Experimental and numerical studies of the influence of diluent on characteristic micro-scale combustion flame behaviour

Hugo Chouraqui, Christian Chauveau, Philippe Dagaut, Guillaume Dayma, Fabien Halter

To cite this version:
Hugo Chouraqui, Christian Chauveau, Philippe Dagaut, Guillaume Dayma, Fabien Halter. Experimental and numerical studies of the influence of diluent on characteristic micro-scale combustion flame behaviour. 37th International Symposium on Combustion, Jul 2018, Dublin, Ireland. 10.13140/RG.2.2.25682.81608 . hal-01848556

HAL Id: hal-01848556
https://hal.archives-ouvertes.fr/hal-01848556
Submitted on 24 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1. Goal of the study

- Growing need to improve knowledge in the field of small-scale combustion and take advantage of high energy density of fuel [1] in different applications such as portable power device [2], micro-satellite thrusters [3], heat sources [4].
- Previous studies have been done with fuel/air mixtures. Combustion of a CH₄/O₂ mixture with different diluents can improve the understanding of flame behaviour in micro-scale reactor by changing physical properties of the environment. Hence, be able to point out physico-chemical properties that play an important role in micro-scale combustion.

2. Experimental set-up

- Cylindrical quartz tube heated by 3 hydrogen/oxygen blowtorches.
- The temperature profile on the outer side is measured by a infrared camera A655sc.
- A spectroscopy EMCCD camera ProEM 1600 with a CH₄ band-pass filter (208PPF1_430) is used to detect the flame positions.
- CH₄/diluent mixture is supplied in a 1.85 mm internal diameter reactor. (Quenching distance of CH₄/air is 2.50 mm)

3. Different flame behaviour

a) FREI (Flame with Repetitive Extinction and Ignition): the ignition occurs downstream in high temperature region and extinction occurs upstream in low temperature region.

b) Stable flame: flames with no relative motion with the reactor wall.

4. Experimental and numerical results

<table>
<thead>
<tr>
<th>Diluent</th>
<th>O<sub>2</sub></th>
<th>He</th>
<th>N<sub>2</sub></th>
<th>He/N<sub>2</sub>/O<sub>2</sub></th>
<th>He/air stoichiometric mixture with a flow velocity of 0.4 m/s, 0.415 m/s, 0.7 to 1.0 m/s [6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>20%</td>
<td>0%</td>
<td>80%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>He/air</td>
<td>21.18</td>
<td>39.20</td>
<td>83.62</td>
<td>78.32%</td>
<td></td>
</tr>
<tr>
<td>He/O<sub>2</sub></td>
<td>21.68</td>
<td>78.32</td>
<td>0%</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

Compositions of diluents used in this study in molar fraction

Laminar burning velocity and adiabatic flame temperature of a stoichiometric mixture CH₄/diluent

4.1. FREI

- For a given fuel/oxydant mixture: when the flow velocity increases → frequency increases
- For a given flow velocity: when the flame propagation speed of a mixture A is bigger than a mixture B → t_{ext} in A is smaller than in B

4.2. Stable flame

Solution methods and solvers
- Steady state simulation
- The Stiff Chemistry Solver of ANSYS Fluent is used to solve the reactive flow
- PISO method for velocity-pressure coupling is used to solve the discretized form of the Navier-Stokes system
- A second order upwind spatial discretization is used and a least squares cell-based method for the evaluation of gradients

Boundary conditions:
- Experimental external wall temperature is averaged and used as boundary condition
- A velocity inlet boundary condition is applied on the left part of the geometry, and a pressure outlet boundary condition (1 atm) on the right part

Models:
- A laminar viscous model
- The effect of enthalpy transport due to species diffusion in the energy equation
- Ideal gas
- Chemical, transport and thermodynamic properties are computed with the GRI-Mech 3.0 scheme

Stable flame position defined at the external wall temperature as a function of the mixture flow velocity

Wall temperature and flame front visualisation

- For a given fuel/oxydant mixture: flow velocity increases → the flame goes toward colder wall reactor region
- For a given flow velocity: when the adiabatic flame temperature of a mixture A is bigger than a mixture B → the front flame is located to colder wall reactor region.

5. Conclusions

- All characteristic flame behaviours are conserved with different diluents studied
- The increase in He molar fraction in diluent → a. FREI velocity domains increases
b. Extinction is located to colder wall region
c. Stable flame is located to colder wall region

- Flame/wall thermal interaction clearly identified experimentally with stable flames but not numerically

Acknowledgements

HC thanks the Ministry of Research on Higher Education (MESRI) for a PhD grant. Support from the CAPRYSSSES project (ANR: 11-LABX-006-01) funded by ANR through the PIA (Programme d’Investissement d’Avenir) is gratefully acknowledged.