EFFECTS OF EXHAUST GAS ON CH4-AIR-O2 TURBULENT SWIRLING FLAMES
Hajar Zaidaoui, Toufik Boushaki, Jean-Charles Sautet, Christian Chauveau

To cite this version:
Hajar Zaidaoui, Toufik Boushaki, Jean-Charles Sautet, Christian Chauveau. EFFECTS OF EXHAUST GAS ON CH4-AIR-O2 TURBULENT SWIRLING FLAMES. 37th international symposium on combustion, Jul 2018, Dublin, Ireland. <hal-01848555>

HAL Id: hal-01848555
https://hal.archives-ouvertes.fr/hal-01848555

Submitted on 24 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effects of exhaust gas on CH₄-air-O₂ turbulent swirling flames

H. Zaidaoui*, T. Boushaki1, JC. Sautet2, C. Chauveau1
1 ICARE CNRS, 1C Avenue de la recherche scientifique, 45071 Orléans Cedex 2, France
2 Normandie University, CORIA UMR 6614, 76801 Saint Etienne du Rouvray, France
* hajar.zaidaoui@cnrs-orleans.fr / toufik.boushaki@cnrs-orleans.fr

Context and objectives

- Study of non-premixed turbulent flames stabilized by a swirler
 - Improve performances of combustion plants
 - Reduction of pollutant emissions / emissions standards
- Investigations on flame characteristics
 - Effects of oxygen enrichment
 - Effects of steam and CO₂ dilution
 - Effects of swirl intensity

Experimental setup

- Coaxial swirl burner
 - Two concentric tubes with a swirler in the annular part
 - Combustion chamber: 25 kW, dimensions: 0.5x0.5x1 m³
- Measurement and analysis of flue gases
 - Concentrations of NOₓ, CO, CO₂, O₂, and SO₂ in the flue gases are measured.
 - ABB 220 and HORIBA PG250 multi-gas analyzers.
- OH* chemiluminescence technique
 - Apparatus: ICCD camera, a 105 mm UV lens, a 306 nm filter, an acquisition card with a computer.
 - OH*: Spontaneous emission on the band (0-0) at 306.4 nm
 - Visualization of flame front: stability, lift-off heights, flame lengths.
- Stereo-PIV system
 - 2 Planes of velocity measurements
 - 3 Positions in the transverse plane

Results and discussions

Pollutant emissions

- NOₓ and CO emissions are reported for φ=0.8, Θ = 25%O₂, Sn = 1.4 in the case of diluting with CO₂ and H₂O separately (Fig.a) and for Sn=0.8 in the case of EGR (H₂O+CO₂) (Fig.b).

![Graph a](image)

![Graph b](image)

Velocity mean fields of non reacting and reacting flows

- Recirculation zone at the flow center, and the swirling jet in the peripheral flow.
- Reacting flow: greater radial expansion + larger recirculation zone.
 - Higher velocities

Flame structures

- Lift-off height = f(%CO₂), Sn=0.8, φ=0.8, 21%O₂

![Graph](image)

- Lift-off height = f(%H₂O), Sn=0.8, φ=0.8, 21%O₂

![Graph](image)

- Lift-off height = f(%O₂), Sn=0.8, φ=0.8, EGR (10CO₂-10H₂O)

![Graph](image)

Conclusions

- Better stabilization is obtained with O₂ enrichment. The dilution with EGR destabilizes slightly the flame without blowout (up to 20%).
- Dilution with CO₂, H₂O and EGR decreases highly NOₓ emissions and increases CO emissions.
- Swirling part of the flow and the central recirculation zone are clearly identified by Stereo-PIV measurements.