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A BORG-LEVINSON THEOREM FOR MAGNETIC
SCHRÖDINGER OPERATORS ON A RIEMANNIAN MANIFOLD

MOURAD BELLASSOUED, MOURAD CHOULLI, DAVID DOS SANTOS FERREIRA,
YAVAR KIAN, AND PLAMEN STEFANOV

Abstract. This article is concerned with uniqueness and stability issues for
the inverse spectral problem of recovering the magnetic field and the elec-
tric potential in a Riemannian manifold from some asymptotic knowledge of
the boundary spectral data of the corresponding Schrödinger operator under
Dirichlet boundary conditions. The spectral data consist of some asymptotic
knowledge of a subset of eigenvalues and Neumann traces of the associated
eigenfunctions of the magnetic Laplacian. We also address the same question
for Schrödinger operators under Neumann boundary conditions, in which case
we measure the Dirichlet traces of eigenfunctions. In our results we char-
acterize the uniqueness of the magnetic field from a rate of growth of the
eigenvalues, combined with suitable asymptotic properties of boundary obser-
vation of eigenfunctions, of the associated magnetic Schrödinger operator. To
our best knowledge this is the first result proving uniqueness from such general
asymptotic behavior of boundary spectral data.

1. Introduction and main results

1.1. Statement of the problem. Let M “ pM, gq be a smooth and compact
Riemannian manifold with boundary BM. We denote the Laplace-Beltrami operator
associated to the Riemannian metric g by ∆. In local coordinates, the metric reads
g “ pgjkq, and the Laplace-Beltrami operator ∆ is given by

∆ “
1

a

|g|

n
ÿ

j,k“1

B

Bxj

ˆ

a

|g| gjk B

Bxk

˙

.

Here pgjkq is the inverse of the metric g and |g| “ detpgjkq.
Given a couple of magnetic and electric potentials B “ pA, qq, where q P L8pMq

is real-valued, and A “ ajdx
j is a covector field (1-form) with real-valued coeffi-

cients, aj PW 1,8pMq, we consider the magnetic Laplacian

HB “
1

a

|g|

n
ÿ

j,k“1

ˆ

1
i

B

Bxj
` aj

˙

a

|g| gjk
ˆ

1
i

B

Bxk
` ak

˙

` q

“ ´∆´ 2i A ¨∇´ i δA` |A|2 ` q
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:“ ´∆A ` q.(1.1)
Here, the dot product is in the metric with A and ∇ considered as covectors, δ
is the coderivative (codifferential) operator, corresponding to the divergence with
identifying vectors and covectors, which sends 1-forms to a functions by the formula

δA “
1

a

|g|

n
ÿ

j,k“1

B

Bxj

´

gjk
a

|g|ak
¯

,

and we recall that, for A “ ajdx
j , we have |A|2 “ gjkajak.

For B “ pA, qq with q P L8pMq and A “ ajdx
j , aj PW 1,8pMq, define on L2pMq

the unbounded self-adjoint operator HB as follows
(1.2) HBu “ HBu

and
(1.3) DpHBq “

 

u P H1
0 pMq, ´∆Au` qu P L

2pMq
(

.

Here HkpMq, denotes the standard definition of the Sobolev spaces.
The operatorHB is self adjoint and has compact resolvent, therefore its spectrum

σpHBq consists in a sequence λB “ pλB,kq of real eigenvalues, counted according
to their multiplicities, so that
(1.4) ´8 ă λB,1 ď λB,2 ď . . . ď λB,k Ñ `8 as k Ñ8.

In the sequel φB “ pφB,kq denotes an orthonormal basis of L2pMq consisting in
eigenfunctions with φB,k associated to λB,k, for each k.
In the rest of this text, we often use the following notation, where k ě 1,

ψB,k “ pBν ` iApνqqφB,k, on BM
and ψB “ pψB,kq, where ν the outward unit normal vector field on BM with respect
to the metric g.

We address the question of whether one can recover, in some suitable sense,
the magnetic field A and the potential q from some asymptotic knowledge of the
boundary spectral data pλB ,ψBq with B “ pA, qq. As for most inverse problems,
the main issues are uniqueness and stability.

1.2. Obstruction to uniqueness. We recall that there is an obstruction to the re-
covery of the electromagnetic potentialB from the boundary spectral data pλB ,ψBq.
Indeed, let B “ pA, qq, and let V P C1pMq be such that V|BM “ 0 and set
qB “ pA` dV, qq. Then it is straightforward to check that
(1.5) e´iV HBe

iV “ H
qB , pλB ,ψBq “ pλ qB ,ψ qBq.

Therefore, the magnetic potential A cannot be uniquely determined by the bound-
ary spectral data pλB ,ψBq and our inverse problem needs to be stated differently.

According to [36], for every covector A P HkpM, T˚Mq, there exist uniquely
determined As P HkpM, T˚Mq and V P Hk`1pMq such that
(1.6) A “ As ` dV, δAs “ 0, V |BM “ 0.
Following the well established terminology, As and dV are called respectively the
solenoidal and potential parts of the covector A. In view of the obstruction de-
scribed above, the best one can expect is the simultaneous recovery of As and q
from some knowledge of the boundary spectral data pλB ,ψBq. From now on, we
focus our attention on this problem.
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1.3. Known results. There is a vast literature devoted to inverse spectral prob-
lems in one dimension. We refer for instance to the pioneer works by Ambartsumian
[2], Borg [4], Levinson [31], Gel’fand and Levitan [20]. In the flat case, the first
uniqueness results for inverse spectral problems in dimensions greater or equal to
two is due to Nachman, Sylvester and Uhlmann [32]. At almost the same time,
Isozaki [21] improved the result by Nachman, Sylvester and Uhlamann by using
the Born approximation. He proved that the potential in a Schrödinger equation
is uniquely determined by the large eigenvalues and the trace of the normal deriva-
tives of the corresponding eigenfunctions. Developing further Isozaki’s approach,
Choulli and Stefanov [15] gave a generalization of Isozaki’s uniqueness result to-
gether with a Hölder stability estimate with respect to appropriate metrics for the
spectral data. We mention that, following a remark of Isozaki which goes back to
[21], the uniqueness and stability results of [15] were stated with only some asymp-
totic closeness of the boundary spectral data. We mention also the work of [12, 13],
dealing with recovery of general non-smooth coefficients from the full boundary
spectral data, and the work [25] who have considered a similar inverse spectral
problem for Schrödinger operators in an infinite cylindrical waveguide.

Another approach for getting uniqueness in the spectral inverse problem for
the Laplace-Beltrami operator was introduced by Belishev [5] and Belishev and
Kurylev [6]. This approach consists in reducing the inverse spectral problem under
consideration into an inverse hyperbolic problem for which one can apply the so
called boundary control method. This method allows to consider the trace of the
normal derivative of eigenfunctions only in a part of the boundary. We refer to
[6, 24, 23, 29, 30] and [27] in the case of non-smooth coefficients. We mention that
none of these papers considered this problem with observations corresponding to
some asymptotic knowledge of the boundary spectral data. Actually, to our best
knowledge, beside the present paper, there is no other results dealing with inverse
spectral problem on non flat manifolds with data similar to the one considered by
[15, 25].

One of the first stability estimate for inverse spectral problems was established by
Alessandrini and Sylvester [1]. This result was reformulated by the second author in
a more precise way in [14]. A similar result in the case of the Laplace-Beltrami op-
erator was proved by the first and the third authors in [9] using the idea introduced
in [1]. With the help of a result quantifying the uniqueness of continuation for a
Cauchy problem with data on a part of the boundary for a wave equation, the first
two authors and Yamamoto [8] proved a double logarithmic stability estimate under
the assumption that the potential is known near the boundary. In [15], the second
and the last authors provided one of the first Hölder type stability estimate for the
multi-dimensional Borg-Levinson theorem of determining the potential from some
asymptotic knowledge of the boundary spectral data of the associated Schrödinger
operator. In [25], the fourth author, Kavian and Soccorsi proved a similar result
for an inverse spectral problem in an infinite cylindrical waveguide.

1.4. Preliminaries. We briefly recall some notations and known results in Rie-
mannian geometry. We refer for instance to [22] for more details. By Riemannian
manifold with boundary, we mean a C8-smooth manifold with boundary in the
usual sense, endowed with a metric g.

As before M denotes a compact Riemannian manifold of dimension n ě 2. Fix a
local coordinate system x “

`

x1, . . . , xn
˘

and let pB1, . . . , Bnq be the corresponding
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tangent vector fields. For x P M, the inner product and the norm on the tangent
space TxM are given by

gpX,Y q “ xX,Y y “
n
ÿ

j,k“1
gjkXjY k,

|X| “ xX,Xy1{2, X “

n
ÿ

i“1
XiBi, Y “

n
ÿ

i“1
Y iBi.

The cotangent space T˚x M is the dual of TxM. Its elements are called covectors or
one-forms. The disjoint union of the tangent spaces

TM “
ď

xPM
TxM

is called the tangent bundle of M. Similarly, the cotangent bundle T˚M is the
disjoint union of the spaces T˚x M, x P M. A 1-form A on the manifold M is a
function that assigns to each point x P M a covector Apxq P T˚x M.

An example of a 1-form is the differential of a function f P C8pMq, which is
defined by

dfxpXq “
n
ÿ

j“1
Xj Bf

Bxj
, X “

n
ÿ

j“1
XjBj .

Hence f defines the mapping df : TM Ñ R, which is called the differential of f
given by

dfpx,Xq “ dfxpXq.

In local coordinates,

df “
n
ÿ

j“1
Bjfdx

j .

where pdx1, . . . , dxnq is the basis in the space T˚x M, dual to the basis pB1, . . . , Bnq.
The Riemannian metric g induces a natural isomorphism ı : TxM Ñ T˚x M given

by ιpXq “ xX, ¨y. For X P TxM denote X5 “ ıpXq, and similarly for A P T˚x M we
denote A7 “ ı´1pAq, ı and ı´1 are called musical isomorphisms. The sharp operator
is given by
(1.7) T˚x M ÝÑ TxM, A ÞÝÑ A7,

given in local coordinates by

(1.8) pajdx
jq7 “ ajBj , aj “

n
ÿ

k“1
gjkak.

Define the inner product of 1-forms in T˚x M by

(1.9) xA,By “ xA7, B7y “
n
ÿ

j,k“1
gjkajbk “

n
ÿ

j,k“1
gjkajbk.

The metric tensor g induces the Riemannian volume
dvn “ |g|1{2dx1 ^ ¨ ¨ ¨ ^ dxn.

We denote by L2pMq the completion of C8pMq endowed with the usual inner prod-
uct

pf1, f2q “

ż

M
f1pxqf2pxqdvn, f1, f2 P C8pMq.
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A section of a vector bundle E over the Riemannian manifold M is a C8 map
s : M Ñ E such that for each x P M, spxq belongs to the fiber over x. We denote by
C8pM, Eq the space of smooth sections of the vector bundle E. According to this
definition, C8pM, TMq denotes the space of vector fields on M and C8pM, T˚Mq
denotes the space of 1-forms on M. Similarly, we may define the spaces L2pM, T˚Mq
(resp. L2pM, TMq) of square integrable 1-forms (resp. vectors) by using the inner
product

(1.10) pA,Bq “

ż

M
xA,By dvn, A,B P T˚M.

Define the Sobolev space HkpMq as the completion of C8pMq with respect to the
norm

}f}2HkpMq “ }f}
2
L2pMq `

n
ÿ

k“1
}∇kf}2L2pM,TkMq,

where ∇k is the covariant differential of f in the metric g. If f is a C8 function on
M, then ∇f is the vector field defined by

Xpfq “ x∇f,Xy,
for every vector field X on M. In the local coordinates system, the last identity can
be rewritten in the form

(1.11) ∇f “
n
ÿ

i,j“1
gij Bf
Bxi
Bj “ pdfq

7.

The normal derivative of a function u is given by the formula

(1.12) Bνu :“ x∇u, νy “
n
ÿ

j,k“1
gjkνj

Bu

Bxk
,

where ν is the unit outward vector field to BM.
Likewise, we say that a 1-form A “ ajdx

j belongs to HkpM, T˚Mq if each aj P
HkpMq. The space HkpM, T˚Mq is a Hilbert space when it is endowed with the
norm

}A}HkpM,T˚Mq “

˜

n
ÿ

j“1
}aj}

2
HkpMq

¸
1
2

.

As usual, the vector space of smooth 2-forms on M is denoted by Ω2pMq. In local
coordinates, a 2-form ω is represented as

ω “
n
ÿ

j,k“1
ωjkdx

j ^ dxk,

where ωjk are real-valued functions on M. Similarly as before, ω is inHspM,Ω2pMqq,
s P R, if ωjk P HspMq for each j, k. Additionally, HspM,Ω2pMqq is a Hilbert space
for the norm

}ω}HspM,Ω2pMqq “

˜

ÿ

j,k

}ωjk}
2
HspMq

¸
1
2

.

In the rest of this text, the scalar product of L2pBMq is also denoted by x¨ , ¨ y:

(1.13) xf1, f2y “

ż

BM
f1pxq f2pxq dσn´1
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where dσn´1 is the volume form of BM.

1.5. Main results. Prior to the statement of our main results, we introduce the
notion of simple manifolds [38]. We say that the boundary BM is strictly convex if
the second fundamental form is positive-definite for any x P BM.

Definition 1.1. A manifold M is simple if BM is strictly convex and, for any
x P M, the exponential map expx : exp´1

x pMq ÝÑ M is a diffeomorphism.

Note that if M is simple, then it is diffeomorphic to a ball, and every two points
can be connected by a unique minimizing geodesic depending smoothly on its end-
points. Also, one can extend it to a simple manifold M1 such that Mint

1 Ą M.
We now introduce the admissible sets of magnetic potentials A and electric po-

tentials q. Set
B “W 2,8pM, T˚Mq ‘ L8pMq.

We endow B with its natural norm
}B}B “ }A}W 2,8pM,T˚Mq ` }q}L8pMq.

For r ą 0, set
(1.14) Br “ tB “ pA, qq P B, }B}B ď ru .

Let B` P Br, ` “ 1, 2, we denote by pλ`,k, φ`,kq, k ě 1, the eigenvalues and
normalized eigenfunctions of the operator HB` .

For ` “ 1 or ` “ 2, let
(1.15) ψ`,k “ pBν ` iA`pνqqφ`,k, k ě 1.

At this point we remark that when A1 “ A2 it is clear that HB1 ´HB2 “ q1´ q2
whence by the min-max principle,

sup
kě1

|λ1,k ´ λ2,k| ď }q1 ´ q2}L8pMq ă 8.

Assume now that A1 ‰ A2 and δA1 “ δA2. Then we have
HB1 ´HB2 “ ´2ipA1 ´A2q∇` |A1|

2 ´ |A2|
2 ` q1 ´ q2.

Thus, HB1 ´HB2 R BpL2pMqq. Therefore, we can reasonably expect that
sup
kě1

|λ1,k ´ λ2,k| “ `8.

Keeping in mind this property and the obstruction described in Section 1.2, it
seems natural to expect the recovery of the solenoidal part of the magnetic potential
from a rate of growth of the eigenvalues. Our first result give a positive answer to
this issue together with the recovery of the electric potential.

Theorem 1.2. Assume that M is simple. Let B` “ pA`, q`q P Br, ` “ 1, 2, such
that
(1.16) BαxA1pxq “ B

α
xA2pxq, x P BM, |α| ď 1.

Furthermore, assume that there exists t P r0, 1{2q so that

(1.17) sup
kě1

k´t{n|λ1,k ´ λ2,k| `
ÿ

kě1
k´2t{n}ψ1,k ´ ψ2,k}

2
L2pBMq ă 8.

Then As1 “ As2. Moreover, under the additional conditions

(1.18) lim
kÑ`8

|λ1,k ´ λ2,k| “ 0, and
ÿ

kě1
}ψ1,k ´ ψ2,k}

2
L2pBMq ă 8,
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we have q1 “ q2.

In the spirit of [15, 25], we consider also the stability issue for this problem stated
as follows.

Theorem 1.3. Assume that M is simple. Let B` “ pA`, q`q P Br, ` “ 1, 2, such
that A1 and A2 satisfies (1.16) and q1 ´ q2 P H

1
0 pMq satisfies

}q1 ´ q2}H1
0 pMq ď r.

Furthermore, assume that there exists t P p0, 1{2q so that

(1.19) sup
kě1

k´t{n|λ1,k ´ λ2,k| `
ÿ

kě1
}ψ1,k ´ ψ2,k}

2
L2pBMq ă 8.

Then As1 “ As2 and

(1.20) }q1 ´ q2}L2pMq ď C

ˆ

lim sup
kÑ8

|λ1,k ´ λ2,k|

˙
1
2

ă 8,

the constant C only depends on r and M.

To our best knowledge Theorems 1.2 and 1.3 are the first results dealing with
inverse spectral problems for Schrödinger operators, with non-constant leading co-
efficients, from asymptotic knowledge boundary spectral data similar to the one
considered by [15, 25]. Note also that Theorem 1.3 seems to be the first stabil-
ity result of recovering the electric potential from partial boundary spectral data in
such general context (the only other similar results can be found in [8, 15, 25] where
stable recovery of Schrödinger operators on a bounded domain, with an Euclidean
metric and without magnetic potential, have been considered).

We recall that multi-dimensional Borg-Levinson type theorems for magnetic
Schrödinger operators have been already considered in [23, 26, 34]. Among them,
only [26] considered the uniqueness issue from boundary spectral data similar to
(1.18). The results in the present work can be seen as an improvement of that
in [26] in four directions. First of all, we prove for the first time the extension
of such results to a general simple Riemanian manifold by proving the connection
between our problem and the injectivity of the so called geodesic ray transform
borrowed from [3, 19, 36, 38]. In addition, by using some results of [38], we estab-
lish stability estimates for this problem where [26] treated only the uniqueness. In
contrast to [26], we do not require the knowledge of the magnetic potentials on the
neighborhood of the boundary. This condition is relaxed, by considering only some
knowledge of the magnetic potentials at the boundary given by (1.16). Finally,
we show, for what seems to be the first time, that even a rate of growth of the
difference of eigenvalues like (1.17), (1.19) can determine the magnetic potential
appearing in a magnetic Schrödinger operator.

The main ingredient in our analysis is a suitable representation formula that in-
volves the magnetic potential A and the electric potential q in terms of the Dirichlet-
to-Neumann map associated to the equations HBu´λu “ 0, for a well chosen set of
complex λ’s. In [21, 26], the authors considered such a representation for a bounded
domain with flat metric. Using a construction inspired by [7, 9, 16, 17, 18, 39]
we show how one can extend such an approach to more general manifolds. Note
that this construction differs from the one considered by [16, 17, 18] for recovering
the magnetic Schrödinger operators from boundary measurements. Actually, our
results hold for a general simple manifold even in the case n ě 3, whereas the
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determination of Schrödinger operators from boundary measurements in the same
context is still an open problem (see [17, 18]).

In this paper we treat also the problem of determining the Neumann realization of
magnetic Schrödinger operator. For simplicity and in order to avoid any confusion
between the results for the different operators, we give the statement of the result
for the Neumann realization of magnetic Schrödinger operator in Theorem 6.1 of
Section 6. the result of Theorem 6.1 is stated with an optimal growth of the
difference of eigenvalues (see the discussion just after Theorem 6.1).

We believe that following the idea of [10, 26, 28, 35], one can relax the regularity
condition imposed to the magnetic potentials as well as condition (1.16). This
approach requires the construction of anzats depending on an approximation of the
magnetic potential instead of the magnetic potential itself. In order to avoid the
inadequate expense of the size of the paper, we do not consider this issue.

1.6. Outline. The outline of the paper is as follows. We review in Section 2 the
geodesic ray transform for 1-one forms and functions on a manifold. Section 3 is
devoted to an asymptotic spectral analysis. We construct in Section 4 geometrical
optics solutions for magnetic Schrödinger equations. We particularly focus our
attention on the solvability of the eikonal and the transport equations which are
essential in the construction of geometric optic solutions. Additionally, we provide
a representation formula. The proof of Theorems 1.2 and 1.3 are given in Section 5.
The Neumann case is briefly discussed in Section 6. Finally, we prove some uniform
estimates related to the Weyl’s formula for the magnetic Schrödinger operator in
appendix A.

2. A short review on the geodesic ray transform on a simple
manifold

We collect in this section some known results on the geodesic ray transform
for functions and 1-forms on a smooth simple Riemannian manifold pM, gq. These
results will be used later in this text.

Denote by divX the divergence of a vector field X P H1pM, TMq on M, i.e. in
local coordinates ([24, page 42]),

(2.1) divX “
1

a

|g|

n
ÿ

i“1
Bi

´

a

|g|Xi
¯

, X “

n
ÿ

i“1
XiBi.

Using the inner product of a 1-form, we can define the coderivative operator δ as
the adjoint of the exterior derivative via the relation

(2.2) pδA, vq “ pA, dvq , A P C8pM,T˚Mq, v P C8pMq.

Then δA is related to the divergence of vector fields by δA “ divpA7q, where the
divergence is given by (2.1). If X P H1pM, TMq the divergence formula reads

(2.3)
ż

M
divX dvn “

ż

BM
xX, νydσn´1.

For f P H1pMq, we have the following Green formula

(2.4)
ż

M
divX f dvn “ ´

ż

M
xX,∇fy dvn `

ż

BM
xX, νyf dσn´1.
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Therefore, for u,w P H2pMq, the following identity holds
ż

M
∆Auw dvn “ ´

ż

M
x∇Au,∇Awydvn `

ż

BM
pBνu` iApνquqw dσn´1(2.5)

“

ż

M
u∆Aw dvn

`

ż

BM

´

pBνu` iApνquqw ´ upBνw ` iApνqwq
¯

dσn´1,

where ∇Au “ ∇u ` iuA7. For x P M and θ P TxM, denote by γx,θ the unique
geodesic starting from x and directed by θ.

Recall that the sphere bundle and co-sphere bundle of M are respectively given
by

SM “ tpx, θq P TM; |θ| “ 1u , S˚M “ tpx, pq P T˚M; |p| “ 1u ,
The exponential map expx : TxM ÝÑ M is defined as follows

(2.6) expxpvq “ γx,θp|v|q, θ “
v

|v|
.

We assume in the rest of this section thatM is simple and we point out that any
arbitrary pair of points in M can be joined by an unique geodesic of finite length.

Given px, θq P SM and denote by γx,θ the unique geodesic γx,θ satisfying the
initial conditions γx,θp0q “ x and 9γx,θp0q “ θ, which is defined on the maximal
interval r`´px, θq, ``px, θqs, with γx,θp`˘px, θqq P BM. Define the geodesic flow ϕt
by
(2.7) ϕt : SM Ñ SM, ϕtpx, θq “ pγx,θptq, 9γx,θptqq, t P r`´px, θq, ``px, θqs,

and observe that ϕt ˝ ϕs “ ϕt`s.
Introduce now the submanifolds of inner and outer vectors of SM

(2.8) B˘SM “ tpx, θq P SM, x P BM, ˘xθ, νpxqy ă 0u ,
where ν is the unit outer normal vector field on BM.

Note that B`SM and B´SM are compact manifolds with the same boundary
SpBMq and

BSM “ B`SMY SBMY B´SM.

It is straightforward to check that `˘ : SM Ñ R satisfy
`´px, θq ď 0, ``px, θq ě 0,
``px, θq “ ´`´px,´θq,

`´px, θq “ 0, px, θq P B`SM,

`´pϕtpx, θqq “ `´px, θq ´ t, ``pϕtpx, θqq “ ``px, θq ` t.

To each 1-form A P C8pM, T˚Mq, with A “ ajdx
j , associate the smooth symbol

σA P C8pSMq given by

(2.9) σApx, θq “
n
ÿ

j“1
ajpxqθ

j “ xA7pxq, θy, px, θq P SM.

Recall that the Riemannian scalar product on TxM induces the volume form on
SxM given by

dωxpθq “
a

|g|
n
ÿ

k“1
p´1qkθkdθ1 ^ ¨ ¨ ¨ ^ydθk ^ ¨ ¨ ¨ ^ dθn.
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As usual, the notation p̈ means that the corresponding factor has been dropped.
We also consider the volume form dv2n´1 on the manifold SM defined as follows

dv2n´1
px, θq “ dωxpθq ^ dvn,

where dvn is the Riemannnian volume form on M.
By Liouville’s theorem, the form dv2n´1 is preserved by the geodesic flow. The

corresponding volume form on the boundary BSM “ tpx, θq P SM, x P BMu is given
by

dσ2n´2
“ dωxpθq ^ dσn´1,

where dσn´1 is the volume form of BM.
Santaló’s formula will be useful in the sequel:

(2.10)
ż

SM
F px, θqdv2n´1

px, θq “

ż

B`SM

˜

ż ``px,θq

0
F pϕtpx, θqq dt

¸

µpx, θqdσ2n´2,

for any F P CpSMq.
Set µpx, θq “ |xθ, νpxqy|. For the sake of simplicity L2 `B`SM, µpx, θqdσ2n´2˘ is

denoted by L2
µpB`SMq.

Note that L2
µpB`SMq is a Hilbert space when it is endowed with the scalar

product

(2.11) pu, vqµ “

ż

B`SM
upx, θqvpx, θqµpx, θqdσ2n´2.

Until the end of this section, we assume that M is simple.

2.1. Geodesic ray transform of 1-forms. The ray transform of 1-forms on M
is defined as the linear operator

I1 : C8pM, T˚Mq ÝÑ C8pB`SMq
acting as follows

I1pAqpx, θq “

ż

γx,θ

A “
n
ÿ

j“1

ż ``px,θq

0
ajpγx,θptqq 9γjx,θptqdt “

ż ``px,θq

0
σApϕtpx, θqqdt.

It is easy to check that I1pdϕq “ 0 for any ϕ P C8pMq satisfying ϕ|BM “ 0. On
the other hand, it is known that I1 is injective on the space of solenoidal 1-forms
satisfying δA “ 0. Therefore, if A P H1pM, T˚Mq is so that I1pAq “ 0, then As “ 0.
Whence, there exists ϕ P H1

0 pMq XH
2pMq such that A “ dϕ. As a consequence of

this observation, we have
(2.12) |I1pAqpx, θq| “ |I1pA

sqpx, θq| ď C}As}C0 , A P C0pM, T˚Mq.
With reference to [36], we recall that I˚1 : L2

µpB`SMq ÝÑ L2pM, T˚Mq is given by

(2.13) pI˚1 Ψpxqqj “
ż

SxM
θj qΨpx, θqdωxpθq.

Here qΨ is the extension of Ψ from B`SM to SM, which is constant on every orbit
of the geodesic flow. That is

qΨpx, θq “ Ψ
`

γx,θp`´px, θqq, 9γx,θp`´px, θqq
˘

“ ΨpΦ`´px,θqpx, θqq, px, θq P SM.

One can check [36] that I1 has a bounded extension, still denoted by I1,
I1 : HkpM, T˚Mq ÝÑ HkpB`SMq.
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We complete this subsection by results borrowed from [38]. We extend pM, gq to
a smooth Riemannian manifold pM1, gq such that Mint

1 Ą M and we consider the
normal operator N1 “ I˚1 I1. Then there exist C1 ą 0, C2 ą 0 such that

(2.14) C1}A
s}L2pMq ď }N1pAq}H1pM1q ď C2}A

s}L2pMq,

for any A P L2pM, T˚Mq. If O is an open set of M1, N1 is an elliptic pseudo-
differential operator of order´1 on O having as principal symbol %px, ξq “ p%jkpx, ξqq1ďj,kďn,
where

%j,kpx, ξq “
cn
|ξ|

ˆ

gjk ´
ξjξk
|ξ|2

˙

.

Therefore, for each integer k ě 0, there exists a constant Ck ą 0 such that, for any
A P HkpM, T˚Mq compactly supported in O, we have

(2.15) }N1pAq}Hk`1pM1q ď Ck}A
s}HkpOq.

2.2. Geodesic ray transform of functions. Following [36, Lemma 4.1.1], the
ray transform of functions is the linear operator

(2.16) I0 : C8pMq ÝÑ C8pB`SMq

acting as follows

(2.17) I0fpx, θq “

ż ``px,θq

0
fpγx,θptqq dt.

Similarly to I1, I0 has an extension, still denoted by I0:

(2.18) I0 : HkpMq ÝÑ HkpB`SMq

for every integer k ě 0. We refer to [36, Theorem 4.2.1] for details.

Considering I0 as a bounded operator from L2pMq into L2
µpB`SMq, we can com-

pute its adjoint I˚0 : L2
µpB`SMq Ñ L2pMq

(2.19) I˚0 Ψpxq “
ż

SxM
qΨpx, θqdωxpθq,

where qΨ is the extension of Ψ from B`SM to SM which is constant on every orbit
of the geodesic flow:

qΨpx, θq “ Ψpγx,θp``px, θqqq.

Let M1 be a simple manifold so that Mint
1 Ą M and consider the normal operator

N0 “ I˚0 I0. Then there exist two constants C1 ą 0, C2 ą 0 such that

(2.20) C1}f}L2pMq ď }N0pfq}H1pM1q ď C2}f}L2pMq

for any f P L2pMq, see [38].
If O is an open set of M1, N0 is an elliptic pseudo-differential operator of order

´1 on Ω, whose principal symbol is a multiple of |ξ|´1, see [38]. Therefore there
exists a constant Ck ą 0 such that, for all f P HkpOq compactly supported in O,

(2.21) }N0pfq}Hk`1pM1q ď Ck}f}HkpOq.
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3. Asymptotic spectral analysis

We fix in all of this section B` “ pA`, q`q P Br, ` “ 1, 2, satisfying the assump-
tions of Theorem 1.2. As in Section 1, HB` , ` “ 1, 2, is the operator defined by
(1.2) and (1.3) when B “ B`. Furthermore, for λ P ρpHB`q, denote by RB`pλq
the resolvent of HB` and, for s P r0, 1{2q, recall the following classical resolvent
estimate

(3.1) }RB`pλq}L pL2pMq;H2spMqq ď
Cs

|=λ|1´s
, ` “ 1, 2.

For f P H3{2pBMq and λ P ρpHB`q, ` “ 1, 2, consider the Dirichlet problem

(3.2)

$

&

%

pHB` ´ λqu “ 0 in M,

u “ f on BM.

Let κ be a boundary defining function, that is a smooth function κ : M̄ Ñ R`
such that

‚ κpxq ą 0 for all x P Mint,
‚ κ|BM “ 0 and dκ|BM ‰ 0.

We recall that one can construct such a function by combining local coordinates with
boundary distance functions or by considering the first eigenvalue of the Dirichlet
Laplacian. We can now state the following result.

Lemma 3.1. If f P H3{2pBMq and λ P ρpHB`q, then the BVP (3.2) has a unique
solution u`pλq “ uf` pλq P H

2pMq given by the series

(3.3) u`pλq “
ÿ

kě1

xf, ψ`,ky

λ´ λ`,k
φ`,k,

the convergence takes place in H1pMq. Moreover, for any neighborhood V of BM in
M, we have

(3.4) lim
λÑ´8

`

}u`pλq}L2pMq ` }κdu`pλq}L2pMq
˘

“ 0.

Proof. The proof of (3.3) and

lim
λÑ´8

}u`pλq}
2
L2pMq “ 0

is quite similar to that of [26, Lemma 2.1].
The proof of (3.4) is then completed by establishing the following Caccioppoli’s
type inequality, where λ ă 0:

(3.5) }κdu`pλq}L2pMq ď C}u`pλq}L2pMq,

the constant C only depends on r and M.
For the sake of simplicity, we omit the subscript ` in u`pλq and B`. Multiplying

the first equation of (3.2) by κ2upλq, using the fact that κ|BM “ 0 and applying
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Green’s formula, we obtain

0 “ ´
ż

M
∆Aupλqκ

2upλqdvn `
ż

M
pq ´ λqκ2|upλq|2 dvn

(3.6)

“

ż

M
|κdupλq|2 dvn ` 2

ż

M
xκdupλq, upλqdκydvn

` 2=
ż

M
xκupλqA, κdupλqydvn `

ż

M

`

2ixA, κdκy ` p|A|2 ` q ´ λqκ2˘|upλq|2 dvn.

An application of Cauchy-Schwarz’s inequality yields
}κdupλq}2L2pMq ´ λ}κupλq}

2
L2pMq ď C}upλq}L2pMq}κdupλq}L2pMq ` C}upλq}

2
L2pMq

ď C 1}upλq}2L2pMq `
1
2}κdupλq}

2
L2pMq.

Then, it follows

(3.7) 1
2}κdupλq}

2
L2pMq ´ λ}κupλq}

2
L2pMq ď C}upλq}2L2pMq

and since ´λ ą 0
(3.8) }κdupλq}2L2pMq ď C}upλq}2L2pMq,

implying Caccioppoli’s inequality (3.5). �

Lemma 3.2. Let f P H3{2pBMq and, for µ P ρpHB1q X ρpHB2q, set
w1,2pµq “ u1pµq ´ u2pµq P H

2pMq,
where u`pµq is the corresponding solution to (3.2) with B` and λ are substituted by
B` and µ. Then we have that w1,2pµq converges to 0 in H2pMq as µ Ñ ´8. In
particular, Bνw1,2pµq Ñ 0 in L2pBMq as µÑ ´8.

Proof. For the sake of simplicity, we use in this proof wpµq instead of w1,2pµq.
Since the trace map v ÞÑ Bνv is continuous from H2pMq into L2pBMq, it is enough
to show that }wpµq}H2pMq Ñ 0 when µ Ñ ´8. Let µ ă µ˚ ă ´2}q}8, for some
fixed µ˚ ă 0. It is straightforward to check that wpµq is the solution of the boundary
value problem

(3.9)

$

&

%

pHB1 ´ µqwpµq “ hpµq in M,

wpµq “ 0 on BM.

Here hpµq is given by
(3.10) hpµq “ ´2ixA2 ´A1, du2pµqy ` pV2 ´ V1qu2pµq

with
Vj “ ´iδAj ` |Aj |

2 ` qj , j “ 1, 2.
Multiplying the first equation of (3.9) by wpµq, we apply Green’s formula (2.5) in
order to obtain

ż

M
hpµqwpµqdvn “

ż

M
HB1wpµqwpµqdvn ´

ż

M
µ|wpµq|2 dvn

“

ż

M
|∇A1w|

2 dvn `
ż

M
pq ´ µq|w|2 dvn.
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We deduce that, for ´µ sufficiently large,

p´}q}8 ´
µ

2 q}wpµq}
2
L2pMq `

|µ|

4 }wpµq}
2
L2pMq ď C}hpµq}2L2pMq,

for some positive constant C, not dependent on µ, and then we conclude that

(3.11) |µ|}wpµq}2L2pMq ď C}hpµq}2L2pMq.

Moreover we have

(3.12)

$

&

%

pHB1 ´ µ˚qwpµq “ hpµq ` pµ´ µ˚qwpµq in M,

wpµq “ 0 on BM.

Using that pHB1 ´ µ
˚q´1 is an isomorphism from L2pMq onto H2pMq, there exists

a constant C, depending on M and B1, so that

}wpµq}H2pMq ď C}hpµq ` pµ´ µ˚qwpµqq}L2pMq
ď C

`

}hpµq}L2pMq ` |µ´ µ˚|}wpµq}L2pMq
˘

ď C
`

}hpµq}L2pMq ` 2|µ|}wpµq}L2pMq
˘

,(3.13)

where the positive constant C is not dependent on µ.
Using now the estimate (3.11), we obtain

(3.14) }wpµq}H2pMq ď 4C}hpµq}L2pMq.

On the other hand, in view of (1.16) there exists C ą 0 such that

(3.15) |A1pxq ´A2pxq| ď Cκpxq, x P M.

Applying (3.15), we obtain

(3.16) }hpµq}L2pMq ď C2
`

}κdu2pµq}L2pMq ` }u2pµq}L2pMq
˘

for some constant C2 independent of µ. Then, according to (3.4) in Lemma 3.1, we
get

(3.17) lim sup
µÑ´8

}hpµq}L2pMq “ 0,

entailing by (3.14)

(3.18) lim sup
µÑ´8

}wpµq}H2pMq “ 0.

This completes the proof of the lemma. �

The following lemma will be useful in the sequel. We omit its proof since it is
quite similar to that in [25, 26].

Lemma 3.3. Let f P H3{2pBMq and, for µ, λ P ρpHB`q, set w`pλ, µq “ u`pλq ´
u`pµq, where u`pµq is the solution of (3.2) when λ is substituted by µ. Then we
have

(3.19) pBν ` iA`pνqqw`pλ, µq “
ÿ

kě1

pµ´ λqxf, ψ`,ky

pλ´ λ`,kqpµ´ λ`,kq
ψ`,k,

the convergence takes place in H1{2pBMq.
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4. Isozaki’s representation formula

In the present section we provide a version of Isozaki’s approach [21], based
on the so-called Born approximation method. The usual anzats used to solve the
problem of determining the coefficients of a magnetic Laplace-Beltrami operator,
from the corresponding Dirichlet-to-Neumann map will be useful in our analysis.
Let us describe briefly this method.

In all of this section B` “ pA`, q`q P Br, ` “ 1, 2, with A` satisfying (1.16). We
extend the covector A1 to a W 2,8 covector on M1 supported in the interior of M1
and still denoted by A1. Then, we consider the extension of A2 to M1, still denoted
by A2, defined by

(4.1) A1pxq “ A2pxq, x P M1zM.

Then, (1.16) implies that A2 PW
2,8pM1;T˚M1q. We fix also A “ A1 ´A2.

4.1. Representation formula. If u`pλq, λ P ρpHB1q X ρpHB2q, is the solution of
(3.2) when B “ B`, define the Dirichlet-to-Neumann map by

(4.2) ΛB`pλq : f P H3{2pBMq ÞÑ pBν ` iA`pνqqu`pλq|BM, ` “ 1, 2.

We fix ψ P C2pMq a function satisfying the eikonal equation

(4.3) |dψ|2 “
n
ÿ

i,j“1
gij Bψ
Bxi

Bψ

Bxj
“ 1.

We set also two functions α` P H2pMq solving the transport equations

(4.4) xdψ, dα`y `
1
2 p∆ψqα` “ 0, ` “ 1, 2.

This function will be given in Section 4.2. Consider also two functions βA` P H2pMq,
` “ 1, 2, solutions of the transport equations

(4.5) xdψ, dβA`y ` ixA`, dψyβA` “ 0, @x P M, ` “ 1, 2.

Henceforth τ ą 1 and λτ “ τ ` i. Let

(4.6)
ϕ˚1,τ pxq “ eiλτψpxqα1βA1pxq :“ eiλτψpxqβ˚1 pxq,

ϕ˚2,τ pxq “ eiλτψpxqα2βA2pxq :“ eiλτψpxqβ˚2 pxq,

where, for ` “ 1, 2, α` is a solution of (4.4) and βA` is a solution of (4.5).
Define

(4.7) SB`pτq “ xΛB`pλ2
τ qϕ

˚
1,τ , ϕ

˚
2,τ y “

ż

BM
ΛB`pλ2

τ qϕ
˚
1,τϕ

˚
2,τ dσn´1, ` “ 1, 2.

Lemma 4.1. We have

(4.8) SB1pτq “

ż

BM
β˚1

´

Bνβ
˚
2 ´ iA1pνqβ

˚
2 ´ iλτβ

˚
2 Bνψ

¯

dσn´1

`

ż

M
β˚1 HB1pβ

˚
2 qdvn ´ 2λτ

ż

M
β˚1 β

˚
2 xA, dψydvn

´

ż

M
RB1pλ

2
τ q
`

eiλτψHB1 pβ
˚
1 q
˘

´

e´iλτψHB1pβ
˚
2 q ´ 2λτe´iλτψβ˚2 xA, dψy

¯

dvn.
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and

(4.9)

SB2pτq “

ż

BM
β˚1

´

Bνβ
˚
2 ´ iA2pνqβ

˚
2 ´ iλτβ

˚
2 Bνψ

¯

dσn´1
`

ż

M

β˚1 HB2pβ
˚
2 qdvn

´

ż

M
RB2pλ

2
τ q
`

eiλτψ pHB2 pβ
˚
1 q ´ 2λτ xA, dψyβ˚1 q

˘

´

e´iλτψHB2pβ
˚
2 q
¯

dvn.

Here RB`pλ2
τ q is the resolvent of HB` .

Proof. Direct computations yield
`

HB1 ´ λ
2
τ

˘

ϕ˚1,τ “ eiλτψHB1 pβ
˚
1 q(4.10)

` eiλτψ
ˆ

λ2
τβ
˚
1
`

|dψ|2 ´ 1
˘

´ 2iλτβA1

´

xdψ, dα1y `
α1

2 ∆ψ
¯

´ 2iλτα1 pxdψ, dβA1y ` ixA1, dψyβA1q

˙

Taking into account (4.3) and (4.4)-(4.5), with ` “ 1, the right-hand side of (4.10)
becomes

(4.11)
`

HB1 ´ λ
2
τ

˘

ϕ˚1,τ “ eiλτψHB1 pβ
˚
1 q ” eiλτψk1.

Denote by u1 the solution of the BVP
$

&

%

`

HB1 ´ λ
2
τ

˘

u1 “ 0 in M,

u1 “ ϕ˚1,τ on BM.

We split u1 into two terms, u1 “ ϕ˚1,τ `v1, where v1 is the solution of the boundary
value problem

$

&

%

`

HB1 ´ λ
2
τ

˘

v1 “ ´e
iλτψk1 in M,

v1 “ 0 on BM.

Therefore

(4.12) u1 “ ϕ˚1,τ ´
`

HB1 ´ λ
2
τ

˘´1
peiλτψk1q “ ϕ˚1,τ ´RB1pλ

2
τ q
`

eiλτψk1
˘

.

As

(4.13) SB1pτq “

ż

BM
pBνu1 ` iA1pνqu1qϕ

˚
2,τ dσn´1,

we get by applying formula (2.5)

SB1pτq “

ż

M
∆A1u1ϕ

˚
2,τ dvn ´

ż

M
u1∆A1ϕ

˚
2,τ dvn(4.14)

`

ż

BM
ϕ˚1,τ

´

Bνϕ
˚
2,τ ` iA1pνqϕ

˚
2,τ

¯

dσn´1.
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On the other hand, by a simple computation and using (4.3), (4.4) and (4.5), we
get

∆A1ϕ
˚
2,τ “ ∆A1pe

iλτψβ˚2 q

“ ´λ
2
τϕ
˚
2,τ ` e

iλτψ∆A1pβ
˚
2 q ´ 2iλτeiλτψα2 pxdψ, dβ2y ` ixA1, dψyβ2q

` 2iλτβ2e
iλτψ

´

xdψ, dα2y `
α2

2 ∆ψ
¯

“ ´λ
2
τϕ
˚
2,τ ` e

iλτψ∆A1pβ
˚
2 q ´ 2iλτeiλτψα2 p´ixA2, dψyβ2 ` ixA1, dψyβ2q

“ ´λ
2
τϕ
˚
2,τ ` e

iλτψ∆A1pβ
˚
2 q ` 2λτeiλτψβ˚2 xA, dψy.

Whence, in light of (4.12), we find
ż

M
u1∆A1ϕ

˚
2,τ dvn

“

ż

M

`

ϕ˚1,τ ´RB1pλ
2
τ q
`

eiλτψk1
˘˘

ˆ

´

´λ2
τϕ
˚
2,τ ` e

´iλτψ∆A1pβ
˚
2 q ` 2λτe´iλτψβ˚2 xA, dψy

¯

dvn,

and, using again (4.12), we get
ż

M
∆A1u1ϕ

˚
2,τ dvn “ ´

ż

M
HB1u1ϕ

˚
2,τ dvn `

ż

M
q1u1ϕ

˚
2,τ dvn

“

ż

M

`

ϕ˚1,τ ´RB1pλ
2
τ qpe

iλτψk1q
˘

´

´λ2
τϕ
˚
2,τ ` q1ϕ

˚
2,τ

¯

dvn.

We deduce that
ż

M
∆A1u1ϕ

˚
2,τ dvn ´

ż

M
u1∆A1ϕ

˚
2,τ dvn(4.15)

“

ż

M

`

ϕ˚1,τ ´RB1pλ
2
τ qpe

iλτψk1q
˘

ˆ

´

e´iλτψHB1pβ
˚
2 q ´ 2λτe´iλτψβ˚2 xA, dψy

¯

dvn

“

ż

M
β˚1 HB1pβ

˚
2 qdvn ´ 2λτ

ż

M
β˚1 β

˚
2 xA, dψydvn

´

ż

M
RB1pλ

2
τ qpe

iλτψk1q
´

e´iλτψHB1pβ
˚
2 q ´ 2λτe´iλτψβ˚2 xA, dψy

¯

dvn.

Moreover
ż

BM
ϕ˚1,τ pBνϕ

˚
2,τ ` iA1pνqϕ

˚
2,τ qdσn´1(4.16)

“

ż

BM
β˚1

´

Bνβ
˚
2 ´ iA1pνqβ

˚
2 ´ iλτβ

˚
2 Bνψ

¯

dσn´1.

Finally, we get (4.8) by combining (4.14), (4.15) and (4.16).
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The proof of (4.9) is quite similar to that of (4.8). But, for the reader’s conve-
nience, we detail the proof of (4.9). By a simple computation we find

`

HB2 ´ λ
2
τ

˘

ϕ˚1,τ “ eiλτψHB2 pβ
˚
1 q(4.17)

` eiλτψ
ˆ

λ2
τβ
˚
1
`

|dψ|2 ´ 1
˘

´ 2iλτβA1

´

xdψ, dα1y `
α1

2 ∆ψ
¯

´ 2iλτα1 pxdψ, dβA1y ` ixA2, dψyβA1q

˙

Taking into account (4.3)-(4.4) and (4.5), the right-hand side of (4.17) takes the
form
(4.18)

`

HB2 ´ λ
2
τ

˘

ϕ˚1,τ “ eiλτψpxq pHB2 pβ
˚
1 q ´ 2λτ xA, dψyβ˚1 q ” eiλτψpxqk2.

Let u2 be the solution of the BVP
$

&

%

`

HB2 ´ λ
2
τ

˘

u2 “ 0 in M,

u2 “ ϕ˚1,τ on BM.

As for u1, we split u2 into two terms, u2 “ ϕ˚1,τ ` v2, where v2 is the solution of
the BVP

$

&

%

`

HB2 ´ λ
2
τ

˘

v2 “ ´e
iλτψk2 in M

v2 “ 0 on BM.

Therefore
(4.19) u2 “ ϕ˚1,τ ´

`

HB2 ´ λ
2
τ

˘´1
peiλτψk2q “ ϕ˚1,τ ´RB2pλ

2
τ qpe

iλτψk2q.

Since

(4.20) SB2pτq “

ż

BM
pBνu2 ` iA2pνqu2qϕ

˚
2,τ dσn´1,

we obtain, by applying formula (2.5),

SB2pτq “

ż

M
∆A2u2ϕ

˚
2,τ dvn ´

ż

M
u2∆A2ϕ

˚
2,τ dvn(4.21)

`

ż

BM
ϕ˚1,τ pBνϕ

˚
2,τ ` iA2pνqϕ

˚
2,τ qdσn´1.

On the other hand, by using (4.3), (4.4) and (4.5), we find

(4.22) ∆A2ϕ
˚
2,τ “ ∆A2pe

iλτψβ˚2 q “ ´λ
2
τϕ
˚
2,τ ` e

iλτψ∆A2pβ
˚
2 q.

Whence
ż

M
u2∆A2ϕ

˚
2,τ dvn “

ż

M
pϕ˚1,τ ´RB2pλ

2
τ qpe

iλτψk2qq(4.23)

ˆ

´

´λ2
τϕ
˚
2,τ ` e

´iλτψ∆A2pβ
˚
2 q
¯

dvn

and
ż

M
∆A2u2ϕ

˚
2,τ dvn “ ´

ż

M
HB2u2ϕ

˚
2,τ dvn `

ż

M
q2u2ϕ

˚
2,τ dvn

“

ż

M

`

ϕ˚1,τ ´RB2pλ
2
τ qpe

iλτψk2q
˘

´

´λ2
τϕ
˚
2,τ ` q2ϕ

˚
2,τ

¯

dvn.
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Thus,
ż

M
∆A2u2ϕ

˚
2,τ dvn ´

ż

M
u2∆A2ϕ

˚
2,τ dvn(4.24)

“

ż

M

`

ϕ˚1,τ ´RB2pλ
2
τ qpe

iλτψk2q
˘

´

e´iλτψHB2pβ
˚
2 q
¯

dvn

“

ż

M

β˚1 HB2pβ
˚
2 qdvn ´

ż

M
RB2pλ

2
τ q
`

eiλτψk2
˘

´

e´iλτψHB1pβ
˚
2 q
¯

dvn

“

ż

M

β˚1 HB2pβ
˚
2 qdvn

´

ż

M
RB2pλ

2
τ q
`

eiλτψ pHB2 pβ
˚
1 q ´ 2λτ xA, dψyβ˚1 q

˘

´

e´iλτψHB1pβ
˚
2 q
¯

dvn.

Moreover, we have
ż

BM
ϕ˚1,τ pBνϕ

˚
2,τ ` iA2pνqϕ

˚
2,τ qdσn´1(4.25)

“

ż

BM
β˚1

´

Bνβ
˚
2 ´ iA2pνqβ

˚
2 ´ iλτβ

˚
2 Bνψ

¯

dσn´1.

Inserting (4.25) and (4.24) in (4.21), we obtain

SB2pτq “

ż

BM
β˚1

´

Bνβ
˚
2 ´ iA2pνqβ

˚
2 ´ iλτβ

˚
2 Bνψ

¯

dσn´1(4.26)

`

ż

M
β˚1 HB2pβ

˚
2 qdvn

´

ż

M
RB2pλ

2
τ q
`

eiλτψ pHB2 pβ
˚
1 q ´ 2λτ xA, dψyβ˚1 q

˘

´

e´iλτψHB2pβ
˚
2 q
¯

dvn.

This completes the proof of the Lemma. �

Subtracting side by side (4.8) and (4.9), and using the fact that A1 “ A2 on BM,
we obtain the following identity, that we will use later in the text.

(4.27)

SB1pτq ´ SB2pτq “ ´2λτ
ż

M
β˚1 β

˚
2 xA, dψydvn `

ż

M
β˚1 pHB1 ´HB2qpβ

˚
2 qdvn

´

ż

M
RB1pλ

2
τ q
`

eiλτψHB1 pβ
˚
1 q
˘

´

e´iλτψ
´

HB1pβ
˚
2 q ´ 2λτβ˚2 xA, dψy

¯¯

dvn

`

ż

M
RB2pλ

2
τ q
`

eiλτψ pHB2 pβ
˚
1 q ´ 2λτ xA, dψyβ˚1 q

˘

´

e´iλτψHB2pβ
˚
2 q
¯

dvn.

4.2. Solving the eikonal and tranpsort equations.
We construct the phase function ψ solution to the eikonal equation (4.3) and the

amplitudes α` and β`, ` “ 1, 2, solutions to the transport equations (4.4)-(4.5).
Let y P BM1. Denote points in M1 by pr, θq where pr, θq are polar normal coor-

dinates in M1 with center y. That is, x “ expyprθq, where r ą 0 and

θ P S`y M1 “ tθ P TyM1, |θ| “ 1, xθ, νy ă 0u .

In these coordinates (depending on the choice of y) the metric has the form

rgpr, θq “ dr2 ` g0pr, θq.
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If u is a function in M, set, for r ą 0 and θ P SyM1,

rupr, θq “ upexpyprθqq,
If u is compactly supported, ru is naturally extended by 0 outside M.

The geodesic distance to y provide an explicit solution of the eikonal equation
(4.3):
(4.28) ψpxq “ dgpx, yq.

Since y P M1zM, we have ψ P C8pMq and

(4.29) rψpr, θq “ r “ dgpx, yq.

We now solve the transport equation (4.4). To this and, recall that if fprq is any
function of the geodesic distance r, then

(4.30) ∆
rgfprq “ f2prq `

%´1

2
B%

Br
f 1prq.

Here % “ %pr, θq denotes the square of the volume element in geodesic polar coor-
dinates. In the new coordinates system, equation (4.4) takes the form

(4.31) B rψ

Br

Brα

Br
`

1
4 rα%

´1 B%

Br

B rψ

Br
“ 0.

Thus rα satisfies

(4.32) Brα

Br
`

1
4 rα%

´1 B%

Br
“ 0.

For η P H2pS`y Mq, we seek rα in the form

(4.33) rαpr, θq “ %´1{4ηpy, θq.

Direct computations yield

(4.34) Brα

Br
pr, θq “ ´

1
4%
´5{4 B%

Br
ηpy, θq.

Finally, (4.33) and (4.34) entail

(4.35) Brα

Br
pr, θq “ ´

1
4%
´1

rαpr, θq
B%

Br
.

In the rest of this subsection we are concerned with transport equation (4.5).
Using that, in polar coordinates, ∇ψpxq can be expressed in term of 9γy,θprq (see for
instance [7, Appendix C]), we have

x rA`pr, y, θq, dψy “ x rA
7

`pr, y, θq,∇ψy “ σA`pϕrpy, θqq “ rσA`pr, y, θq.

Consequently, in polar coordinates system, (4.5) has the form

(4.36) B rψ

Br

Brβ

Br
` irσA`pr, y, θq

rβ “ 0,

where rσA`pr, y, θq :“ σA`pΦrpy, θqq “ x 9γy,θprq, A
7

`pγy,θprqqy. Thus rβ satisfies

(4.37) Brβ

Br
` irσA`pr, y, θq

rβ “ 0.

Thus, we can choose rβ defined as follows

rβpy, r, θq “ exp
˜

i

ż ``py,θq

0
rσA`pr ` s, y, θqds

¸

.
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On the other words, we solved (3.4).
In the remainder of this paper we use the following notations:

(4.38) rβA`py, r, θq “ exp
˜

i

ż ``py,θq

0
rσA`pr ` s, y, θqds

¸

, ` “ 1, 2,

and

(4.39) rα1pr, θq “ %´1{4ηpy, θq, rα2pr, θq “ %´1{4.

4.3. Asymptotic behavior of the boundary representation formula. We
discuss in this subsection the asymptotic behavior of SB1pτq ´ SB2pτq, as well as
the asymptotic behavior of rSB1pτq ´ SB2pτqs{τ , as τ Ñ8.

As before, B` “ pA`, q`q P Br, ` “ 1, 2 are so that A` satisfy (1.16). Set

Apxq “ pA1 ´A2qpxq, qpxq “ pq1 ´ q2qpxq.

Note that A, extended by 0 outside M, belongs to C0pM1, T
˚M1q. We also extend

q by 0 outside M. This extension, still denoted by q, is an element of L8pM1q.

Lemma 4.2. For any η P H2pS`y M1q, we have

(4.40) lim
τÑ`8

SB1pτq ´ SB2pτq

τ
“ 2i

ż

S`y M1

´

eiI1Apy,θq ´ 1
¯

ηpy, θqdωypθq.

Proof. By the resolvent estimate, we have

(4.41) }RB`pλ
2
τ q}L pL2pMqq ď

1
|=pλ2

τ q|
“

1
2τ , ` “ 1, 2.

Inequalities (4.41) and (4.27) yield in a straightforward manner

lim
τÑ`8

SB1pτq ´ SB2pτq

τ
“ 2

ż

M
β˚1 β

˚
2 xA, dψydvn(4.42)

“ 2
ż

M
α1α2βA1βA2xA, dψydvn.

Applying (4.1) and making the change variable x “ expyprθq, with r ą 0 and
θ P SyM1, we get

(4.43) 2
ż

M
xA, dψypα1α2qpxqpβA1βA2qpxqdvn

“ 2
ż

S`y M1

ż ``py,θq

0
rσApr, y, θqprα1rα2qpr, θqprβA1

rβA2qpr, θq%
1{2 dr dωypθq

“ 2
ż

S`y M1

ż ``py,θq

0
rσApr, y, θqrβA1pr, θq

rβA2pr, θqηpy, θqdr dωypθq

“

ż

S`y M1

ż ``py,θq

0
rσApr, y, θq exp

˜

i

ż ``py,θq

0
rσApr ` s, y, θqds

¸

ηpy, θqdr dωypθq.
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Also

(4.44)
ż ``py,θq

0
rσApr, y, θq exp

˜

i

ż ``py,θq

0
rσApr ` s, y, θqds

¸

dr

“ ´i

ż ``py,θq

0
Br

«

exp
˜

i

ż ``py,θq

0
rσApr ` s, y, θqds

¸ff

dr

“ i

«

exp
˜

i

ż ``py,θq

0
rσAps, y, θqds

¸

´ 1
ff

,

entailing

2
ż

M
xA, dψypα1α2qpxqpβA1βA2qpxqdvn

“ 2i
ż

S`y M1

pexp piI1Apy, θqq ´ 1q ηpy, θqdωypθq.

This in (4.42) gives the expected inequality. �

Lemma 4.3. Assume that A1 “ A2 and q1 ´ q2 P H
1
0 pMq. Then, for any η P

H2pS`y M1q, we have

(4.45) lim
τÑ`8

pSB1pτq ´ SB2pτqq “

ż

S`y M1

I0pqqpy, θqηpy, θqdωypθq.

Proof. Since A1 “ A2, (4.27) is reduced to the following formula

SB1pτq ´ SB2pτq “

ż

M
qpxqβ˚1 pxqβ

˚
2 pxqdvn(4.46)

´

ż

M
RB1pλ

2
τ q
`

eiλτψHB1 pβ
˚
1 q
˘

´

e´iλτψHB1pβ
˚
2 q
¯

dvn

`

ż

M
RB2pλ

2
τ q
`

eiλτψHB2pβ
˚
1 q
˘

´

e´iλτψHB2pβ
˚
2 q
¯

dvn.

Once again the resolvent estimate enables us to get

(4.47) lim
τÑ`8

pSB1pτq ´ SB2pτqq “

ż

M
qpxqpα1α2qpxqdvn.

We complete the proof by mimicking the end of the previous proof in order to
obtain

(4.48)
ż

M
qpxqpα1α2qpxqdvn “

ż

S`y M1

I0pqqpy, θqηpy, θqdωypθq.

This completes the proof. �

5. Proof of the main results

5.1. Asymptotic behavior of the spectral data. Prior to the completion of the
proof of Theorems 1.2 and 1.3, we establish some technicals lemmas. Assumptions
and notations are the same as in the preceding one.



A BORG-LEVINSON THEOREM FOR MAGNETIC SCHRÖDINGER OPERATORS 23

Lemma 5.1. For t P r0, 1{2q and ` “ 1, 2, we have

(5.1)
ÿ

kě1
k2t{n

ˇ

ˇ

ˇ

ˇ

xϕ˚1,τ , ψ`,ky

λ`,k ´ λ2
τ

ˇ

ˇ

ˇ

ˇ

2

ď C`τ
2t}η}2

H2pS`y M1q

and

(5.2)
ÿ

kě1
k2t{n

ˇ

ˇ

ˇ

ˇ

xϕ˚2,τ , ψ2,ky

λ`,k ´ λ2
τ

ˇ

ˇ

ˇ

ˇ

2

ď C`τ
2t,

the constant C` depends on t, M, r and B` if t ą 0, and it is independent on B`
when t “ 0.

Proof. By Lemma 3.1 the solution of the boundary value problem (3.2), with f “
ϕ˚1,τ , λ “ λτ and B “ B1, is given by the series

(5.3) u1pλτ q “
ÿ

kě1

xϕ˚1,τ , ψ1,ky

λ2
τ ´ λ1,k

φ1,k.

If µ “ 2r ` 1, then the operator HB` ` µ is positive. Indeed, for u P H1
0 pMq, we

have
ż

M
pHB` ` µquudvn “

ż

M
|∇A`u|

2 dvn `
ż

M
pq` ` µq|u|

2 dvn

ě

ż

M
|du|2 dvn ` pµ´ }q`}8 ´ 2}A`}8q

ż

M
|u|2 dvn.

Since DppHB` ` µq
1
2 q “ H1

0 pMq we have, by interpolation, DppHB` ` µq
t
2 q “

Ht
0pMq “ HtpMq (e.g. [33, Chapter 1, Theorems 11.1 and 11.6]). Whence, for

w P HtpMq, we have

(5.4)
ÿ

kě1
p1` |λ`,k|qt|pw, φ`,kq|2 ď C`}w}

2
HtpMq, ` “ 1, 2,

the constant C` only depends on t, r and M and B`.
On the other hand, we get from (4.12)

}u1pλτ q}HtpMq ď }ϕ
˚
1,τ }HtpMq ` }RB1pλ

2
τ qpe

iλτψHB1β
˚
1 q}HtpMq(5.5)

ď Cτ t}η}H2pS`y M1q
.

Here again the constant C only depends on t, r, M and B1, where we used that
exp´1

y pMq Ă trθ : r ą 0, θ P S`y pM1qu in order to restrict the norm of η to S`y M1.
This estimate and (5.4) with w “ u1pλτ q and ` “ 1 entail

(5.6)
ÿ

kě1
p1` |λ1,k|q

t|pu1pλτ q, φ1,kq|
2 ď C1τ

2t}η}2
H2pS`y M1q

.

We get the first estimate (5.1) for ` “ 1, by using (A.1) in Appendix A and the
identity

(5.7) pu1pλτ q, φ1,kq “
xϕ˚1,τ , ψ1,ky

λ2
τ ´ λ1,k

.

To prove the first inequality (5.1) for ` “ 2, we consider u2pλτ q, the solution of the
BVP (3.2) when λ “ λτ , f “ ϕ˚1,τ and B “ B2. By Lemma 3.1, this solution is
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given by the series

(5.8) u2pλτ q “
ÿ

kě1

xϕ˚1,τ , ψ2,ky

λ2
τ ´ λ2,k

φ2,k.

On the other hand, we get from (4.19) and (3.1)
}u2pλτ q}HtpMq ď }ϕ

˚
1,τ }HtpMq(5.9)

` }RB2pλ
2
τ qpe

iλτψ pHB2pβ
˚
1 q ´ 2λτ xA, dψyβ˚2 q }HtpMq

ď C

ˆ

τ t `
|λτ |

τ1´t

˙

}η}H2pS`y M1q
ď Cτ t}η}H2pS`y M1q

.

Applying again (5.4) with w “ u2pλτ q and ` “ 2 entail

(5.10)
ÿ

kě1
p1` |λ2,k|q

t|pu2pλτ q, φ2,kq|
2 ď C2τ

2t}η}2
H2pS`y M1q

.

Since

(5.11) pu2pλτ q, φ2,kq “
xϕ˚1,τ , ψ2,ky

λ2
τ ´ λ2,k

.

we obtain (5.1) with ` “ 2.
The second inequality of (5.2) is proved similarly. �

Let us recall some notations that we introduced in Section 3. For f P H3{2pBMq
fixed and λ, µ P ρpHB1q X ρpHB2q, if u`pλq (resp. u`pµq) is the solution of the
boundary value problem (3.2) for B “ B` (resp. B “ B` and λ “ µ), ` “ 1, 2, we
have posed

w`pλ, µq “ u`pλq ´ u`pµq,

w1,2pµq “ u1pµq ´ u2pµq.(5.12)
Let
(5.13) Kpτ, µ, fq “ pBν ` iA1pνqqw1pλτ , µq ´ pBν ` iA2pνqqw2pλτ , µq on BM.

Then, by (3.19), we obtain

(5.14) Kpτ, µ, fq “
ÿ

kě1

„

pµ´ λ2
τ qxf, ψ1,ky

pλ2
τ ´ λ1,kqpµ´ λ1,kq

ψ1,k ´
pτ ´ λ2

τ qxf, ψ2,ky

pλ2
τ ´ λ2,kqpµ´ λ2,kq

ψ2,k



.

We define
(5.15) Lpτ, µq “ xKpτ, µ, ϕ˚1,τ q, ϕ˚2,τ y.

From (5.14), we get

(5.16) Lpτ, µq “
ÿ

kě1
pµ´ λ2

τ q

„

xϕ˚1,τ , ψ1,kyxψ1,k, ϕ
˚
2,τ y

pλ2
τ ´ λ1,kqpµ´ λ1,kq

´
xϕ˚1,τ , ψ2,kyxψ2,k, ϕ

˚
2,τ y

pλ2
τ ´ λ2,kqpµ´ λ2,kq



.

Define
(5.17) L˚pτq “

ÿ

kě1
L˚1,kpτq `

ÿ

kě1
L˚2,kpτq `

ÿ

kě1
L˚3,kpτq,

with

L˚1,kpτq “
@

ϕ˚1,τ , ψ1,k ´ ψ2,k
D

xψ1,k, ϕ
˚
2,τ y

λ2
τ ´ λ1,k
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L˚2,kpτq “
@

ϕ˚1,τ , ψ2,k
D

xψ1,k ´ ψ2,k, ϕ
˚
2,τ y

λ2
τ ´ λ1,k

,

L˚3,kpτq “
@

ϕ˚1,τ , ψ2,k
D

xψ2,k, ϕ
˚
2,τ y

ˆ

1
pλ2
τ ´ λ1,kq

´
1

pλ2
τ ´ λ2,kq

˙

.

Lemma 5.2. Under assumption (1.17), Lpτ, µq converge to L˚pτq as µ Ñ ´8

and, for t P r0, 1{2q, we have

(5.18) lim sup
τÑ8

τ´t|L˚pτq| ď C}η}H2pS`y M1q
lim sup
kÑ8

k´t{n|λ1,k ´ λ2,k|.

Proof. We split Lpτ, µq into three series

Lpτ, µq “
ÿ

kě1
L1,kpµ, τq `

ÿ

kě1
L2,kpµ, τq `

ÿ

kě1
L3,kpµ, τq,

with

L1,kpτ, µq “ pµ´ λ
2
τ q
xϕ˚1,τ , ψ1,k ´ ψ2,kyxψ1,k, ϕ

˚
2,τ y

pλ2
τ ´ λ1,kqpµ´ λ1,kq

,

L2,kpτ, µq “ pµ´ λ
2
τ q
xϕ˚1,τ , ψ2,kyxψ1,k ´ ψ2,k, ϕ

˚
2,τ y

pλ2
τ ´ λ1,kqpµ´ λ1,kq

,

L3,kpτ, µq “ pµ´ λ
2
τ qxϕ

˚
1,τ , ψ2,kyxψ2,k, ϕ

˚
2,τ y

ˆ

ˆ

1
pλ2
τ ´ λ1,kqpµ´ λ1,kq

´
1

pλ2
τ ´ λ2,kqpµ´ λ2,kq

˙

.

Under assumption (1.17) and in light of (5.1), we can see that the series in L1,kpτ, µq,
L2,kpτ, µq and L3,kpτ, µq converge uniformly with respect to µ ! ´1. Therefore,
Lpτ, µq converge to L˚pτq as µÑ ´8.

We have

(5.19) |L˚1,kpτq| ď }ϕ˚1,τ }L2pBMq}ψ1,k ´ ψ2,k}L2pBMq

ˇ

ˇ

ˇ

ˇ

xψ1,k, ϕ
˚
2,τ y

λ2
τ ´ λ1,k

ˇ

ˇ

ˇ

ˇ

,

(5.20) |L˚2,kpτq| ď
}ϕ˚1,τ }L2pBMq}ϕ

˚
2,τ }L2pBMq}ψ1,k ´ ψ2,k}

2
L2pBMq

|λ2
τ ´ λ1,k|

` }ϕ˚2,τ }L2pBMq}ψ1,k ´ ψ2,k}L2pBMq

ˇ

ˇ

ˇ

ˇ

xϕ˚1,τ , ψ1,ky

λ2
τ ´ λ1,k

ˇ

ˇ

ˇ

ˇ

,

(5.21) |L˚3,kpτq| ď }ϕ˚1,τ }L2pBMq}ψ1,k ´ ψ2,k}L2pBMq
|λ2,k ´ λ1,k|

|λ2
τ ´ λ2,k|

ˇ

ˇ

ˇ

ˇ

xψ2,k, ϕ
˚
2,τ y

λ2
τ ´ λ2,k

ˇ

ˇ

ˇ

ˇ

` |λ2,k ´ λ1,k|

ˇ

ˇ

ˇ

ˇ

xϕ˚1,τ , ψ1,ky

λ2
τ ´ λ1,k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xψ2,k, ϕ
˚
2,τ y

λ2
τ ´ λ2,k

ˇ

ˇ

ˇ

ˇ

.

But

(5.22) sup
τą1

}ϕ˚1,τ }L2pBMq ď }β
˚
1 }L2pBMq ď C}η}H2pSyM1q

and

(5.23) sup
τą1

}ϕ˚2,τ }L2pBMq ď }β
˚
1 }L2pBMq ď C,
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the constant C only depends on M. This estimate entails in particular that
lim sup
τÑ`8

τ´t|L˚1,kpτq| “ 0, k ě 1.

Thus, for an arbitrary positive integer n1, we get

lim sup
τÑ`8

τ´t
8
ÿ

k“1
|L˚1,kpτq| “ lim sup

τÑ`8
τ´t

8
ÿ

k“n1

|L˚1,kpτq|.

This estimate together with (5.1), (5.19), (5.22) and (5.23) imply

τ´t
8
ÿ

k“n1

|L˚1,kpτq| ď C

˜

sup
τą1

τ´2t
8
ÿ

k“1
k2t{n

ˇ

ˇ

ˇ

ˇ

xψ1,k, ϕ
˚
2,τ y

λ2
τ ´ λ1,k

ˇ

ˇ

ˇ

ˇ

2¸1{2

ˆ

˜

8
ÿ

k“n1

k´2t{n}ψ1,k ´ ψ2,k}
2
L2pBMq

¸1{2

ď C

˜

8
ÿ

k“n1

k´2t{n}ψ1,k ´ ψ2,k}
2
L2pBMq

¸1{2

,

the constant C is independent on τ . Since the last term goes to zero as n1 tends
to 8 by (1.18), we easily get

(5.24) lim sup
τÑ`8

τ´t
8
ÿ

k“1
|L˚1,kpτq| “ 0.

In the sequel, we use the following useful observation: for r ą 1 the map τ ÞÑ |λ2
τ´r|

reach its minimum at τ “
?
r ´ 1. Hence
|λ2
τ ´ r| ě 2

?
r ´ 1, τ ą 0.

This observation together with (5.1), (5.20) and (A.1) in Appendix A yield

lim sup
τÑ`8

τ´t
8
ÿ

k“1
|L˚2,kpτq| “ lim sup

τÑ`8
τ´t

8
ÿ

k“n1

|L˚2,kpτq|

ď C
8
ÿ

k“n1

k´1{n}ψ1,k ´ ψ2,k}
2
L2pBMq

` C

˜

sup
τą1

τ´2t
8
ÿ

k“1
k2t{n

ˇ

ˇ

ˇ

ˇ

xψ1,k, ϕ
˚
1,τ y

λ2
τ ´ λ1,k

ˇ

ˇ

ˇ

ˇ

2¸1{2 ˜
8
ÿ

k“n1

k´2{n}ψ1,k ´ ψ2,k}
2
L2pBMq

¸1{2

ď C
8
ÿ

k“n1

k´2t{n}ψ1,k ´ ψ2,k}
2
L2pBMq ` C

˜

8
ÿ

k“n1

k´2t{n}ψ1,k ´ ψ2,k}
2
L2pBMq

¸1{2

.

Then, using again the fact that n1 is arbitrary and (1.17), we find

(5.25) lim sup
τÑ`8

τ´t
8
ÿ

k“1
|L˚2,kpτq| “ 0.

The same argument as before enables us to obtain

(5.26) lim sup
τÑ`8

τ´t
8
ÿ

k“1
|L˚3,kpτq| ď C}η}H2pS`y M1q

lim sup
kÑ`8

k´t{n|λ1,k ´ λ2,k|.
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The expected result follows from (5.24), (5.25) and (5.26). �

5.2. End of the proof of the main results. We are now ready to complete the
proof of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Since A`, ` “ 1, 2, satisfy (1.16) and w1,2pµq “ 0 on BM, we
easily obtain the following identity, useful in the sequel,
(5.27) Kpτ, µ, ϕ˚1,τ q “ pBν`iA1pνqqu1pλq´pBν`iA2pνqqu2pλq´Bνw1,2pµq on BM.

By formula (5.15) we get

(5.28) Lpτ, µq “
ż

BM
Kpτ, µ, ϕ˚1,τ qϕ˚2,τ dσn´1

“

ż

BM
pBν ` iA1pνqqu1pλqϕ

˚
2,τ dσn´1

´

ż

BM
pBν ` iA2pνqqu2pλqϕ

˚
2,τ dσn´1

´

ż

BM
Bνw1,2pµqϕ

˚
2,τ dσn´1

“

ż

BM
ΛB1pλ

2
τ qϕ

˚
1,τϕ

˚
2,τ dσn´1

´

ż

BM
ΛB2pλ

2
τ qϕ

˚
1,τϕ

˚
2,τ dσn´1

´

ż

BM
Bνw1,2pµqϕ

˚
2,τ dσn´1

“ SB1pτq ´ SB2pτq ´

ż

BM
Bνw1,2pµqϕ

˚
2,τ dσn´1 .

According to Lemmas 3.2 and 5.2, formula (5.28) and passing to the limit as µ goes
to ´8, we get
(5.29) SB1pτq ´ SB2pτq “ L˚pτq.
Furthermore, from (5.18) we have τ´t pSB1pτq ´ SB2pτqq is bounded for τ ą 1 and
t P r0, 1{2q. Then τ´1 pSB1pτq ´ SB2pτqq goes to zero as τ tends to 8. This in
(4.40) yields,

(5.30)
ż

S`y M1

´

eiI1Apy,θq ´ 1
¯

ηpy, θqdωypθq “ 0.

Since η is arbitrary in H2pSyMq, we obtain that I1Apy, θq P 2πZ for any θ P S`y M1.
On the other hand, since BM1 is strictly convex, S`y M1 Q θ ÞÑ ``py, θq is continuous,
and letting θ tend to a tangent direction θ0 P SyBM1 we get

lim
θÑθ0

``py, θq “ 0

hence
2πm “ lim

θÑθ0
I1Apy, θq “ 0

and therefore

(5.31) I1Apy, θq “ 0, θ P S`y M1

which implies that I1A “ 0, because y P BM1 is arbitrary. From (2.14), we deduce
that the solenoidal part As in the Hodge decomposition of the 1-form A is equal to
zero. This completes the proof of the first part of Theorem 1.2.

Now let us consider the second part of the theorem. For this purpose, we assume
that condition (1.18) is fulfilled and we would like to show that q1 “ q2. Note first
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that the condition As “ 0 implies dA “ 0 and, since M1 is simply connected, there
exists ϕ P W 3,8pM1q such that dϕ “ A. Since A “ 0 on M1zM by eventually
extracting a constant to ϕ we may assume that ϕ “ 0 on M1zM . In particular we
have ϕ|BM “ Bνϕ|BM “ 0. Let B3 “ pA1, q2q. Applying (1.5), we deduce that

e´iϕHB2e
iϕ “ HB3 .

In particular, for λ3,k, k ě 1, the non-decreasing sequence of eigenvalues of HB3

we have λ3,k “ λ2,k and φ3,k “ e´iϕφ2,k corresponds to an orthonormal basis of
eigenfunctions of HB3 . Moreover, fixing ψ3,k “ pBν ` iA2pνqqφ3,k, we deduce that

ψ3,kpxq “ pBν ` iA1pνqq e
´iϕφ2,kpxq “ e´iϕ pBν ` iA1pνq ´ iBνϕqφ2,kpxq

“ pBν ` iA2pνqqφ2,kpxq “ ψ2,kpxq, x P BM.

Combining this with (1.18), we deduce that

lim
kÑ`8

|λ1,k ´ λ3,k| “ 0, and
ÿ

kě1
}ψ1,k ´ ψ3,k}

2
L2pBMq ă 8.

In view of this gauge invariance property, from now on, without lost of generality,
we may assume that A1 “ A2. According to (1.18), with t “ 0, the right hand side
of (5.18) is equal to zero. �

Proof of Theorem 1.3. We already proved that dA1 “ dA2 in Theorem 1.2 and
according to the gauge invariance property of the boundary spectral data, without
lost of generality, we may assume that A1 “ A2. Then a straightforward application
of the min-max principle yields
(5.32) |λ1,k ´ λ2,k| ď }q1 ´ q2}L8pMq.

In that case (1.19) is reduced to

(5.33)
ÿ

kě1
}ψ1,k ´ ψ2,k}

2
L2pBMq ă 8.

Combining this with (4.45), (5.18) for t “ 0 (which is valid in the present case) and
taking into account that
(5.34) lim sup

τÑ`8
|SB1pτq ´ SB2pτq| “ lim sup

τÑ`8
|L˚pτq|,

we obtain, for any η P H2pS`y M1q real valued, that

(5.35)
ˇ

ˇ

ˇ

ˇ

ż

S`y M1

I0pqqpy, θqηpy, θqdσ2n´2
ˇ

ˇ

ˇ

ˇ

ď C}η}H2pS`y M1q
lim sup
kÑ`8

|λ1,k ´ λBk2 |.

Since q P H1pM1q, by the smoothing effect of the normal operator N0 “ I˚0 I0 (see
(2.21)), N0q P H

2pMq and
(5.36) }N0pqq}H2pM1q ď C}q}H1pMq ď Cr1.

Since I0 : H2pM1q Ñ H2pB`SM1q is bounded, we can take η “ I0N0pqq. We
integrate with respect to y P BM1 the left hand side (5.35) in order to get

ż

B`SM1

I0pqqpy, θqηpy, θqdσ2n´2
“

ż

M1

|N0pqq|
2 dvn “ }N0pqq}

2
L2pM1q

.

Combined with (5.35), this inequality entails
(5.37) }N0pqq}

2
L2pM1q

ď C}I0N0pqq}H2pB`SM1q lim sup
kÑ`8

|λ1,k ´ λ2,k|.
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On the other hand, it follows from (5.36)

(5.38) }I0N0pqq}H2pB`SM1q ď C}N0pqq}H2pM1q ď C 1,

the constants C and C 1 only depend on M and r. This (5.37) and (5.38), give

(5.39) }N0pqq}
2
L2pM1q

ď C lim sup
kÑ`8

|λ1,k ´ λ2,k|,

the constant C only depends on M and r1. We complete the proof by using the
interpolation inequality

}N0pqq}H1pM1q ď C}N0pqq}
1
2
L2pM1q

}N0pqq}
1
2
H2pM1q

ď C 1}N0pqq}
1
2
L2pM1q

,

the constants C and C 1 only depend on M, r. We then apply (2.20) to get (1.20). �

6. Extension to the Neumann case

We explain in this section how to adapt the preceding analysis to obtain an
uniqueness result for an inverse spectral problem fo the Schrödinger operator under
Neumann boundary condition.

For B “ pA, qq P B, define the unbounded self-adjoint operator HB , acting in
L2pMq as follows

(6.1) HBu “ HBu “ ´∆Au` qu, u P DpHBq,

with domain

(6.2) DpHBq “
 

u P H1pMq, ´∆Au` qu P L
2pMq, pBν ` iApνqqu|BM “ 0

(

.

Fix B` P Br, ` “ 1, 2 and denote by pµ`,k, χ`,kq, k ě 1, the eigenvalues and
normalized eigenfunctions of HB` .

We aim in this section to prove the following uniqueness result.

Theorem 6.1. Assume that (1.16) and the conditions

(6.3)
`8
ÿ

k“1
}χ1,k ´ χ2,k}

2
L2pBMq ă 8,

(6.4) lim
kÑ`8

k´
1
n |µ1,k ´ µ2,k| “ 0,

are fulfilled. Then As1 “ As2.

Note that, according to Weyl’s formula in [11, page 114], we have that

lim
kÑ`8

k´
1
n |µ1,k ´ µ2,k| ă 8.

Therefore, condition (6.4) seems to be the optimal rate of growth of the difference
of eigenvalues that guaranty the uniqueness of the magnetic potential.
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6.1. Boundary representation formulae for the Neumann problem. For
g P H1{2pBMq and ρpHBq, consider the BVP

(6.5)

$

&

%

pHB ´ λqv “ 0 in M,

pBν ` iAνqv “ g on BM.

Similarly to the Dirichlet case, for ` “ 1, 2, define the N-to-D map

N`,λ : g P H 1
2 pBMq ÞÑ vjpλq|BM,

where vjpλq P H2pMq is the solution of the BVP (6.5).
Define, For ` “ 1, 2,

Qjpτq “
@

Nj,λ2
τ
pBν ` iAjνqϕ

˚
1,τ , pBν ` iAjνqϕ

˚
2,τ

D

(6.6)

“

ż

BM
pBν ´ iAjνqϕ

˚
2,τNj,λ2

τ
pBν ` iAjνqϕ

˚
1,τ dσn´1,

with ϕ˚j,τ , j “ 1, 2, given in (4.6).

Proposition 6.2. We have

Q1pτq “

ż

BM
piλτ qBνψβ˚1 ` ipA1νqβ

˚
1 ` Bνβ

˚
1 qβ

˚
2 pxqdσn´1

pxq(6.7)

´ 2λτ
ż

SypM1q

ż ``py,θq

0
rσApr, y, θqrβ

˚
1
rβ˚2 %

1{2 dr dωypθq ´
ż

M
β˚1 HB1pβ

˚
2 qdvn

`

ż

M

“

pHB1 ´ λ
2
τ q
´1peiλτψHA1,q1β

˚
1 q
‰

e´iλτψ
”

2λτ pA∇ψqβ˚2 `HB1β
˚
2

ı

dvn

and

Q2pτq “

ż

BM
piλτ qBνψβ˚1 ` ipA1νqβ

˚
1 ` Bνβ

˚
1 qβ

˚
2 pxqdσn´1

pxq

(6.8)

´

ż

M
β˚1 HB2pβ

˚
2 qdvn

`

ż

M

“

pHB2 ´ λ
2
τ q
´1eiλτψp2λτ p´A∇ψqβ˚1 `HB2β

˚
1 q
‰

´

e´iλτψHB2β
˚
2

¯

dvn.

Proof. Applying Green’s formula, we get

Q1pτq “

ż

M
divpv1pλ

2
τ q∇A1ϕ

˚
2,τ qdvn

“

ż

M

A

∇A1v1pλ
2
τ q,∇A1ϕ

˚
2,τ

E

g
dvn `

ż

M
v1pλ

2
τ q∆A1ϕ

˚
2,τ dvn

“ ´

ż

M
∆A1v1pλ

2
τ qϕ

˚
2,τ dvn `

ż

BM
pBν ` iA1νqv1pλ

2
τ qϕ

˚
2,τdσg

`

ż

M
v1pλ

2
τ q∆A1ϕ

˚
2,τ dvn

where v1pλ
2
τ q the solution of the BVP (6.5), with g “ pBν ` iA1νqϕ

˚
1,τ , λ “ λ2

τ ,
A “ A1, q “ q1. Using the fact that

pBν ` iA1νqv1pλ
2
τ qpxq “ gpxq “ pBν ` iA1νqϕ

˚
1,τ pxq, x P BM,
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we deduce that

Q1pτq “

ż

BM
piλτ qBνψβ˚1 ` ipA1νqβ

˚
1 ` Bνβ

˚
1 qβ

˚
2 pxqdσn´1

pxq

´

ż

M
∆A1v1pλ

2
τ qϕ

˚
2,τ dvn `

ż

M
v1pλ

2
τ q∆A1ϕ

˚
2,τ dvn.

This identity at hand, we proceed as in Lemma 4.1 to get (6.7). Similar argu-
ments allows us to derive (6.8). �

As for the derivation of (4.40), we obtain from (6.7) and (6.8) the following
identity

Q2pτq ´Q1pτq

(6.9)

“ 2λτ
ż

SypM1q

ż ``py,θq

0
rσApr, y, θqrβ

˚
1
rβ˚2 %

1{2 dr dωypθq

`

ż

M
pq1 ´ q2qβ

˚
1 β
˚
2 dvnpxq ´

ż

M
β˚1 p∆A1β

˚
2 ´∆A2β

˚
2 qdvn

´

ż

M

“

pHB1 ´ λ
2
τ q
´1peiλτψHB1β

˚
1 q
‰

e´iλτψ
”

2λτ pA∇ψqβ˚2 `HB1β
˚
2

ı

dvn.

`

ż

M

“

pHB2 ´ λ
2
τ q
´1eiλτψp2λτ p´A∇ψqβ˚1 `HB2β

˚
1 q
‰

´

e´iλτψHB2β
˚
2

¯

dvn,

from which we deduce that, for all y P BM1 and all η P H2pS`y M1q,

(6.10) 2i
ż

S`y pM1q

´

eiI1Apy,θq ´ 1
¯

ηpy, θqdωypθq “ lim
τÑ`8

Q2pτq ´Q1pτq

τ
.

The following lemma is needed in the proof of Theorem 6.1.

Lemma 6.3. For ` “ 1, 2, consider ϕ˚j,τ , j “ 1, 2, given by (4.6). Then, we have

(6.11)

sup
τą1

8
ÿ

k“1
k

2
n

ˇ

ˇ

ˇ

ˇ

ˇ

@

ϕ˚1,τ , χ`,k
D

µ`,k ´ λ2
τ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ă C}η}2
H2pS`y pM1qq

τ2,

sup
τą1

8
ÿ

k“1
k

2
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A

ϕ˚2,τ , χ`,k

E

µ`,k ´ λ2
τ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď Cτ2, ` “ 1, 2

with C ą 0 independent of τ .

Proof. Let τ “ }q1}L8pMq`}q2}L8pMq`1 and note that DppHB``τq
1{2q “ H1pMq

since it coincides with the domain of the form associated to the operator HB` ` τ .
Whence, for any w P H1pMq, we have

8
ÿ

k“1
p1` |µ`,k|q|pw,χ`,kqL2pMq|

2 ď C}w}2H1pMq,

the constant C only depends on τ , A`, q` and M. Combining this estimate with
a Weyl’s formula for Neumann magnetic operators, similar to that in Lemma A.1,
we get (6.11).

�
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6.2. End of the proof of Theorem 6.1. The following lemma is useful in the
sequel

Lemma 6.4. Let g P H1{2pBMq, B P B, λ P ρ pHBq and denote by vpλq the
solution of the BVP (6.5). Then

(6.12) vpλq|BM “
ÿ

kě1

xg, χky

λ´ µk
χk,

the convergence takes place in H1{2pBMq.

In light of this lemma, we have
Q2pτq ´Q1pτq(6.13)

“

8
ÿ

k“1

@

pBν ` iA1νqϕ
˚
1,τ , χ2,k

D @

χ2,k, pBν ` iA1νqϕ
˚
2,τ

D

λ2
τ ´ µ2,k

´

@

pBν ` iA1νqϕ
˚
1,τ , χ1,k

D @

χ1,k, pBν ` iA1νqϕ
˚
2,τ

D

λ2
τ ´ µ1,k

.

Observe that, according to (1.16), A1 can be substituted by A2 in the identity
above.

On the other hand, we have from (4.6)
}pBν ` iA1νqϕ

˚
j,τ }L2pBMq ď |λτ |}Bνψβ

˚
j }L2pBMq ` }pBν ` iA1νqβ

˚
j }L2pBMq(6.14)

ď Cτp1` }η}H2pSyM1qq,

the constant C being independent of τ . Thus,

|Q2pτq ´Q1pτq| ď
8
ÿ

k“1
Ekpτq `

8
ÿ

k“1
Fkpτq `

8
ÿ

k“1
Gkpτq,

with

Ekpτq “ }pBν ` iA1νqϕ
˚
1,τ }L2pBMq}χ2,k ´ χ1,k}L2pBMq

|
@

χ2,k, pBν ` iA1νqϕ
˚
2,τ

D

|

|λ2
τ ´ µ2,k|

ď C}χ2,k ´ χ1,k}L2pBMqτ
|
@

χ2,k, pBν ` iA1νqϕ
˚
2,τ

D

|

|λ2
τ ´ µ2,k|

,

Fkpτq “ }pBν ` iA1νqϕ
˚
2,τ }L2pBMq}χ2,k ´ χ1,k}L2pBMq

|
@

pBν ` iA1νqϕ
˚
1,τ , χ1,k

D

|

|λ2
τ ´ µ2,k|

ď C}χ2,k ´ χ1,k}L2pBMqτ
|
@

pBν ` iA1νqϕ
˚
1,τ , χ2,k

D

|

|λ2
τ ´ µ2,k|

` Cτ2}χ1,k ´ χ2,k}
2
L2pBMq

and

Gkpτq “
|
@

pBν ` iA1νqϕ
˚
1,τ , χ1,k

D

||
@

χ1,k, pBν ` iA1νqϕ
˚
2,τ

D

||µ2,k ´ µ1,k|

|λ2
τ ´ µ2,k||λ2

τ ´ µ1,k|

ď Ck´
1
n |µ2,k ´ µ1,k|}χ1,k ´ χ2,k}L2pBMqk

1
n
|
@

pBν ` iA1νqϕ
˚
1,τ , χ1,k

D

|

|λ2
τ ´ µ1,k|

` k´
1
n |µ2,k ´ µ1,k|k

1
n
|
@

pBν ` iA1νqϕ
˚
1,τ , χ1,k

D

|

|λ2
τ ´ µ1,k|

|

A

χ2,k, pBν ` iA1νqϕ
˚
2,τ

E

|

|λ2
τ ´ µ2,k|

,
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the constant C ą 0 being independent on τ and k.
Noting that

sup
τą1

τ2

|λ2
τ ´ µ`,k|

ă 8, ` “ 1, 2, k ě 1,

we deduce that we have, for all k ě 1,
lim sup
τÑ`8

τ´1Ekpτq “ lim sup
τÑ`8

τ´1Fkpτq “ lim sup
τÑ`8

τ´1Gkpτq “ 0.

Then, for any arbitrary integer n1 ě 1, we get

lim sup
τÑ`8

τ´1
8
ÿ

k“1
Ekpτq ď lim sup

τÑ`8
τ´1

8
ÿ

k“n1

Ekpτq,

lim sup
τÑ`8

τ´1
8
ÿ

k“1
Fkpτq ď lim sup

τÑ`8
τ´1

8
ÿ

k“n1

Fkpτq,

lim sup
τÑ`8

τ´1
8
ÿ

k“1
Gkpτq ď lim sup

τÑ`8
τ´1

8
ÿ

k“n1

Gkpτq.

We combine these inequalities, estimates (6.11) and Weyl’s formula in order to get,
by repeating the arguments used to prove Lemma 5.2, that

lim sup
τÑ`8

ˇ

ˇ

ˇ

ˇ

Q2pτq ´Q1pτq

τ

ˇ

ˇ

ˇ

ˇ

ď Cp1` }η}H2pS`y pM1qq
q2plim sup

kÑ`8
k´

1
n |µ2,k ´ µ1,k|q.

Then, from (6.4) and (6.10) we deduce that I1A P 2πZ. We proceed similarly to the
proof of Theorem 1.2 to get that As1 “ As2. This completes the proof of Theorem
6.1.

Appendix A. Weyl’s formula

We establish some uniform estimates related to the Weyl’s formula of magnetic
Schrödinger operators. Our estimates, which are also valid for the Neuman realiza-
tion of magnetic Schrödinger operators, can be stated as follows.

Lemma A.1. Let B “ pA, qq P B. Then there exists a constant C ą 1, only
depending on M and r ě }A}2L8pM,T˚Mq ` }q}L8pMq so that

(A.1) C´1k2{n ď 1` |λkB | ď Ck2{n, k ě 1

Proof. Let pλkq be the sequence of eigenvalues, counted according to their multi-
plicities, of the Laplace-Belrami operator under Dirichlet boundary condition. By
Weyl’s asymptotic formula [11, page 114]

(A.2) λk “ O
´

k
2
n

¯

, k ě 1.

The sesquilinear form associated to HB is given by

apu, vq “
ż

M
x∇Au,∇Avy dvn `

ż

M
quv dvn, u, v P H1

0 pMq.

Then it is not hard to check that
apu, uq ď }du}2L2pMq ` 2

?
r}u}L2pMq}du}L2pMq ` r}u}

2
L2pMq

ď
3
2}du}

2
L2pMq ` r}u}

2
L2pMq
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and
apu, uq ě }du}2L2pMq ´ 2

?
r}u}L2pMq}du}L2pMq ´ r}u}

2
L2pMq

ě
1
2}du}

2
L2pMq ´ 3r}u}2L2pMq.

We get the expected two-sided inequalities (A.1) by using (A.2) and the minmax
principle. �
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