial is often ignored in practice [19,28], whichuicl
be only justified in a pinch if a suitable preprssiagis insertedn a sequential algorithm to filter out these
effects. If we assume that all the state componamsmeasure@dnEquation Errompproactcan be used,
that consists in minimizing a set of cost functi¢88-38] for all the state and output equationsvirich a
subset®; of stability and control derivatives needs to Istinated (<i<dim(X)+dim(Y)), the costs
summing onM frequency samples available from the BT £ N ). By collecting theseM terms in vector
and matrix forms, and by denotirg the extended vector of unknown parameter$\ip,0 (C,D resp.),
the cost functions lead to classical LS criteri@]{3

3,(0) = (¥ - xo)T (@ - x0) +(©, -0,0)"25%© -©,0)
XT =[X(@) ... X (e, ); U (@) ... U (g, )id... ] (8)

VT =[jax (@) jax@)] ©r [yi@) ... vi(a,)] resp)

wheret is the complex conjugate transpose operator.)lntki® conditioning of the resulting optimization
has been possibly improved by introducing some iaripknowledge about the expected value of the
parameters. This form of regularization can be @sfig useful for weakly identifiable parameters; b
softening their variations and improving the comegrce. The principle of this Bayes-like estimation
consists in adding a penalty term to the LS coteto weight thed; increments with respect to prior values
©,o through a corresponding covarianEg (usually a diagonal matrix). (8) is nothing bustandard LS
regression with complex data instead of real ombs. well-known solution [26,38] to this problemtigen
computed a®; =[® (xTx)+55t] "[R (xT) +25t0;] - whereR () is the real part of a complex value.

with :

3.2. Towardsafully recursive algorithm

The previous LS formulation is well known, but wamstly implemented in sequential estimation
processes, ignoring the issues of the extra diaowes d as well as the need to invert the information
matrix. Here, we are in a different prospect andhatio consider thiémitationsof on-boardcomputers, as
well as the certification and code verificationuigs. A practical implementation on civil aircrafiosild
preclude the use of any iterative algorithm whiatuld result in some unbounded computatapthrough
thedata.Hencecomplex operations like non analytical matrix irsiens should be banned. That is why we
look for a simple enough approach, likely to satiffiose real time constraints, and based on a fully
recursive algorithm. At first, it should be noticéltat the summation (5) makes very simple operation
possible (see [36] for instance):

{in(w) = Xp-a(©) + (st e 1o ©)
e joonAt _ e jwAt e jo(n-1)At

to evaluate the DFT at timeAt from its previous value at timgh-1)At. For a given frequency, the
guantity exp(-jaAt) is constant, so that the updating of the DFT jaguires two multiplications and one
addition, resulting in a very low computational agff As the estimation process also involves state
derivatives, the measurements of which are usumaltyavailable, a recursive formulation similar & ¢an

be worthwhile for signals(t) to avoid a pseudo-derivation from the availabtmal x(t), or the extrad



parameters to be estimated if we had to use (#.idé&a is to derive LS costs similar to (8) butoiwing

X (a)) directly in the computatioaf theerrorterms as this is the case for a measuremnggag ) . This idea
is new and differs from the two usual ways consgseither in computing an estimate xf) in the TD, or
in replacing X(«w) by jaX(«) in the FD, which is incorrect wheneveér#0. Hence, the proposed FD
algorithm permits extra parameters, li&e to be eliminated from the vector.

Otherwise, when using recursive updates, olderrimftion can be overweighted regarding to recent
ones,which canresultin muchdelayin the adaptatiorprocess. That is why data forgetting can be used in
conjunction with (9), to remove the effect of olddata by working on a limited time window [38]. tinat
case, the choice of the window width results frotmaae-off between the amount of information avzéa
from the data and the sensitivity to A/C parametgiations. This remark also applies to a pure eptjal
approach, where a non recursive form of FT is oo the data [19], resulting in a successigiecewise
constantalues, updated only after some seconds and hexlagedwith respect téhevarying parameters.
To develomrecursivealgorithm and to avoid the storage of a time histifrthe past daté,is still possible
to benefit from the FT linearity w.r.t. the signalsitoplement a forgetting process similar to the oh&D
exponentiaforgetting[18]; thissimply involves multiplying the previous FT by adetting factorn (A <1)

[38]. Combining all these ideas with (9) yields #wdlowing recursive expressions for any sign4t) ,
denoting X, = X, (@), X, = X, (@), X, = x(nAt) and x3 = x, e /% (see [20] for details):

{xn = ) Xq + At e (N1t

. : _ (10)
Xp = A Xpog +[(jwbt+1) X5 = x_q] &7 1¥(N-DA

We are now going to address a key feature of tbpgsed estimation algorithm. With TD methods, the
arrival of a new sample only results in the additaf a new row in the regression matrix [18]. Sue t
information matrix (or its inverse) can be updated simple (and light) computations thanks to the
Woodbury formulaWith FD methodsanewsamplemodifies all theM rows of the matrixy through the
FT updates of (10). That is why the usual algorghgenerally rely on a sequential estimation of the
parameters, due to the lack of a recursipp@ateof thematrix R=Q(}(T}() orofitsinverse. However, it was
established in [20] that a recursive version isi@adble anyway, almost similar to the TD ones, ksato
the 3 following lemma.

Lemma3.1 In case ofm=dim(®;) regressors, the basis of a time-recursion fombgix x og M*™ can
be set as:

x5 =ax!  vatx, E (11)
for JCDR"’X] defined asy (nAt) = X, =[x(nAt) u(nAt)]T andfrT =[ejmlnAt e el®u nAt]_

Lemma 3.2 As aresult, the information matrism | =)(I)(n can be broken down into 3 parts as:

Mo = A2M g + AL IMALG, XF +AXn B Xy +AX B x5 1= M+ 32 B G D, (12)

where g, =MAtx,, D, =BJ , B, =VMBy, D, = A} X, ;B3 =DJ, D3 =B} ,andG; =1.
Lemma 3.3 Hence,m;! can be computed recursively by applying the matrsersion lemma 3 times to
(12), as Ok =1 to 3):

At =[A+BC D] = AL - 5B DAY With A = PMy_q, Ay =My, § = DeAB +1 (13)

Finally, (13) permits the direct updating gf ; to be computedithoutrequiringatricky matrixinversion,
by using only a series of matrix additions @mdducts. For the sake of simplicityy* was assumed to be 0
in the previous expression of,, but dealing with a priori knowledge is howevessgible by achieving at
first a series oim rank 1 corrections tay* with the diagonal values afy. See [20] for the proofs and for
a comparison of the computational cost of this reiwe algorithm w.r.t. an iterative blockwise ingem.



4. GAIN-SCHEDULINGAND ROBUSTNESSTOOLS

A modal design technique of a static output feellwantroller under an LFT form is presented in fingt
subsection. The second one presents a robustnalsiartechnique in the presence of time invarant
time varying parameters.

In both cases, a preliminary step is to put thenolm®p plant modelG(s,8), where 8 is a vector of
parameters, under the standard LFT form G(s,6)u = F[H(s),A]u,, i.e.:

yi_ u
ol

wW=Az (15)
The transfer matrixH(s), with additional /O w and z, is fixed while A=diag(¢ 15) gathers the
parametric uncertainties, i.e. each paraméeis repeatedg, times on the diagonal of. The fictitious
feedback (15) is used to introduce the parametrgerainties in the model. Generally speaking, gisie
LFR Toolbox [32] for instance, any state-space esgntation with a polynomial or rational dependemte
uncertain or varying parameters can be put undefdhm.

Parametergd are supposed to be normalized in this sectiongehathe vectord is supposed to belong to
the unit hypercubeH (i.e. -1<@g <+1 for all i ). Associated parameters, before normalizationicafly
belong to an hyper-rectangle.

4.1. Modal design of an LFT gain

The first issue is to design a gain-scheduled Léftroller, i.e. a static LFT gaik () placing closed loop
poles for the open loop plant mode(s,8) , using the technique of [33]. AW -dependent quantities in the
following Lemma are supposed to be under an LFmfor

Lemma 4.1 [33] Let (A(8),B(H),C(6),D(8)) be a state-space representationGg§,d) . Assume thatm
closed loop eigenvalueg (6) are to be placed. Let a static output feedbaak g#&9) satisfy the equality:

V(@

K@lee @) 0w (16)
whereV(6) =[v1(8) ... vnh(6)] andW(8) =[wi(8) ... wy(6)]. Each pair of vectors;(6) and w; (6) must
satisfy:

vi () | _
[A6) - % (O)! B(e)]{wl ( H)} =0 (17)

Then, the interconnection ak(s,d) with K(8) hasm placed eigenvalues (6) .

In practice, closed loop eigenvaluggd) are chosen first. Then, eigenvectoy®d) and associated vectors
w; (8) are computed so as to satisfy (17). The feedbaitkig(g) is computed using (16).

Remark 1 Equalities (16,17) must be exactly satisfiedthsd the number of poles to be placed must be less
or equal to the number of plant outputs. Thus, dindydominant plant poles are placed in practind,the
position of the closed loop secondary poles is kb&@ posteriori.

Remark 2 this modal method not only places the closed leiggnvalues (i.e. the closed loop poles), but
also the associated eigenvectors, i.e. this isigenstructure assignment method. The robustnesbeof
controller strongly depends on the choice of trec@tl eigenstructure. Robust controllers can bectxpe
when respecting as much as possible the open Igoantdcs, for instance by projecting the open loop
eigenvectors, i.e. by choosing closed loop eigaioveavhich are as close as possible to the opgndoes.



In the same way, in 85.2, the closed loop frequeridiie short period mode, which is the main moténe
aerodynamic model, will be chosen to be the samth@open loop one, just the damping ratio will be
improved. This enables to design flight controlletgch reveal (very) robust to parametric uncetias

Using the routindb_sched.nof the LFR Toolbox [32], the technique providestatic feedback gain:
K(6) = R (K ,8) = K11 + Ko A (1 =KpoB) Ky (18)

whereA =diag@ 1, ) and =[K11 Klz}.

' K21 Kaz
After the design, a key point is to check the vpeisedness radius of the LFT gain, i.e. the maxsizal k
for which the matrix | -K,,A is invertible for all §0kH (i.e. -k<@ <+k for all i). Using standard
Matlab routines, a guaranteed value of this radiasa lower bound, can easily be obtained asnerse
of a ¢ upper bound of K,,, where x is the structured singular value [9]. Since thetee6 of plant
parameters is assumed to belong to the unit hyperdu, the well-posedness radius must be greater than 1.

4.2. Robustnessanalysis

Consider a closed loop LFT modgl[M (s),A] , whereA contains normalized uncertain paramet@rsThe
aim of the following Lemma is to compute a guaredt®alue of the worst-casg,, norm / L, gain of
RIM(s),A], i.e. of its maximal value ove# I H .

Lemma 4.2 [10] The issue is to compute a guaranteed roler$bpmance leve) , for which:
IR IM(s),Allli, =y O60OH (19)

Let D=D">0 and G =G" be scaling matrices satisfyingA =AD and GA =A"G for all structuredA.
Let P(s) =diag(ly, /¥, 1n,)M(s), wheren, (resp.n,) is the size of the I/O ofi[M(s),A] (resp. ofa).

A sufficient condition for (19) to hold is that tleeexist scaling matriceB andG satisfyingOc :
Pj@)DP(je) + J[GP(je) - P{j) G < D (20)
When parameter® are supposed to be time invariant, complex frequelependent scaling matrices
D(«) and G(«) are handled, and inequality (20) can be indepehdsalved at each frequency. This is a
skew u analysis problem [10] for which efficient compubaal tools exist, and especially the routine
mu_margin.mof the System Modeling, Analysis and Control (SMAolbox developed by Onera in
Matlab-Simulink (available dtttp://w3.onera.fr/smgcConversely, when parametefisare supposed to be
time varying, without bound on the rate of variatioeal frequency-independent scaling matribesind G

are handled, and inequality (20) must be simultaslgosolved on the frequency continuum using 1QC
tools, see e.g. [14,23] and the SMAC Toolbox. Laste that a bound on the rate of variation of the
parameters can be introduced, using a generalizafithe D,G scalings, in the framework of IQC gsid
[35].

5. DESIGN AND VALIDATION OF A GAIN-SCHEDULED FLIGHT CONTROLLER

To reconfigure the inner control loop of the A/C fawlty or unexpected situations, a gain-scheduled
controller depending on the control and stabiligyidatives is designed in 85.1 and 85.2, and vaddi@an

the nonlinear simulator in 8§85.3. Its robustnesanoestimation error is checked in 85.4. In 85.850kaust
controller is deduced from the gain scheduled dme,ntroducing mean or worst-case values of the
scheduling parameters.

5.1. State space design model
For the RECONFIGURE project, a set of 214 longitadlilinearized models has been provided by Airbus,



covering the flight domain with respect to spedtiuale, mass and center of gravity position vaoias.
This set is used to design and to validate the-getveduled controller. Owing to the range of vasrabf
the stability derivatives 4,,Z,,...) over the set of 214 models, the aerodynamic mg¢8glcan be
simplified by considering only the main stabilitgrdsatives:

a=Z,a+q

4=Mg,a+Myq+M;dp, (22)

N, =Nga
i.e. Zg=1 while Z;=0,N;=0 and Ns=0. Indeed, in practice, when validating the flighintroller,
designed using model (21), on the full 2 state édy@ramic model (3), closed loop performance appears

essentially to be the same using the simplifiedeh@2il) and the full model (3).
By normalizingM 5 and N, to unity, the design model can be further simptifto become:

a=Z,a+q

4=Mya+Myq+u (22)
z=qa

After designing the gain-scheduled controller:

u=K(Mg,Mq.Z,)[z _[zdt q" (23)

The true feedback controller will be:

N 0 0 N, -N
5 _K(Ma,Mq,Za) ]/Oa z Zc
m = INg 0 I(Nz ~ Ng)dt (24)
Ms 0 0o 1 q

More precisely, when considering the architectudg¢ o¢f the flight controller, the feedback gains
Knz: Kq, Kj can be deduced from (24). The feedforward termwill be retuned irg5.3.

5.2. Controller design

Following [33] an open loop LFT model under thenfiof22) is built using the LFR Toolbox [32], with
input u, outputsz and q, statesa and q. The parameters of the LFT model ag, M,, M, whose
ranges of variation correspond to the set of 2dddiized models. Actuator and sensor models aredaiid
this LFT model, as well as d%rder Padé model (used to represent a time-delgealant input) and an
integrator on thez output, so that the LFT design model has 3 outmqq zdt. As a result, the 3 main
closed loop poles can be placed by the LFT feedbankcoller K(M,,My,Z,) , namely:

* The integrator pole at a specified location, the same for all models, i.e. for all values of
Mg Mq.Zg .

* The short period (SP) mode as a complex mode veithpihg ratio 0.8 and frequenay, wherea is
chosen as the frequency of the open loop SP mad¢hé poles of the 2 states linearized model (22)

These closed loop poles are chosen to satisfyicédsdesign specifications on the step responsg to
reference acceleratioN,,, namely maximal settling time oN, and maximabvershoots orN, (10%) and
g (30%). The criteria chosen for evaluation rely good tracking performance of the acceleration with
homogeneous responses.

Once the design LFT model is computed, dependinghenfree parameters,,Mq,Z,, and after
choosing the closed loop poles with an additionale f parametere., the LFT feedback controller
K(Mg,Mq,Z4,0) is designed using Lemma 4When implementinghe controlleron-line, the estimated
values of M,,My,Z, will be used, not only as scheduling parameteus,atso to compute. as the SP
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mode frequency of the estimated 2 states model £&)inimal value is introduced fo& , to speed up the
closed loop SP mode when it is too slow with respethe closed loop integrator pole.

This LFT controller, modified following (24), is {idated over the 214 linearized models under thafo
(3). Although the value of the LFT controller afflght point is computed using the true values loé t
stability derivatives, small changes of the clos$eab integrator and SP modes are expected, siree th
secondary stability derivatives are no more neglbdvloreover, the closed loop actuator, sensorPatE
model poles need to be checked since they wereexylicitly placed in the design procedure. Fig. 2
presents the closed loop poles for all 214 modeh&en zooming on the integrator pole and SP mode. Th
result is quite satisfactory, as well as the segponses in Fig. 3. Note that theoutput is normalized by its
steady state value at each flight point.

5.3. Nonlinear validation

The LFT controller is validated on the nonlineamglator for the 214 flight points. The testing
maneuver usually selected for industrial validaiiorolves joystick doublet-type signals. Both theapilot
and the auto-throttle are switched off. Time domasponses differ from those obtained with thedieed
models on Fig. 3, primarily because of the addaloslow longitudinal statey,8,z in the nonlinear
aerodynamic model, so that the feedforwtardh L of the flight controller (4) needs to be retuned.

RememberK, is the feedback gain corresponding to the integrah the N, output. The linearized
responses of Fig. 3 were obtained with the clakstwaice L = -K, . Nevertheless, to obtain a satisfactory
performance on the nonlinear simulatars -A(massCoG) K, needs to be chosen, where the multiplicative
factor A only depends on the mass and center of gravititippgo ease the implementation. Choosig
results from a trade-off between the fastness @fctbsed loop and its overshoots: increagingcreases
the fastness, at the price of higher overshootsutputsN, andq.

Nonlinear responses, which are satisfactory, aglayed in red color in Fig. 4 for a given valuexsdss
and center of gravity: this "C1 case" includes @ght points corresponding to variations of airspemd
altitude. The airplane needs to be trimmed, befapplying the first filtered step on the reference
acceleration input (in blue color).

5.4. Linear validation via gand 1QC analysis

The issue is to check the robustness of the LFTralher in the presence of estimation errors on5he
main derivativesZ, ,M,, My, M5, N, at each of the 214 available flight points. Testhim, an error is
introduced in each stability derivative at a givight point, e.g.:

Z,=20(1+013) (25)

where z2 is the value ofz,, at this flight point. When the normalized uncertgid, varies between -1 and
1, the corresponding variation &, is +10%. When introducing an uncertainty on each mainiktyab
derivative in the LFT controller, a new LFT conteslis deduced using the LFR Toolbox [32], which
depends or(4 )5 - More precisely, in the structured model pertudratthe normalized estimation errors
on Z,,My,Mq are repeated 3 times on the diagonal, 1 time Nof, and 2 times forN,. Two
approximations are made get this ratherreasonableomplexity: m the frequency « in the initial LFT
controller is fixed to its nominal value, i.e. & ¢omputed using the true values of the stabiktjvatives at
the flight point;m in the feedforward termh = -AK, , K, is also fixed to its nominal value.

At a given flight point, the LFT closed loop is abted by connecting the new LFT controller with the
linearized aerodynamic model (3), augmented withator, sensor and Padé models, and with an irttegra
on N, - N, . The standard interconnection structiu¢s) — A is obtained either for robust stability analysis
in the Left Half Plane, or for robust performancelgsis of the closed loop transfer function betweg,
and the tracking erroN, — N, . A first order frequency domain template is applie N, - N, to ensure a
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minimal steady-state error (1%), a maximal freqyeth@main overshoot (6 dB3ndaminimal closed loop
bandwidth (0.5ad/s): se¢he plot in Fig. 5, where the template is in greetor and the nominal (without
uncertainty) transfer functions betwesiy. and N, - N, are in red color.

A time invariant estimation error is supposed astfip analysis gives a range of variation between
34.2% and 49.7% over the set of 214 flight poirds the LTI (Linear Time Invariant) robust stability
margin in the Left Half Plane, with an average eahi 38.8%. For instance, a margin of 38.8% mehat t
closed loop stability is guaranteed despite a samelous uncertainty of +38.8% on all five main 8iigb
derivatives, which appears very satisfactory. N the result does not depend on the weight bf O.
which was just introduced to normalize the uncattain (25).

The results obtained with a time-varying estimagoror reveal not so different with a range of &aan
between 23.0% and 35.8% for the LTV (Linear Timeywag) robustness margin (average value of 31.5%).
These results are obtained with IQC analysis andteat scaling, i.e. without bounding the variatiate of
the uncertainties. If the gap between the LTI afAd lrobustness margins was larger, it would be worth
introducing aboundedrateof variation for the estimation error, to explore theermediate cases, but this
appears useless here.

The robust performance margins are computed irsdinge way, leading to a range of variation between
5.8% and 21.0% for the LTI margin (average valué4p%), and a range between 4.9% and 18.2% for the
LTV margin (average value of 12.3%). Again, the dagiween LTI and LTV robustness margins is
reasonable and the results are satisfactory, whesidering that performance is much more constrgini
than stability.

5.5. Design of arobust controller

To apply the proposed adaptive strategy, a robustraller is needed which only depends on mass and
center of gravity position, i.e. it should not degeon airspeed, altitude nor on stability derivasivFor the
sake of simplicity, only the C1 case is considehede, corresponding to 25 flight points. This rdbus
controller can be deduced from the gain-schedufexlad 85.1 and 85.2 by introducing mean or worseca
values of the 5 scheduling parameters.

More precisely, 3 possible values are considereceémh of the 5 parameters, namely the minimum,
mean or maximum values of the derivative over tHe lihearized aerodynamic models®=343
combinations are involved. The criterion is the ima value of the degree of stability over the 25
linearized closed loops. Remember that the degrextability is defined as the opposite of the maadim
value of the real part of the closed loop poles ftaximal value of the criterion over the 243 camalibns
is selected, leading to choase meanvalue for M, , theminimum value forN, , and the maximuraalues
for Mq,Ms,Z,. Fig. 6 presents the closed loop step responseghd gain-scheduled and robust
controllers. As expected, the performance of thtedas degraded, see the overshootshon and q.
Nevertheless, this controller ensures minimal perémce properties.

Remark in the same way, it would be necessary to desigobust fixed controller for each value of mass
and center of gravity position, so that when coasidy all the 214 available flight points, the bagk
controller would be scheduled/interpolated as &tion of mass and center of gravity position. Thekbup
controller was chosen not to depend on airspeeruse the airspeed measurement, which may be missin
due to a sensor fault, is less reliable than thaesmement/estimation of mass and center of graasjtion.
Conversely, we have chosen not to design a robxest fcontroller over all 214 available flight pasnt
because its robust performance properties woutdddad: when designing the robust fixed contrpitas
worth reducing the range of variation of the mogarameters as much as possible, to obtain robust
performance properties which are as satisfactopoasible.
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6. PRACTICAL IMPLEMENTATION ASPECTS

To be possibly implemented onboard, the frequemeygain estimator and the gain-scheduled controller
should comply with the stringent constraints resglfrom the present industrial coding process iapple
to Airbus aircraft. Accordingly, the algorithms tealieen firstly encoded in full Simulifiki.e. without any
call to Mex nor MatlaB functions. In a second step, The Simufirdchemes were encoded by using the
existing symbols of the Flight Control Computer (FQibrary provided by Airbus to be compliant witine
SCADE process (Safety Critical Application DevelarhEnvironment). After encoding the algorithm with
FCC operators, the resulting computational burderuated by Airbus during the RECONFIGURE project
is about 1.5ms, which is quite acceptable and cbelturther improved by updating the estimateslawear
rate. As this library only includes basic operatfogical and mathematical type), the second si@p h
required higher level modules to be developed futimg more complex functionalities, e.g. requirgd b
matrix calculus. This was especially true for th2 éstimation algorithm, which involves matrix opioas
with complex numbers.

As regards the gain-scheduled controller, it ienarthy that the usual way of computing (off-liribg
value of the LFT controller is not suitable for looard implementations, as the computational coniylex
this procedure is generally high, and would esplgciaquire a matrix inversion of dimension 27 imet
present case. To bypass this difficulty severaralitives do exist [34], for instance by resortioga
recursive method which avoids this inversion byngsa fixed point technique (possibly with a relaxed
sampling rate). However, the complexity of the Léantroller designed in 85.2 is rather high: eveeath
control or stability derivative is repeated 3 tanp&vhich is reasonable, the frequency of the SPemesd
repeated 16 times, so that the on-line computdtimmaen of the technique proposed by [34] woulddme
high.

That is why we have preferred another option, ctimgj in developing off-line a surrogate model loé t
LFT gains, which could be used afterwards for oe-lcomputations, and which could also be easilydod
in terms of the basic FCC library operators by gsimly basic scalar operations available for ontboar
computers. The characteristics of these surrogatgels and the principles of the techniques pemmgjtti
rational-type representations to be obtained ateildd in [43]. To build this surrogate model, tto®l
namedkoalawas used, which is part of the APRICOT libraApproximation ofPolynomial andRational-
type forlndeterminateCoefficients viaOptimizationTools), included into the SMAC Toolbox (available at
http://w3.onera.fr/smay/ The tools included in APRICOT permit sparseaadl models to be generated,
which lead to simple yet accurate Linear FractidRepresentations. The computational complexityhef t
(rational) modeling is thus consistent with the Fidary coding requirements, as it only involvesed of
scalar additions and multiplications.

In the present case, the 3 control gakyg,, Ky, K; need to be modeled in terms of the 3 explanatory
variables M, , Mg, Z,, the SP frequency being directly inferred from thgen loop eigenvalue of the
simplified state-space model (22). To get a seteéérence data from which the approximated rational
function can be derived, a 3D gridding is firstighgeved by computing a set of LFT exact values from
regularly spaced samples in the input spatgxM,xZ,. Overestimated bounds of the aerodynamic
coefficients {M, O[Mz",Mg®|xMq OMg",Mq®|xZ, O[Z7", Z7*]} were selected to define the
expected cubic domain. Fig. 7 illustrates the testithis process for the 3D coefficierty(M,,Mq,Z,) -

The surrogate model used to approximate the 3 @ogéins simultaneously is computationally effidien
and achieves a very low acceptable error in thdevbelected domain.
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7. TIME-DOMAIN RESULTSOF THE RECONFIGURE BENCHMARK

7.1. Adaptive control strategy along a trajectory

The issue is to deal with the time-varying aspetithe parameters to be estimated, despite an
unsatisfactory closed loop excitation. This consetime estimator but also the gain-scheduled cdetrol
since the point is also to decide when the valdgbeoscheduling parameters should be updated, ikigow
thata measuref their reliability is available as well. At trstart,whencontrolling the A/C at a trim point,
"robust" values of the stability derivatives ar@shn as scheduling parameters, i.e. those corréspto
the robust controller of 85.5, to ensure minimabdity and performance closed loop propertieseAdy as
the estimator provides (reliable) estimates, tla@sdnjected in the gain-scheduled controller. Winewving
from a flight point to another, time-varying paraers can be tracked either by benefiting from the
forgetting factors, whose values may be adjustedgathe trajectory, or by resetting the estimatbemever
it is necessary [20]. Estimates may also be froizére I/O data content is too poor and hence gtemation
errors too high.

Regarding the adaptive control strategy, a firétitean is to apply the Certainty Equivalence Prpiei
(CEP), i.e. the estimates are continuously intredun the gain-scheduled controller whatever their
reliability is. Another solution is to switch todhrobust controller whenever the estimates areei@ible
enough. Now, the CEP is bypassed and the adjuswnéné scheduling parameters is discontinuousgusi
a low pass filter to avoid jumps in the schedulirdues. This 2 solution permits minimal stability and
performance properties to be guaranteed for thptaaclosed loop, a crucial point if the flightrdooller
was to be certified.

Conversely, the transient response of the adaptosed loop may be shorter with th€ sblution, as it
may be useless to wait for fully reliable estimétemnks to the robustness of the controller wipeet to
estimation errors: a proper time domain responsg lmaobtained despite less reliabktimates. The two
solutions are illustrated in the following, andexsigally produce the same type of results. Indestiates
are typically unreliable when closed loop excitatie poor, so that the difference between the ddsep
responses of the robust and gain-scheduled carisall not significant.

7.2. Flight scenario

To evaluatehe proposedadaptive scheme in the framework of RECONFIGURE,dimulated scenario
is a 380 seconds realistic flight profile includihguccessive stages:

1/ A first steady flight a{z =12500t, V. = 240kts).

2/ A climb up toz=20000t for t0 [65215, with V. = 240kts.

3/ An acceleration up t@, =335kts for t[[215,300 , with z= 20000t .
4/ A final steady condition atz = 20000, V. = 335kts).

The autopilot is used to regulate the altitwdend conventional airspead at their reference values. See
Fig. 8 for the time history of altitude and truespieed (which differs from the conventional airsee

The testing maneuvers selected by Airbus for tleistrial validation of the controllers involve jaigk
doublet-type signalsSo,to checkthe performanceof the adaptive flight controller, these usual stick input
signals are applied to produce a reference ingmasiN, during the 1 and &' parts of the flight, with
autopilot and auto-throttle switched off (which &ips on Fig. 8 why the altitude is no more regedaat
the beginning and at the end of the flight). Sepe &ifor the time plot of the acceleration (moregwsely the
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load factor ing) N,, the rotational rate; and the elevator (i.e. the A/C) inpdt,. The mass and center of
gravity correspond to the C1 case.

7.3. Adaptive control results

The performance of the adaptive controller can rdgdly be seen on the plots of the load factors in
Figs. 9 and 10N, vs N,.). Fig. 10 focuses on the responses at the begjrand at the end of the flight.
The blue line corresponds to the reference inpyt the black and red onésthe N, signals.As soonas
reliable estimates are available for schedulingpéation enables to recover a much better perfaceare.
satisfactory overshoot and settling time.

Fig. 9 presents the results along the whole trajgcAs expected, closed loop excitation is gloppthor
during the 273 stages corresponding to altitude/airspeed charsgesthe reference input signisl, in
blue color on theN, plot. As a result, during these 2 stages, eitherrbbust controller, or the gain-
scheduled one are used depending on the reliabilithe estimates and on the adaptive control esiyat
chosen (CEP or switch). The blackrvesof Figs. 9 and 1@orrespond to the*1solution (CEP, i.e. the
parameter estimates are used as scheduling paramdtatever their reliability), whereas the red ©ne
correspond to the"2solution (switch fort 0 [194,343 to the robust controller, also active for [018] in
both solutions, because the parameter estimatesnaediable or unavailable inside these time iraés)
Regardless of the flight controller, the outer lsepponses of the autopilot are satisfactory, lse@lots of
true airspeed and altitude in Fig.[Bieto thepoor excitationit is difficult to judge the quality of the inner
loop responses on Fig. 9, but they seem suitable.

Fig. 10 focuses on the steady flights at the beggand at the end of the simulation. In the uppet,
the 2 solutions (black/red lines) match exactlyawse the robust controller is used at the beginimitogpth
cases: the estimator is initialized so that somme tis needed before an estimate is available.drbéttom
plot, the transient response of tHeEP solution (in black) appears better, notind the overshoot and
the settling time for the"2 solution (in red) are those of the robust congrofor t <343: once reliable
estimates are available, the overshoot/settling timcome satisfactorlence, the % solution guarantees
minimal stability and performance properties foetadaptive closed loop at the price of a potentiddiss
proper transient response

7.4. Results of the recursive estimation algorithm

The reader is referred to [20] for a comprehensigscription of the estimation results. Fig. 11 fbyie
illustrates the behavior of the recursive FD schémmeed withM =43 frequency samples equally spaced in
the range 0.1-0.52 Hz), through tives; estimate got during the simulation. Tip@rameteuncertainty (8)
is plotted in blue dashed lines and results inZiregthe estimate (solid blue line) whenever itag high.
The green curve gives a rough idea of the refergaee drawn from the closest LTI model (just ofi@®
for the C1 case). Dum aloosemesh of the linearized modatsthe flight domain,thesevaluesareonly
plotted to give a trend (the true linearized valbegg unavailable). Owintp the simulatedscenariothe
variations that are tracked result either from angje in the flight condition or, at the start af tlun, from a
misknowledge of the initial parameter values. Botithem demonstrate the interestthe adaptation to
cope with modeling uncertaintidsis worth notinghatthecontinuousrariationof z/V is monitored by the
estimation algorithm during level changes, and thatparameters accuracy can also be used toitrégge
freeze of the estimates whenever the uncertaintgrbes too high (not enough excitation or rapid gean
in the flight condition). In addition, the forgety mechanism of (10) is only triggered in Fig. lhew
significant changes are detectedzty , providing a way to adapt more rapidly to varyoanditions.

It should also be pointed out that with such a goaitation (during the"¥3 parts of the scenaricgjome
parametersan'tbeestimategroperly.Hence to prevent from correlation issues or illaitioning, a tuned-
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down modeling or some regularization is requiredre a priori knowledge via the Bayesian formulaid

(8) is introduced; hence, the trends indicatedhiey(greenjeferencevaluescannotbe instantlymimicked by

the estimates, and instead these ones are dravandsihveprior valid estimates ciowardsaverageeference
valuesusedasa priori knowledge by the estimation algorithm (e.g., mealues for a given altitude). As
soon as sufficient excitatiads available, and the accuracy is good enough (dtme is needed to store
information through theecursiveupdatesof the FT), the estimates are freed again and converge rapidly to
suitable values. Thanks to the noise filtering m&she selected bandwidth, the FD algorithm dogs
requiremuchtime to accumulate enough information and to recgveper estimates. In case of continuous
estimation (CEP), the convergence delay is eventeshas the estimates may be reliable enough ajthou
the errors are not fully satisfying.

8. CONCLUSION

The contribution of this paper is twofold. Firsty adaptive scheme is presented, which deeply differ
from classical indirect adaptive control scheméssé use a time domain (Least Squares or gradient)
estimator, as well as a (SISO or square MIMO) fiem&unction to describe the plant. The controlker
designed on-line. On the contrary, in our schemepm@square MIMO plant model can be used under a
state-space form. Moreover, to minimize the conmfputal time, one uses a frequency domain plant mode
estimator and a gain-scheduled controller, desigrfielihe.

As a second contribution, the practical interesbwf scheme is illustrated by the design of an &dap
flight controller, with a computationéime anda complexitythatcomplywith therequirements of embedded
A/C implementation. The indirect adaptive conswhtegycombinesnefficientrecursiverequency domain
estimator with an LFTontrollerscheduledvith respect tdhe parameterso be estimated. Robustness to
transient and asymptotic estimation errors wasgquasingp andlQC analysigechniqguesanddemonstrated
via the industrial benchmark. Nonlinear simulatiafso show the capability to control the airplateng a
trajectory, a more difficult problem than controlli about a steady flight point since the time-vagyi
parameters have to be estimated degpuiteclosedoopexcitation.

These results are very promising as regards alpesspplication to civil aircraft. The next step wid
be to further validate the adaptive flight contial. Such a validation seems very difficult usimgigtical
methods, due to the complexity of the frequency alammodel estimator and gain-scheduled LFT
controller. For example, finding a Lyapunov functitor the adaptive closed loop, as classically damne
simpler adaptive control schemes, appears verkelgliln this context, different complementary smuos
have been or can be proposed:

1/ Checking the robustness of the LFT controlleatoestimation error on the scheduling parameters
(85.4): the obtained robustness margins appearciedigerelevant, even if the model estimator is not
accounted for in the analysis. Stability and pemi@mnce properties of the adaptive closed loop can be
guaranteed despite a maximal allowable amounteoégtimation error, provided by the estimator.

2/ Using the available measure of the confidencehenparameter estimates, to switch to a robust
controller whenever the estimates are not reliagpleugh (87): this enables to guarantee minimalilgiab
and performance properties for the adaptive clés@p, even when excitation is poor.

3/ Using extensive sets of nonlinear simulationsheck the robust stability and performance propert
of the adaptive flight controller: it would be wbrexploring this perspective of an industrial vatidn,
noting that a practical approach for the worst-ozed&lation of a similar indirect adaptive contsdheme
was already investigated by Airbus and Onera if. [41
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Figure 4: Nonlinear responsesfor the C1 case
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