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Abstract: this paper describes the application of an indirect LFT-based state-space adaptive control scheme 
to a transport aircraft, within the context of the European project RECONFIGURE. The principle of the 
scheme is to off-line design and validate a gain-scheduled controller, depending on the plant parameters to 
be estimated, and to on-line combine it with a model estimator, so as to minimize the on-board 
computational time and complexity. A modal approach, very classical for the design of a flight control law, 
is used to directly synthesize the static output feedback LFT controller depending on the control and 
stability derivatives, i.e. the parameters of the linearized aerodynamic state-space model to be estimated. 
Since the gain-scheduled LFT controller online depends on the parameter estimates instead of the true 
values, its robustness to transient and asymptotic estimation errors needs to be assessed using µ and IQC 
analysis techniques. A primary concern being on-line implementation, a fully recursive frequency domain 
estimation technique is proposed, with a low on-line computational burden and the capability to track time-
varying parameters. Full non-linear simulations along a trajectory validate the good performance 
properties of the combined estimator and gain-scheduled flight controller. To some extent, minimal 
guaranteed stability and performance properties of the adaptive scheme can be ensured, by switching to a 
robust controller when the parameter estimates are not reliable enough, thus bypassing the Certainty 
Equivalence Principle. 
 

1. INTRODUCTION 
Flight control has long been a privileged applicative field for robust and gain-scheduling control, see e.g. 

[1,6,10,39,42,45], and more recently for fault-tolerant and adaptive control [3,5,8,13,25,31,40,41,44,47,49-
54]. Noting that strong links exist between all these fields. Indeed, robust and adaptive control can be seen 
as competing/complementary techniques for solving the same problem of controlling an uncertain plant: if a 
robust controller aims to stabilize the whole set of possible plant instances, an adaptive controller uses on-
line measurements of the plant Inputs/Outputs (I/O) to stabilize the plant itself. On the other hand, gain-
scheduling can be seen as a special case of indirect adaptive control, whose principle is to estimate the plant 
parameters and to adjust the controller as a function of these on-line estimates: in the same way, a linear 
gain-scheduled controller adapts to the nonlinear plant using measured scheduling parameters. 

Gain-scheduling is classically used to control an airplane along a trajectory, where the controller gains 
depend on measured or estimated flight parameters, such as airspeed, Mach, mass or Center of Gravity 
(CoG) position. However, situations may occur where the performance of the gain-scheduled controller is 
no more satisfactory, e.g. in the presence of icing, actuator faults, or when a scheduling parameter becomes 
unavailable due to a sensor fault, especially airspeed [15]. Adaptive control is an attractive solution in this 
context to recover closed loop performance. 
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Most of the adaptive control literature focuses on the use of Input/Output (i.e. black box) models to 
control the system [27]. Nevertheless, a physical aerodynamic state-space model is available for an aircraft 
(A/C), and state-space methods are typically used to design robust or gain-scheduled flight control laws, so 
that adaptive flight controllers are usually designed using state-space methods, see e.g. 
[5,13,25,31,40,41,44,47,50-54]. 

Generally speaking, two main problems need to be solved in adaptive control, namely to obtain a priori 
guaranteed stability and performance properties of the adaptive closed loop, and to decrease the on-line 
computational time and complexity. In the context of indirect adaptive control, following [11,12], a solution 
based on robust and gain-scheduled control tools is to off-line design a gain-scheduled controller depending 
on the plant parameters to be estimated, to avoid the complexity of implementing a control design algorithm 
on-line. 

On the other hand, LFT (Linear Fractional Transformation) representations of the plant (depending on 
the parameters to be estimated) and controller (depending on the parameter estimates) are connected to 
obtain an LFT closed loop depending on the true values of the plant parameters and on the estimation error. 
Using µ analysis with constant and frequency-dependent D, G scalings [9,14], and more generally Integral 
Quadratic Constraints (IQCs) [23,35], it is possible to study the stability and H∞/L2 performance properties 
of the adaptive closed loop, considered as a gain-scheduled closed loop with an error on the scheduling 
parameters. As a specificity of this validation technique, the estimator is not included in the analysis which 
just provides specifications, i.e. a maximal amount of the allowable estimation error, and possibly a 
maximal rate of variation of the estimates. This estimation error can be considered as time-invariant or time-
varying, thus studying the robustness of the adaptive scheme in the face of an asymptotic or transient 
estimation error. 

Several gain-scheduling state-space control design techniques can be used, which assume time-varying 
or time-invariant scheduling parameters, see [42] for a survey. In the sequel, we will focus on the modal 
technique of [33] because this one appears especially suitable for aeronautical applications: a static output 
feedback controller placing the main closed loop poles is synthesized under an LFT form. It only depends 
on the main A/C parameters to minimize on-line complexity, and to avoid an unsatisfactory transient 
response of the adaptive closed loop. Indeed, the quality of the estimated secondary A/C parameters is 
generally poor, so that a bad transient estimation error would give a bad transient closed loop response. This 
static LFT controller can be implemented either using the efficient recursive technique of [34], which avoids 
any matrix inversion, or using a surrogate model, see section 6. 

Another main issue is to develop a method for estimating the A/C model parameters on-line, with a low 
computational burden and the capability to track time-varying parameters despite measurement noises, poor 
data information contents (e.g. in cruise condition when variables are likely to be almost constant during 
long periods), and external disturbances (turbulence). Whatever method used, residual errors can sometimes 
be large and a measure of the parameter accuracy should also be provided, so that some logic can be 
introduced: if the estimated scheduling parameters are not reliable enough, one can switch to a robust back-
up controller ensuring minimal performance properties. 

Algorithms for recursive parameter estimation have been developed for real-time applications in various 
fields such as industrial processes, robotics and aerospace [18,29]. Most theoretical aspects were covered by 
early reference publications [2,30]. In aeronautics, the early attempts to benefit from on-line parameter 
identification date back to the 80s, but they were limited by the available computational power of onboard 
processors. The common Time Domain (TD) methods are usually based on recursive or sequential Least-
Squares (LS), or Extended Kalman Filters to cope with nonlinearities [8,17]. More recently, this challenge 
has also been addressed by recursive subspace identification of linear or LPV (Linear Parameter-Varying) 
models. However, the relevance of such advanced multi-model or nonlinear schemes for on-board 
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implementations is dubious due to the present limitations of on-board computers, especially for A/C because 
of certification issues and code verification. That is why we look in this paper for a simple enough 
approach, more likely to satisfy those real time constraints, and that could constitute a viable alternative for 
updating the models required by the most advanced FDD (Fault Detection and Diagnosis) and FTC (Fault 
Tolerant Control) schemes. 

The paper is organized as follows. §2 presents the aircraft problem. The general principles of the 
estimation process are described in §3, see [20] for a more complete presentation. An LFT flight controller 
is synthesized in §5 using the tools briefly described in §4, and some issues related to implementation 
aspects are covered by §6. Adaptive control results using the realistic non linear simulator of the 
RECONFIGURE project are presented in §7. Concluding remarks end the paper. 

2. THE AIRCRAFT PROBLEM 
The indirect adaptive control strategy presented in this paper has been applied in the framework of the EU-
FP7 funded project RECONFIGURE (REconfiguration of CONtrol in Flight for Integral Global Upset 
REcovery). The goal of this project is to investigate and to evaluate aircraft guidance and control 
technologies that facilitate the automated handling of off-nominal/abnormal events, alleviate the pilot 
workload, and that optimize the aircraft status by automatically reconfiguring the aircraft to an optimal 
flight condition (see http://reconfigure.deimos-space.com/). A detailed description of the benchmark model 
and the fault/failure scenarios is given in [15,24]. The V&V process involves a nonlinear highly 
representative model of a generic Airbus civil aircraft. The benchmark contains a baseline gain scheduled PI 
controller, actuator/sensor models, measurement filters, as well as control law protections. The different 
control designs developed during the project had to demonstrate their performance and robustness thanks to 
the industrial benchmarking proposed by Airbus, by using an extensive set of simulations including a wide 
range of operational conditions (realistic flight scenarios, external disturbances, pilot maneuvers). The 
computational burden and complexity of the schemes had also to be compliant with stringent computational 
constraints in order to be possibly implemented on embedded computers. Robustness issues were tackled by 
using tools like a Functional Engineering Simulator, implemented during the project to achieve a traditional 
Monte Carlo analysis as a preliminary step of the industrial V&V process [24]. It is also noteworthy that 
avenues do exist for improving the V&V of more complex controllers like the proposed adaptive scheme; 
for instance, a practical approach for the worst-case analysis of a similar adaptive controller was already 
investigated by Airbus in [41].  

The highly realistic nonlinear simulator of the RECONFIGURE project, which is very close to a real civil 
aircraft, includes a nonlinear aerodynamic model with 5 longitudinal states: the angle of attack α , the pitch 
rate q, the pitch angle θ , the true airspeed V and the altitude z. The acceleration zN  is also to be accounted 
for as an additional output2. Two control loops are considered: the inner loop is used to control the fast 
longitudinal states α  and q, as well as the output zN , using the flight controller. The outer loop is used to 
control the other longitudinal states using an autopilot and an auto-throttle. In the context of the 
RECONFIGURE project the autopilot and auto-throttle are given, only the flight controller is allowed to be 
modified to recover the performance of the inner loop, e.g. in the presence of an actuator/sensor failure. An 
adaptive flight controller is synthesized in this paper. 

In the context of our indirect adaptive control scheme, a linearized longitudinal aerodynamic model with 4 
states α , q, θ , V and the output zN  should be a priori estimated: 

 
2 In the following, the variables α, q and so on of the linearized models should be understood as departures from trim variables, whereas they 

correspond to global variables when using the non-linear simulator. 
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mδ  is the elevator input. The effect of altitude, which is the slowest longitudinal state, is neglected. The 
aircraft is supposed to move about a given flight condition and a constant engine thrust is assumed. 

Nevertheless, as explained in the following, only the first two lines and the last line of model (1) need to be 
estimated in practice, i.e. those corresponding to α& , q& and zN . More precisely, the issue is to estimate the 
control and stability derivatives, i.e. the parameters αZ , qZ … of the linearized aerodynamic model. A 
linear in the parameters model is obtained, i.e.: 

[ ] T
m

T VqNzq ][ δαα Θ=&&  (2) 

The Θ matrix includes the 12 parameters to be estimated. In the context of the adaptive scheme, the main 
goal of the on-line estimator is to update the values of the 5 main control and stability derivatives 

αδαα NMMMZ q ,,,,  used to schedule the controller (§5.1), although all the 12 coefficients have to be 
estimated. 

Only the first two lines and the last line of model (1) need to be estimated because the linearized model used 
to design the flight controller only contains the fast longitudinal states α  and q, as well as the output zN : 
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The flight controller, designed using the 2 states linearized model above, is a posteriori validated on the 4 
states linearized model (1). Its architecture is: 

ccIqNzm NzLdtNzNzKqKNzK +−++= ∫ )(δ  (4) 

where cNz  is the reference acceleration input. 

3. A FREQUENCY DOMAIN APPROACH FOR ON-LINE PARAMETER ESTIMATION 
Adaptive control strategies are rather uncommon in the aircraft field, even if they begin to develop for 

UAVs, and this has to do with stringent certification issues. Otherwise, practical implementation of indirect 
adaptive schemes mostly rely on TD algorithms for estimating time-varying or uncertain model parameters 
[48]. Actually, TD algorithms could seem preferable at first sight, as the basic ones only involve very simple 
operations (e.g., by replacing a matrix inversion with a scalar division). However, advanced strategies are 
usually required for regularizing the estimation process, and those advantages can thus be wasted (see [18] 
for an overview of the pros and cons of TD methods). By contrast, FD techniques have many desirable 
features for on-line applications [16,19,26]. The computation time can be reduced by processing only a 
limited amount of frequencies within the bandwidth of interest, and the resulting indirect filtering of the 
wide-band disturbances (e.g., Low Frequency mismatch and High Frequency noise) improves the estimation 
accuracy. The standard deviation of the estimation errors can also be evaluated without any additional cost. 

Furthermore, the availability of efficient tools making the transition from TD to FD possible, such as the 
recursive Fourier Transform (FT), greatly facilitates their use, and this was stressed in many publications 

during the last 20 years [4,16,26,36-38,46]. Fig. 1 gives a schematic representation of the way the FD 

information is linked to the estimation process. Moreover, many issues specific to on-line estimation are 



 

 

 

5 

mitigated when using FD approaches instead of TD ones: estimates are nearly unbiased even in the presence 
of noisy I/O data in case of collinearity in the regressors, the estimation errors do not require to be improved 
afterwards due to possible colored residuals, and so on (see [37] for all these practical aspects). 

Otherwise, TD/FD estimation schemes rely either on recursive algorithms (making use of measurements 
as soon as they are available), or alternatively on sequential procedures, processing moving data windows 
with a lower rate to get a succession of piecewise constant values [7,18]. In [19], a sequential process was 
proposed for monitoring a civil aircraft, that permits pre and post-processing stages to be included in the 
procedure to prevent from and to filter out inaccurate estimations. Even if both approaches have their own 
pros and cons [22], recursive schemes should be favored for on-line implementation, and FD is more 
suitable to define hybrid recursive/sequential procedures because the information naturally accumulates in 
the signals' FT, which behave like storing memories and are managed with more flexibility (truncation, 
forgetting, resetting). 

Finally, one of the major reasons for which recursive TD algorithms are more popular than FD ones 
comes from some additional computation complexity, which has prevented from developing a fully 
recursive formulation of the FD approach, unlike the TD case. This paper improves the state-of-the-art 
existing approaches and proposes a recursive procedure from start to finish, permitting the practical 
implementation constraints to be satisfied, and the algorithm to be possibly embedded in aircraft computers. 
Other minor issues in the FT expressions of the signal derivatives are also properly settled, which are often 
disregarded for sequential processing thanks to the detrending achieved prior to FT computations, but which 
cannot as far as recursive algorithms are concerned. To sum up, the point is that FD approaches can also be 
simplified in order to reduce their computational complexity, similarly to what is done for TD formulations, 
and they can also include similar advanced mechanisms like data forgetting [18,30]. Before developing the 
proposed algorithm in §3.2, section 3.1 recalls the basics of the usual sequential approach in state-space 
form. 

3.1. Standard formulation of a sequential algorithm 

The transition to the FD is classically realized by means of the standard FT. As the signals are only 
available over a limited period of time ],0[ T , the finite FT is used instead, which permits the FT of any 
signal )(tx , time derivative )(tx& , or constant value to be easily computed in the FD (see [20] for details). 
Practically, from the sampled values of )(tx , the finite FT can be computed via numerical integration: 

),(
~

)()(
1

0

TXtetnxtX
N

n

tnj ωω ω ∆=∆∆≈ ∑
−

=

∆−  (5) 

using N  values equally spaced over ],0[ T , with a sampling period t∆  (see for instance [26]). The term 
)(

~ ωX  represents the Discrete Fourier Transform (DFT) of the samples { 1,,0),( −=∆ Nntnx K }. Efficient 
tools are available for computing this quantity, namely the Fast Fourier Transform (FFT) and the Chirp z-
transform (CZT). As the aircraft model we are interested in is expressed in state-space form (see §2), the 
stability and control derivatives Θ  to be estimated are included in the usual state matrices DCBA ,,, ; they 
are assumed to be constant or at least to vary slowly during the flight with respect to (w.r.t.) the estimation 
process and updating rate. However, when applying estimation techniques, it is generally advisable to 
estimate also state/output biases yx bb /  in order to cope with I/O measurement offsets or model structure 
uncertainties [21]. By applying the FT to these state-space equations, if ω  is chosen to be a multiple of the 
frequency step ω∆  (which happens for instance when using the FFT), the FD model can be written as [19]: 
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by denoting )(),(),( ωωω YYUUXX ≡≡≡ , and where )(ωd  is a Dirac function in the FD, such that 1)( =ωd  
for 0=ω , and 0)( =ωd  for 0/2 ≠π=ω Tk  [20]. As a result, the discrepancy )()0( Txx −=δ  between the 
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state initial and final conditions is translated into a bias that impacts on all frequencies: localized effects in 
the TD are translated into broadband effects in the FD, and vice versa. A contrario, the biases act as 
broadband inputs in the TD and just modify the zero frequency. To get the most out of these specificities, it 
is generally worthwhile to discard the zero frequency during the estimation, which avoids the state and 
output biases having to be estimated. Thus, (6) is further simplified and reduces to: 





+=
−++=

DUCXY

TxxBUAXXj )()0(ω
 (7) 

Hence, the discrepancies δ  should be estimated in addition to the other parameters Θ , if not zero. 
However, this issue has not been paid much attention and is often ignored in practice [19,28], which could 
be only justified in a pinch if a suitable preprocessing is inserted in a sequential algorithm to filter out these 
effects. If we assume that all the state components are measured, an Equation Error approach can be used, 
that consists in minimizing a set of cost functions [36-38] for all the state and output equations in which a 
subset iΘ  of stability and control derivatives needs to be estimated ( )dim()dim(1 YXi +≤≤ ), the costs 
summing on M  frequency samples available from the FT ( NM ≤ ). By collecting these M  terms in vector 
and matrix forms, and by denoting iΘ  the extended vector of unknown parameters in δ,,BA  ( DC,  resp.), 
the cost functions lead to classical LS criteria [38]: 
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where †  is the complex conjugate transpose operator. In (8), the conditioning of the resulting optimization 
has been possibly improved by introducing some a priori knowledge about the expected value of the 
parameters. This form of regularization can be especially useful for weakly identifiable parameters, by 
softening their variations and improving the convergence. The principle of this Bayes-like estimation 
consists in adding a penalty term to the LS criterion to weight the iΘ  increments with respect to prior values 

0iΘ  through a corresponding covariance 0Σ  (usually a diagonal matrix). (8) is nothing but a standard LS 
regression with complex data instead of real ones. The well-known solution [26,38] to this problem is then 
computed as ][][ 0

1
0

1
0 )()(ˆ 1

ii
†† ΘΣ+Σ+=Θ −− −
YXXX RR , where ()R  is the real part of a complex value.  

3.2. Towards a fully recursive algorithm 

The previous LS formulation is well known, but was mostly implemented in sequential estimation 
processes, ignoring the issues of the extra discrepancies δ  as well as the need to invert the information 
matrix. Here, we are in a different prospect and wish to consider the limitations of on-board computers, as 
well as the certification and code verification issues. A practical implementation on civil aircraft should 
preclude the use of any iterative algorithm which would result in some unbounded computation loop through 
the data. Hence complex operations like non analytical matrix inversions should be banned. That is why we 
look for a simple enough approach, likely to satisfy those real time constraints, and based on a fully 
recursive algorithm. At first, it should be noticed that the summation (5) makes very simple operations 
possible (see [36] for instance): 
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to evaluate the DFT at time tn∆  from its previous value at time tn ∆− )1( . For a given frequency ω , the 
quantity )exp( tj ∆− ω  is constant, so that the updating of the DFT just requires two multiplications and one 
addition, resulting in a very low computational effort. As the estimation process also involves state 
derivatives, the measurements of which are usually not available, a recursive formulation similar to (9) can 
be worthwhile for signals )(tx&  to avoid a pseudo-derivation from the available signal )(tx , or the extra δ  
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parameters to be estimated if we had to use (7). The idea is to derive LS costs similar to (8) but involving 
)( kix ω&  directly in the computation of the error terms as this is the case for a measurement )( kiy ω . This idea 

is new and differs from the two usual ways consisting either in computing an estimate of )(tx&  in the TD, or 
in replacing )(ωX&  by )(ωω Xj  in the FD, which is incorrect whenever 0≠δ . Hence, the proposed FD 
algorithm permits extra parameters, like δ , to be eliminated from the Θ  vector. 

Otherwise, when using recursive updates, older information can be overweighted regarding to recent 
ones, which can result in much delay in the adaptation process. That is why data forgetting can be used in 
conjunction with (9), to remove the effect of oldest data by working on a limited time window [38]. In that 
case, the choice of the window width results from a trade-off between the amount of information available 
from the data and the sensitivity to A/C parameter variations. This remark also applies to a pure sequential 
approach, where a non recursive form of FT is applied to the data [19], resulting in a succession of piecewise 
constant values, updated only after some seconds and hence delayed with respect to the varying parameters. 
To develop a recursive algorithm and to avoid the storage of a time history of the past data, it  is still  possible 
to benefit from the FT linearity w.r.t. the signals to implement a forgetting process similar to the one of TD 

exponential forgetting [18]; this simply involves multiplying the previous FT by a forgetting factor λ  )1( <λ  
[38]. Combining all these ideas with (9) yields the following recursive expressions for any signal )(tx , 
denoting )(),(),( tnxxXXXX nnnnn ∆≡≡≡ ωω &&  and tj

nn exx ∆−∗ = ω  (see [20] for details): 
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We are now going to address a key feature of the proposed estimation algorithm. With TD methods, the 
arrival of a new sample only results in the addition of a new row in the regression matrix [18]. So, the 
information matrix (or its inverse) can be updated via simple (and light) computations thanks to the 
Woodbury formula. With FD methods, a new sample modifies all the M  rows of the matrix X  through the 
FT updates of (10). That is why the usual algorithms generally rely on a sequential estimation of the 
parameters, due to the lack of a recursive update of the matrix )( XXR †R=  or of its inverse. However, it was 
established in [20] that a recursive version is achievable anyway, almost similar to the TD ones, thanks to 
the 3 following lemma. 

Lemma 3.1  In case of )dim( im Θ=  regressors, the basis of a time-recursion for the matrix mM ×∈RX  can 
be set as: 

†t††
nnnn ExXX ∆+= −1λ  (11) 

for 1m
Rx ×∈  defined as T

n tnutnxtn ])()([)( ∆∆=≡∆ xx  and ][ 1 tnjtnj
n

Mee† ∆ω∆ω= LE . 

Lemma 3.2  As a result, the information matrix nnn
†M XX=  can be broken down into 3 parts as: 
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where .1and,,,,,, 23231212111 ======∆= − i
T
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Lemma 3.3  Hence, 1−
nM  can be computed recursively by applying the matrix inversion lemma 3 times to 

(12), as ( 1=∀k  to 3): 

)( 11111
1 ][ −−−−−

+ −=+= kkkkkkkkkk ADBsIADCBAA   with 1
2

1 −= nMA λ , nMA =4 , 11 += −
kkkk BADs  (13) 

Finally, (13) permits the direct updating of 1−
nM  to be computed without requiring a tricky matrix inversion, 

by using only a series of matrix additions and products. For the sake of simplicity, 10
−Σ  was assumed to be 0 

in the previous expression of nM , but dealing with a priori knowledge is however possible by achieving at 
first a series of m  rank 1 corrections to 1

1
−A  with the diagonal values of 1

0
−Σ . See [20] for the proofs and for 

a comparison of the computational cost of this recursive algorithm w.r.t. an iterative blockwise inversion. 
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4. GAIN-SCHEDULING AND ROBUSTNESS TOOLS 
A modal design technique of a static output feedback controller under an LFT form is presented in the first 
subsection. The second one presents a robustness analysis technique in the presence of time invariant or 
time varying parameters.  

In both cases, a preliminary step is to put the open loop plant model ),( θsG , where θ  is a vector of 
parameters, under the standard LFT form usHFusGy l ]),([),( ∆== θ , i.e.: 









=









w

u
sH

z

y
)(  (14) 

zw ∆=  (15) 

The transfer matrix )(sH , with additional I/O w  and z , is fixed while )(
iqi Idiag θ=∆  gathers the 

parametric uncertainties, i.e. each parameter iθ  is repeated iq  times on the diagonal of ∆ . The fictitious 
feedback (15) is used to introduce the parametric uncertainties in the model. Generally speaking, using the 
LFR Toolbox [32] for instance, any state-space representation with a polynomial or rational dependence on 
uncertain or varying parameters can be put under this form. 

Parameters iθ  are supposed to be normalized in this section, namely the vector θ  is supposed to belong to 
the unit hypercube H  (i.e. 11 +≤≤− iθ  for all i ). Associated parameters, before normalization, typically 
belong to an hyper-rectangle. 

4.1. Modal design of an LFT gain 

The first issue is to design a gain-scheduled LFT controller, i.e. a static LFT gain )(θK  placing closed loop 
poles for the open loop plant model ),( θsG , using the technique of [33]. All θ -dependent quantities in the 
following Lemma are supposed to be under an LFT form. 

Lemma 4.1 [33] Let ( )(),(),(),( θθθθ DCBA ) be a state-space representation of ),( θsG . Assume that m  
closed loop eigenvalues )(θλi  are to be placed. Let a static output feedback gain )(θK  satisfy the equality: 

[ ] )(
)(

)(
)()()( θ

θ
θ

θθθ W
W

V
DCK =








 (16) 

where ])()([)( 1 θθθ mvvV K=  and ])()([)( 1 θθθ mwwW K= . Each pair of vectors )(θiv  and )(θiw  must 
satisfy: 

[ ] 0
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)()()( =
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
−

θ
θ

θθλθ
i

i
i w

v
BIA  (17) 

Then, the interconnection of ),( θsG  with )(θK  has m  placed eigenvalues )(θλi . 

In practice, closed loop eigenvalues )(θλi  are chosen first. Then, eigenvectors )(θiv  and associated vectors 
)(θiw  are computed so as to satisfy (17). The feedback gain )(θK  is computed using (16). 

 

Remark 1: Equalities (16,17) must be exactly satisfied, so that the number of poles to be placed must be less 
or equal to the number of plant outputs. Thus, only the dominant plant poles are placed in practice, and the 
position of the closed loop secondary poles is checked a posteriori. 

 

Remark 2: this modal method not only places the closed loop eigenvalues (i.e. the closed loop poles), but 
also the associated eigenvectors, i.e. this is an eigenstructure assignment method. The robustness of the 
controller strongly depends on the choice of the placed eigenstructure. Robust controllers can be expected 
when respecting as much as possible the open loop dynamics, for instance by projecting the open loop 
eigenvectors, i.e. by choosing closed loop eigenvectors which are as close as possible to the open loop ones. 
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In the same way, in §5.2, the closed loop frequency of the short period mode, which is the main mode of the 
aerodynamic model, will be chosen to be the same as the open loop one, just the damping ratio will be 
improved. This enables to design flight controllers which reveal (very) robust to parametric uncertainties. 

 

Using the routine fb_sched.m of the LFR Toolbox [32], the technique provides a static feedback gain: 

21
1

221211 )(),()( KKIKKFK l
−∆−∆+=∆= Kθ  (18) 

where )diag(
iki Iθ=∆  and 








=

2221

1211

KK

KK
K .  

After the design, a key point is to check the well-posedness radius of the LFT gain, i.e. the maximal size k  
for which the matrix ∆− 22KI  is invertible for all Hk∈θ  (i.e. kk i +≤≤− θ  for all i ). Using standard 
Matlab routines, a guaranteed value of this radius, i.e. a lower bound, can easily be obtained as the inverse 
of a µ  upper bound of 22K , where µ  is the structured singular value [9]. Since the vector θ  of plant 
parameters is assumed to belong to the unit hypercube H , the well-posedness radius must be greater than 1. 

4.2. Robustness analysis 

Consider a closed loop LFT model ]),([ ∆sMFl , where ∆  contains normalized uncertain parameters iθ . The 
aim of the following Lemma is to compute a guaranteed value of the worst-case ∞H  norm / 2L  gain of 

]),([ ∆sMFl , i.e. of its maximal value over H∈θ . 

Lemma 4.2 [10] The issue is to compute a guaranteed robust performance level γ , for which: 

H||sMF||
2Lil ∈∀≤∆ θγ]),([  (19) 

Let 0>= ∗DD  and ∗= GG  be scaling matrices satisfying DD ∆=∆  and GG ∗∆=∆  for all structured ∆ . 
Let )(),/()(

21
sMIIdiagsP nn γ= , where 1n  (resp. 2n ) is the size of the I/O of ]),([ ∆sMFl  (resp. of ∆ ). 

A sufficient condition for (19) to hold is that there exist scaling matrices D  and G  satisfying ω∀ : 

DGjPjPGjjPDjP ≤−+ ∗∗ ])()([)()( ωωωω  (20) 

When parameters iθ  are supposed to be time invariant, complex frequency-dependent scaling matrices 
)(ωD  and )(ωG  are handled, and inequality (20) can be independently solved at each frequency. This is a 

skew µ  analysis problem [10] for which efficient computational tools exist, and especially the routine 
mu_margin.m of the System Modeling, Analysis and Control (SMAC) Toolbox developed by Onera in 
Matlab-Simulink (available at http://w3.onera.fr/smac). Conversely, when parameters iθ  are supposed to be 
time varying, without bound on the rate of variation, real frequency-independent scaling matrices D  and G  
are handled, and inequality (20) must be simultaneously solved on the frequency continuum using IQC 
tools, see e.g. [14,23] and the SMAC Toolbox. Last note that a bound on the rate of variation of the 
parameters can be introduced, using a generalization of the D,G scalings, in the framework of IQC analysis 
[35]. 

5. DESIGN AND VALIDATION OF A GAIN-SCHEDULED FLIGHT CONTROLLER 
To reconfigure the inner control loop of the A/C in faulty or unexpected situations, a gain-scheduled 
controller depending on the control and stability derivatives is designed in §5.1 and §5.2, and validated on 
the nonlinear simulator in §5.3. Its robustness to an estimation error is checked in §5.4. In §5.5, a robust 
controller is deduced from the gain scheduled one, by introducing mean or worst-case values of the 
scheduling parameters. 

5.1. State space design model 

For the RECONFIGURE project, a set of 214 longitudinal linearized models has been provided by Airbus, 
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covering the flight domain with respect to speed, altitude, mass and center of gravity position variations. 
This set is used to design and to validate the gain-scheduled controller. Owing to the range of variation of 
the stability derivatives ( K,, qZZα ) over the set of 214 models, the aerodynamic model (3) can be 
simplified by considering only the main stability derivatives: 


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MqMMq
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 (21) 

i.e. 1≈qZ  while 0,0 ≈≈ qNZδ  and 0≈δN . Indeed, in practice, when validating the flight controller, 
designed using model (21), on the full 2 state aerodynamic model (3), closed loop performance appears 
essentially to be the same using the simplified model (21) and the full model (3). 
By normalizing δM  and αN  to unity, the design model can be further simplified to become: 
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 (22) 

After designing the gain-scheduled controller: 
T

q qzdtzZMMKu ])[,,( ∫= αα  (23) 

The true feedback controller will be: 
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More precisely, when considering the architecture (4) of the flight controller, the feedback gains 

NzK , qK , IK can be deduced from (24). The feedforward term L will be retuned in §5.3.  

5.2. Controller design 

Following [33] an open loop LFT model under the form (22) is built using the LFR Toolbox [32], with 
input u , outputs z  and q , states α  and q . The parameters of the LFT model are qMMZ ,, αα , whose 
ranges of variation correspond to the set of 214 linearized models. Actuator and sensor models are added to 
this LFT model, as well as a 2nd order Padé model (used to represent a time-delay at the plant input) and an 
integrator on the z  output, so that the LFT design model has 3 outputs ∫ zdtqz ,, . As a result, the 3 main 
closed loop poles can be placed by the LFT feedback controller ),,( αα ZMMK q , namely: 

• The integrator pole at a specified location λ , the same for all models, i.e. for all values of 
αα ZMM q,, . 

• The short period (SP) mode as a complex mode with damping ratio 0.8 and frequency ω , where ω  is 
chosen as the frequency of the open loop SP mode, i.e. the poles of the 2 states linearized model (22). 

These closed loop poles are chosen to satisfy classical design specifications on the step response to a 
reference acceleration czN , namely maximal settling time on zN  and maximal overshoots on zN  (10%) and 
q  (30%). The criteria chosen for evaluation rely on good tracking performance of the acceleration with 
homogeneous responses.  

Once the design LFT model is computed, depending on the free parameters αα ZMM q,, , and after 
choosing the closed loop poles with an additional free parameter ω , the LFT feedback controller 

),,,( ωαα ZMMK q  is designed using Lemma 4.1. When implementing the controller on-line, the estimated 
values of αα ZMM q,,  will be used, not only as scheduling parameters, but also to compute ω  as the SP 
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mode frequency of the estimated 2 states model (22). A minimal value is introduced for ω , to speed up the 
closed loop SP mode when it is too slow with respect to the closed loop integrator pole. 

This LFT controller, modified following (24), is validated over the 214 linearized models under the form 
(3). Although the value of the LFT controller at a flight point is computed using the true values of the 
stability derivatives, small changes of the closed loop integrator and SP modes are expected, since the 
secondary stability derivatives are no more neglected. Moreover, the closed loop actuator, sensor and Padé 
model poles need to be checked since they were not explicitly placed in the design procedure. Fig. 2 
presents the closed loop poles for all 214 models, when zooming on the integrator pole and SP mode. The 
result is quite satisfactory, as well as the step responses in Fig. 3. Note that the q  output is normalized by its 
steady state value at each flight point. 

5.3. Nonlinear validation 

The LFT controller is validated on the nonlinear simulator for the 214 flight points. The testing 
maneuver usually selected for industrial validation involves joystick doublet-type signals. Both the autopilot 
and the auto-throttle are switched off. Time domain responses differ from those obtained with the linearized 
models on Fig. 3, primarily because of the additional slow longitudinal states zV ,,θ  in the nonlinear 
aerodynamic model, so that the feedforward term L  of the flight controller (4) needs to be retuned. 

Remember IK  is the feedback gain corresponding to the integrator on the zN  output. The linearized 
responses of Fig. 3 were obtained with the classical choice IKL −= . Nevertheless, to obtain a satisfactory 
performance on the nonlinear simulator, IKCoGmassAL ),(−=  needs to be chosen, where the multiplicative 
factor A only depends on the mass and center of gravity position to ease the implementation. Choosing A 
results from a trade-off between the fastness of the closed loop and its overshoots: increasing A increases 
the fastness, at the price of higher overshoots on outputs zN  and q . 

Nonlinear responses, which are satisfactory, are displayed in red color in Fig. 4 for a given value of mass 
and center of gravity: this "C1 case" includes 25 flight points corresponding to variations of airspeed and 
altitude. The airplane needs to be trimmed, before applying the first filtered step on the reference 
acceleration input (in blue color). 

5.4. Linear validation via µ and IQC analysis 

The issue is to check the robustness of the LFT controller in the presence of estimation errors on the 5 
main derivatives αδαα NMMMZ q ,,,,  at each of the 214 available flight points. To this aim, an error is 
introduced in each stability derivative at a given flight point, e.g.: 

)1.01( 1
0 δαα += ZZ  (25) 

where 0
αZ  is the value of αZ  at this flight point. When the normalized uncertainty 1δ  varies between -1 and 

1, the corresponding variation of αZ  is %10± . When introducing an uncertainty on each main stability 
derivative in the LFT controller, a new LFT controller is deduced using the LFR Toolbox [32], which 
depends on ]5,1[)( ∈iiδ . More precisely, in the structured model perturbation, the normalized estimation errors 
on qMMZ ,, αα  are repeated 3 times on the diagonal, 1 time for δM , and 2 times for αN . Two 
approximations are made to get this rather reasonable complexity: � the frequency ω  in the initial LFT 
controller is fixed to its nominal value, i.e. it is computed using the true values of the stability derivatives at 
the flight point; � in the feedforward term IKAL −= , IK  is also fixed to its nominal value. 

At a given flight point, the LFT closed loop is obtained by connecting the new LFT controller with the 
linearized aerodynamic model (3), augmented with actuator, sensor and Padé models, and with an integrator 
on czz NN − . The standard interconnection structure ∆−)(sM  is obtained either for robust stability analysis 
in the Left Half Plane, or for robust performance analysis of the closed loop transfer function between czN  
and the tracking error czz NN − . A first order frequency domain template is applied to czz NN −  to ensure a 
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minimal steady-state error (1%), a maximal frequency domain overshoot (6 dB), and a minimal closed loop 
bandwidth (0.5 rad/s): see the plot in Fig. 5, where the template is in green color and the nominal (without 
uncertainty) transfer functions between czN  and czz NN −  are in red color. 

A time invariant estimation error is supposed at first. µ analysis gives a range of variation between 
34.2% and 49.7% over the set of 214 flight points for the LTI (Linear Time Invariant) robust stability 
margin in the Left Half Plane, with an average value of 38.8%. For instance, a margin of 38.8% means that 
closed loop stability is guaranteed despite a simultaneous uncertainty of ±38.8% on all five main stability 
derivatives, which appears very satisfactory. Note that the result does not depend on the weight of 0.1, 
which was just introduced to normalize the uncertainty in (25).  

The results obtained with a time-varying estimation error reveal not so different with a range of variation 
between 23.0% and 35.8% for the LTV (Linear Time Varying) robustness margin (average value of 31.5%). 
These results are obtained with IQC analysis and constant scaling, i.e. without bounding the variation rate of 
the uncertainties. If the gap between the LTI and LTV robustness margins was larger, it would be worth 
introducing a bounded rate of variation for the estimation error, to explore the intermediate cases, but this 
appears useless here.  

The robust performance margins are computed in the same way, leading to a range of variation between 
5.8% and 21.0% for the LTI margin (average value of 14.2%), and a range between 4.9% and 18.2% for the 
LTV margin (average value of 12.3%). Again, the gap between LTI and LTV robustness margins is 
reasonable and the results are satisfactory, when considering that performance is much more constraining 
than stability. 

5.5. Design of a robust controller 

To apply the proposed adaptive strategy, a robust controller is needed which only depends on mass and 
center of gravity position, i.e. it should not depend on airspeed, altitude nor on stability derivatives. For the 
sake of simplicity, only the C1 case is considered here, corresponding to 25 flight points. This robust 
controller can be deduced from the gain-scheduled one of §5.1 and §5.2 by introducing mean or worst-case 
values of the 5 scheduling parameters. 

More precisely, 3 possible values are considered for each of the 5 parameters, namely the minimum, 
mean or maximum values of the derivative over the 25 linearized aerodynamic models: 35=243 
combinations are involved. The criterion is the minimal value of the degree of stability over the 25 
linearized closed loops. Remember that the degree of stability is defined as the opposite of the maximal 
value of the real part of the closed loop poles. The maximal value of the criterion over the 243 combinations 
is selected, leading to choose the mean value for αM , the minimum value for αN , and the maximum values 
for αδ ZMM q ,, . Fig. 6 presents the closed loop step responses for the gain-scheduled and robust 
controllers. As expected, the performance of the latter is degraded, see the overshoots on zN  and q . 
Nevertheless, this controller ensures minimal performance properties. 

Remark: in the same way, it would be necessary to design a robust fixed controller for each value of mass 
and center of gravity position, so that when considering all the 214 available flight points, the back up 
controller would be scheduled/interpolated as a function of mass and center of gravity position. The back up 
controller was chosen not to depend on airspeed, because the airspeed measurement, which may be missing 
due to a sensor fault, is less reliable than the measurement/estimation of mass and center of gravity position. 
Conversely, we have chosen not to design a robust fixed controller over all 214 available flight points 
because its robust performance properties would be too bad: when designing the robust fixed controller, it is 
worth reducing the range of variation of the model parameters as much as possible, to obtain robust 
performance properties which are as satisfactory as possible. 
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6. PRACTICAL IMPLEMENTATION ASPECTS 
To be possibly implemented onboard, the frequency domain estimator and the gain-scheduled controller 

should comply with the stringent constraints resulting from the present industrial coding process applicable 
to Airbus aircraft. Accordingly, the algorithms have been firstly encoded in full Simulink®, i.e. without any 
call to Mex nor Matlab® functions. In a second step, The Simulink® schemes were encoded by using the 
existing symbols of the Flight Control Computer (FCC) library provided by Airbus to be compliant with the 
SCADE process (Safety Critical Application Development Environment). After encoding the algorithm with 
FCC operators, the resulting computational burden evaluated by Airbus during the RECONFIGURE project 
is about 1.5ms, which is quite acceptable and could be further improved by updating the estimates at a lower 
rate. As this library only includes basic operators (logical and mathematical type), the second step has 
required higher level modules to be developed for coding more complex functionalities, e.g. required by 
matrix calculus. This was especially true for the FD estimation algorithm, which involves matrix operations 
with complex numbers. 

As regards the gain-scheduled controller, it is noteworthy that the usual way of computing (off-line) the 
value of the LFT controller is not suitable for on board implementations, as the computational complexity of 
this procedure is generally high, and would especially require a matrix inversion of dimension 27 in the 
present case. To bypass this difficulty several alternatives do exist [34], for instance by resorting to a 
recursive method which avoids this inversion by using a fixed point technique (possibly with a relaxed 
sampling rate). However, the complexity of the LFT controller designed in §5.2 is rather high: even if each 
control or  stability derivative is repeated 3 times, which is reasonable, the frequency of the SP mode is 
repeated 16 times, so that the on-line computational burden of the technique proposed by [34] would be too 
high. 

That is why we have preferred another option, consisting in developing off-line a surrogate model of the 
LFT gains, which could be used afterwards for on-line computations, and which could also be easily coded 
in terms of the basic FCC library operators by using only basic scalar operations available for onboard 
computers. The characteristics of these surrogate models and the principles of the techniques permitting 
rational-type representations to be obtained are detailed in [43]. To build this surrogate model, the tool 
named koala was used, which is part of the APRICOT library (Approximation of Polynomial and Rational-
type for Indeterminate Coefficients via Optimization Tools), included into the SMAC Toolbox (available at 
http://w3.onera.fr/smac/). The tools included in APRICOT permit sparse rational models to be generated, 
which lead to simple yet accurate Linear Fractional Representations. The computational complexity of the 
(rational) modeling is thus consistent with the FCC library coding requirements, as it only involves a set of 
scalar additions and multiplications. 

In the present case, the 3 control gains IqNz KKK ,,  need to be modeled in terms of the 3 explanatory 
variables αα ZMM q ,, , the SP frequency being directly inferred from the open loop eigenvalue of the 
simplified state-space model (22). To get a set of reference data from which the approximated rational 
function can be derived, a 3D gridding is firstly achieved by computing a set of LFT exact values from 
regularly spaced samples in the input space αα ×× ZMM q . Overestimated bounds of the aerodynamic 
coefficients ]},[],[],[{ maxminmaxminmaxmin

αααααα ZZZMMMMMM qqq ∈×∈×∈  were selected to define the 
expected cubic domain. Fig. 7 illustrates the result of this process for the 3D coefficient ),,( αα ZMMK qq . 
The surrogate model used to approximate the 3 control gains simultaneously is computationally efficient 
and achieves a very low acceptable error in the whole selected domain. 
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7. TIME-DOMAIN RESULTS OF THE RECONFIGURE BENCHMARK 

7.1. Adaptive control strategy along a trajectory 

The issue is to deal with the time-varying aspect of the parameters to be estimated, despite an 
unsatisfactory closed loop excitation. This concerns the estimator but also the gain-scheduled controller, 
since the point is also to decide when the values of the scheduling parameters should be updated, knowing 

that a measure of their reliability is available as well. At the start, when controlling the A/C at a trim point, 
"robust" values of the stability derivatives are chosen as scheduling parameters, i.e. those corresponding to 
the robust controller of §5.5, to ensure minimal stability and performance closed loop properties. As early as 
the estimator provides (reliable) estimates, these are injected in the gain-scheduled controller. When moving 
from a flight point to another, time-varying parameters can be tracked either by benefiting from the 
forgetting factors, whose values may be adjusted along the trajectory, or by resetting the estimator whenever 
it is necessary [20]. Estimates may also be frozen if the I/O data content is too poor and hence the estimation 
errors too high.  

Regarding the adaptive control strategy, a first solution is to apply the Certainty Equivalence Principle 
(CEP), i.e. the estimates are continuously introduced in the gain-scheduled controller whatever their 
reliability is. Another solution is to switch to the robust controller whenever the estimates are not reliable 
enough. Now, the CEP is bypassed and the adjustment of the scheduling parameters is discontinuous, using 
a low pass filter to avoid jumps in the scheduling values. This 2nd solution permits minimal stability and 
performance properties to be guaranteed for the adaptive closed loop, a crucial point if the flight controller 
was to be certified. 

Conversely, the transient response of the adaptive closed loop may be shorter with the 1st solution, as it 
may be useless to wait for fully reliable estimates thanks to the robustness of the controller with respect to 
estimation errors: a proper time domain response may be obtained despite less reliable estimates. The two 
solutions are illustrated in the following, and essentially produce the same type of results. Indeed, estimates 
are typically unreliable when closed loop excitation is poor, so that the difference between the closed loop 
responses of the robust and gain-scheduled controllers is not significant. 

7.2. Flight scenario 

To evaluate the proposed adaptive scheme in the framework of RECONFIGURE, the simulated scenario 
is a 380 seconds realistic flight profile including 4 successive stages: 

1/ A first steady flight at kts)240ft,12500( == cVz . 

2/ A climb up to ft20000=z  for ]215,65[∈t , with kts240=cV . 

3/ An acceleration up to kts335=cV  for ]300,215[∈t , with ft20000=z . 

4/ A final steady condition at kts)335ft,20000( == cVz . 

The autopilot is used to regulate the altitude z and conventional airspeed cV  at their reference values. See 
Fig. 8 for the time history of altitude and true airspeed (which differs from the conventional airspeed). 

The testing maneuvers selected by Airbus for the industrial validation of the controllers involve joystick 
doublet-type signals. So, to check the performance of the adaptive flight controller, these usual stick input 
signals are applied to produce a reference input signal czN  during the 1st and 4th parts of the flight, with 
autopilot and auto-throttle switched off (which explains on Fig. 8 why the altitude is no more regulated at 
the beginning and at the end of the flight). See Fig. 9 for the time plot of the acceleration (more precisely the 
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load factor in g) zN , the rotational rate q  and the elevator (i.e. the A/C) input mδ . The mass and center of 
gravity correspond to the C1 case. 

7.3. Adaptive control results 

The performance of the adaptive controller can essentially be seen on the plots of the load factors in 
Figs. 9 and 10 ( zN  vs czN ). Fig. 10 focuses on the responses at the beginning and at the end of the flight. 
The blue line corresponds to the reference input czN , the black and red ones to the zN  signals. As soon as 
reliable estimates are available for scheduling, adaptation enables to recover a much better performance, i.e. 
satisfactory overshoot and settling time. 

Fig. 9 presents the results along the whole trajectory. As expected, closed loop excitation is globally poor 
during the 2nd/3rd stages corresponding to altitude/airspeed changes: see the reference input signal czN  in 
blue color on the zN  plot. As a result, during these 2 stages, either the robust controller, or the gain-
scheduled one are used depending on the reliability of the estimates and on the adaptive control strategy 
chosen (CEP or switch). The black curves of Figs. 9 and 10 correspond to the 1st solution (CEP, i.e. the 
parameter estimates are used as scheduling parameters whatever their reliability), whereas the red ones 
correspond to the 2nd solution (switch for ]343,194[∈t  to the robust controller, also active for ]18,0[∈t  in 
both solutions, because the parameter estimates are unreliable or unavailable inside these time intervals). 
Regardless of the flight controller, the outer loop responses of the autopilot are satisfactory, see the plots of 
true airspeed and altitude in Fig. 8. Due to the poor excitation, it is difficult to judge the quality of the inner 
loop responses on Fig. 9, but they seem suitable.  

Fig. 10 focuses on the steady flights at the beginning and at the end of the simulation. In the upper plot, 
the 2 solutions (black/red lines) match exactly because the robust controller is used at the beginning in both 
cases: the estimator is initialized so that some time is needed before an estimate is available. In the bottom 
plot, the transient response of the 1st CEP solution (in black) appears better, noting that the overshoot and 
the settling time for the 2nd solution (in red) are those of the robust controller for 343<t : once reliable 
estimates are available, the overshoot/settling time become satisfactory. Hence, the 2nd solution guarantees 
minimal stability and performance properties for the adaptive closed loop at the price of a potentially less 
proper transient response. 

7.4. Results of the recursive estimation algorithm 

The reader is referred to [20] for a comprehensive description of the estimation results. Fig. 11 briefly 
illustrates the behavior of the recursive FD scheme (tuned with 43=M  frequency samples equally spaced in 
the range 0.1-0.52 Hz), through the δM  estimate got during the simulation. The parameter uncertainty (3σ) 
is plotted in blue dashed lines and results in freezing the estimate (solid blue line) whenever it is too high. 
The green curve gives a rough idea of the reference value drawn from the closest LTI model (just one of 25 
for the C1 case). Due to a loose mesh of the linearized models in the flight domain, these values are only 

plotted to give a trend (the true linearized values being unavailable). Owing to the simulated scenario, the 
variations that are tracked result either from a change in the flight condition or, at the start of the run, from a 
misknowledge of the initial parameter values. Both of them demonstrate the interest of the adaptation to 
cope with modeling uncertainties. It is worth noting that the continuous variation of Vz/  is monitored by the 
estimation algorithm during level changes, and that the parameters accuracy can also be used to trigger a 
freeze of the estimates whenever the uncertainty becomes too high (not enough excitation or rapid changes 
in the flight condition). In addition, the forgetting mechanism of (10) is only triggered in Fig. 11 when 
significant  changes are detected in Vz/ , providing a way to adapt more rapidly to varying conditions.  

It should also be pointed out that with such a poor excitation (during the 2nd/3rd parts of the scenario), some 
parameters can't be estimated properly. Hence to prevent from correlation issues or ill-conditioning, a tuned-
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down modeling or some regularization is required. Here, a priori knowledge via the Bayesian formulation of 
(8) is introduced; hence, the trends indicated by the (green) reference values cannot be instantly mimicked by 
the estimates, and instead these ones are drawn towards the prior valid estimates or towards average reference 
values used as a priori knowledge by the estimation algorithm (e.g., mean values for a given altitude). As 
soon as sufficient excitation is available, and the accuracy is good enough (some time is needed to store 
information through the recursive updates of the FT), the estimates are freed again and converge rapidly to 
suitable values. Thanks to the noise filtering outside the selected bandwidth, the FD algorithm does not 
require much time to accumulate enough information and to recover proper estimates. In case of continuous 
estimation (CEP), the convergence delay is even shorter as the estimates may be reliable enough although 
the errors are not fully satisfying. 

8. CONCLUSION 
The contribution of this paper is twofold. First, an adaptive scheme is presented, which deeply differs 

from classical indirect adaptive control schemes: these use a time domain (Least Squares or gradient) 
estimator, as well as a (SISO or square MIMO) transfer function to describe the plant. The controller is 
designed on-line. On the contrary, in our scheme, a non-square MIMO plant model can be used under a 
state-space form. Moreover, to minimize the computational time, one uses a frequency domain plant model 
estimator and a gain-scheduled controller, designed off-line. 

As a second contribution, the practical interest of our scheme is illustrated by the design of an adaptive 
flight controller, with a computational time and a complexity that comply with the requirements of embedded 
A/C implementation. The indirect adaptive control strategy combines an efficient recursive frequency domain 
estimator with an LFT controller scheduled with respect to the parameters to be estimated. Robustness to 
transient and asymptotic estimation errors was proved using µ and IQC analysis techniques, and demonstrated 
via the industrial benchmark. Nonlinear simulations also show the capability to control the airplane along a 
trajectory, a more difficult problem than controlling about a steady flight point since the time-varying 
parameters have to be estimated despite poor closed loop excitation. 

These results are very promising as regards a possible application to civil aircraft. The next step would 
be to further validate the adaptive flight control law. Such a validation seems very difficult using analytical 
methods, due to the complexity of the frequency domain model estimator and gain-scheduled LFT 
controller. For example, finding a Lyapunov function for the adaptive closed loop, as classically done for 
simpler adaptive control schemes, appears very unlikely. In this context, different complementary solutions 
have been or can be proposed: 

1/ Checking the robustness of the LFT controller to an estimation error on the scheduling parameters 
(§5.4): the obtained robustness margins appear especially relevant, even if the model estimator is not 
accounted for in the analysis. Stability and performance properties of the adaptive closed loop can be 
guaranteed despite a maximal allowable amount of the estimation error, provided by the estimator. 

2/ Using the available measure of the confidence on the parameter estimates, to switch to a robust 
controller whenever the estimates are not reliable enough (§7): this enables to guarantee minimal stability 
and performance properties for the adaptive closed loop, even when excitation is poor.  

3/ Using extensive sets of nonlinear simulations to check the robust stability and performance properties 
of the adaptive flight controller: it would be worth exploring this perspective of an industrial validation, 
noting that a practical approach for the worst-case validation of a similar indirect adaptive control scheme 
was already investigated by Airbus and Onera in [41]. 
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Figure 1: The FD estimation process 
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Figure 2: Open (red) and closed (blue) loop poles at the 214 flight points 
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Figure 3: linear step responses at the 214 flight points 
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Figure 4: Nonlinear responses for the C1 case 
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Figure 5: Nominal frequency-domain closed loop responses for the C1 case 
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Figure 6: Closed loop step responses of the controllers for the C1 case 
(left = gain-scheduled, right = robust) 
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Figure 7: Approximated values (top) and approximation errors (bottom) of the  gain qK  
for ],[],[ maxminmaxmin

qq MMMM ×αα  and 2 specific cross sections min
αα ZZ =  (left), max
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Figure 8: Time history of the slow longitudinal states (true airspeed in kts, altitude in hft) 
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Figure 9: Time history of the load factor (g), rotational rate (deg/s) and elevator input (deg) 
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Figure 10: Zooms in on the load factor responses, at the beginning and at the end of the flight 
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Figure 11: Time history of the estimated δM  parameter 
 


