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Abstract. Here we present an experimental setup for water

stable isotope (δ18O and δD) continuous-flow measurements

and provide metrics defining the performance of the setup

during a major ice core measurement campaign (Roosevelt

Island Climate Evolution; RICE). We also use the metrics to

compare alternate systems. Our setup is the first continuous-

flow laser spectroscopy system that is using off-axis inte-

grated cavity output spectroscopy (OA-ICOS; analyzer man-

ufactured by Los Gatos Research, LGR) in combination with

an evaporation unit to continuously analyze water samples

from an ice core.

A Water Vapor Isotope Standard Source (WVISS) calibra-

tion unit, manufactured by LGR, was modified to (1) enable

measurements on several water standards, (2) increase the

temporal resolution by reducing the response time and (3)

reduce the influence from memory effects. While this setup

was designed for the continuous-flow analysis (CFA) of ice

cores, it can also continuously analyze other liquid or vapor

sources.

The custom setups provide a shorter response time (∼ 54

and 18 s for 2013 and 2014 setup, respectively) compared to

the original WVISS unit (∼ 62 s), which is an improvement

in measurement resolution. Another improvement compared

to the original WVISS is that the custom setups have a re-

duced memory effect.

Stability tests comparing the custom and WVISS setups

were performed and Allan deviations (σAllan) were calcu-

lated to determine precision at different averaging times. For

the custom 2013 setup the precision after integration times

of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively.

The corresponding σAllan values for the custom 2014 setup

are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, re-

spectively. For the WVISS setup the precision is 0.035, 0.070

and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively.

Both the custom setups and WVISS setup are influenced by

instrumental drift with δ18O being more drift sensitive than

δD. The σAllan values for δ18O are 0.30 and 0.18 ‰ for the

custom 2013 and WVISS setup, respectively, after averaging

times of 104 s (2.78 h). Using response time tests and stabil-

ity tests, we show that the custom setups are more responsive

(shorter response time), whereas the University of Copen-

hagen (UC) setup is more stable. More broadly, comparisons

of different setups address the challenge of integrating vapor-

izer/spectrometer isotope measurement systems into a CFA

campaign with many other analytical instruments.

1 Introduction

Ice cores are valuable archives from which we can gain

knowledge of past atmospheric processes and climate by in-

vestigating records that are preserved in the ice or in en-

trapped gas bubbles, e.g., from water molecules, chemical

impurities, particulates and methane gas (e.g., Petit et al.,

1999; EPICA Community Members, 2004; WAIS Divide

Project Members, 2013). Water stable isotopes (δ18O and
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δD, hereafter referred to as δ) preserved in ice are among

the most powerful proxy records of past climate and atmo-

spheric processes, which greatly extend limited instrumental

and observational records from Antarctica that are available

only over the last century (e.g., Steig et al., 2013; Thomas et

al., 2013).

δ records in ice cores have most frequently been used as a

site temperature proxy (Epstein and Mayeda, 1953; Dans-

gaard, 1964), but sea ice extent, atmospheric circulation,

transportation pathways, changes in source region as well as

post-depositional effects (wind scour, diffusion, etc.) also in-

fluence the δ signal (Jouzel et al., 1997; Masson-Delmotte

et al., 2008; Küttel et al., 2012; Sinclair et al., 2013). Deu-

terium excess (d-excess) is a second-order proxy (d-excess

= δD−8× δ18O; Craig, 1963; Dansgaard, 1964) commonly

interpreted as describing relative humidity and temperature

at the moisture source region, as a result of the kinetic iso-

tope effect during evaporation (Merlivat and Jouzel, 1979).

Laser spectrometry has made continuous-flow analysis

(CFA) of δ in ice core melt streams possible (Gkinis et al.,

2010; Maselli et al., 2013), replacing measurement of dis-

crete samples (e.g., Rhodes et al., 2012; Sinclair et al., 2013).

Following the first measurements of δ from laser absorption

spectrometry (Kerstel et al., 1999), improvements in com-

mercially available analyzers (Baer et al., 2002; Crosson,

2008; Berman et al., 2013; Steig et al., 2014) have made

them increasingly suitable to analyze water vapor continu-

ously. High temporal resolution measurement applications

have included atmospheric sciences (e.g., Johnson et al.,

2011; Aemisegger et al., 2012; Steen-Larsen et al., 2013), ice

core records (Gkinis et al., 2010; Steig et al., 2013; Maselli

et al., 2013), ecology (e.g., Lee et al., 2007) and hydrology

(e.g., Goebel and Lascano, 2012).

Successful measurement of a liquid water stream using

laser spectrometry requires that the liquid sample stream

is converted to vapor and compared to water standards of

known isotopic composition to achieve calibration. Reliable

calibration vaporizing units have been developed for research

(Gkinis et al., 2010; Schmidt et al., 2010; Sturm and Knohl,

2010; Steig et al., 2014), and calibration units are avail-

able commercially: the Water Vapor Isotope Standard Source

(WVISS) manufactured by Los Gatos Research (LGR) and

Standards Delivery Module (SDM) by Picarro. The WVISS

system vaporizes one standard using a self-aspirating nebu-

lizer into a heated (75 ◦C) evaporation jar, whereas the SDM

uses a syringe-pump-based system that can switch between

two standards. For δ CFA of ice cores, a range of crite-

ria including the stability and response time of the vapor-

izer/spectrometer system must be understood and matched to

practical requirements, including the operation of other CFA

analyzers and the collection of discrete samples.

Here, we present new experimental setups and identify

the following aims for the characterization of new and pre-

viously reported systems: (1) enable accurate calibration to

several water standards, (2) increase the temporal resolution

by reducing the response time and (3) reduce memory ef-

fects. With regard to the first aim, calibration to two stan-

dards allows us to properly normalize our results on the VS-

MOW/SLAP scale (Gonfiantini, 1978; Coplen, 1996). In ad-

dition, we are able to characterize the instrumental response

time using the step changes between standards. We define the

response time as the time from the first 5 to the last 5 % of

the response to a step change in δ. A short response time is

desirable to minimize the time required for completing cali-

bration cycles and to maximize the resolution with which the

δ signal that is preserved in the ice is captured. Alongside

the response time, we define a memory effect as causing an

asymmetric tail in the last 5 % of the step in δ values, with an

extended tail compared to our empirical fit. Avoiding mem-

ory effects is desirable given the large range of δ in ice cores

and in the standards required for normalization.

A key challenge we address is the integration of vapor-

izer/spectrometer isotope measurement systems into a CFA

campaign with many other instruments. In the case of a

multi-instrument CFA campaign, the competing demands of

different instrumentation and associated logistics of extended

continuous operation may require the CFA isotope mea-

surement system to be constructed so that the entire multi-

instrument CFA system can be optimized. For example, CFA

methane measurements require long uninterrupted periods of

melting due to large memory effects, whereas δ measure-

ments for the custom and WVISS setups will benefit from

more frequent calibration. Therefore, the number of consec-

utive core sections that are stacked on top of one another and

melted continuously without interruption for calibration can

necessitate a compromise between the ideal time intervals of

continuous melting for each analysis type.

Here, we describe the design and performance character-

ization of two custom vaporizer/spectrometer δ CFA em-

ployed for analysis of an ice core – the Roosevelt Island

Climate Evolution (RICE) Antarctic ice core, retrieved from

79◦21′46′′ S, 161◦42′3′′W (560 m a.s.l.) on an ice rise (Con-

way et al., 1999) situated at the northeastern edge of the Ross

Ice Shelf. The δ-CFA systems were required to yield maxi-

mum response resolutions for relating ice core δ to sea ice

extent, atmospheric circulation modes and local temperature

using reanalysis data (1979 to 2012) and in response to past

climate events while maintaining stable and accurate δ CFA

throughout the analyzed depths of the 763 m ice core. Our δ-

CFA setups are compared in response times and stability to a

similar δ-CFA ice core setup, the University of Copenhagen

(UC) setup and the commercially available WVISS (Table 1).

This is the first study within the field of ice core science

that provides a detailed characterization and comparison be-

tween δ-CFA setups that are using the new generation of off-

axis integrated cavity output spectroscopy (OA-ICOS) and

cavity ring-down spectroscopy (CRDS) spectroscopy tech-

niques. The performance of the δ-CFA systems is described

and evaluated in the context of the RICE project, with a fo-
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cus on the characterization to aid the selection and potential

customization of δ-CFA systems for future CFA campaigns.

2 Experimental

Results are reported in δ notation, representing the abun-

dance of rare isotopes as a deviation from a reference ratio:

δ =R/RSMOW-1, where R and RSMOW are the ratio between

rare and abundant isotopes 18O/16O, or D/H in the sample

and in VSMOW (Vienna Standard Mean Ocean Water), re-

spectively. Results are reported in per mil, ‰.

2.1 Isotope water analyzer (IWA-35EP)/triple isotope

water analyzer (TIWA-45EP) laser spectroscopy

system

In this study, we use an absorption spectroscopy instrument

based on OA-ICOS technology in combination with an evap-

oration unit to continuously analyze sample from an ice core

or water standards during calibration. The absorption spec-

troscopy instrument is an IWA manufactured by LGR.

The main system we describe (custom 2013) was devel-

oped and employed for the RICE CFA melting campaign (0

to 500 m) in 2013. It consists of a commercially available

IWA from LGR and a customized furnace and evaporation

chamber, which was built and fitted inside a modified WVISS

calibration unit. In addition to its function as a calibration

unit, the custom 2013 setup (Table 1) was used as a sam-

ple introduction system, in which the ice core melt stream is

continuously vaporized and introduced to the IWA. A sim-

ilar system (custom 2014) incorporating improvements was

assembled for the 2014 RICE CFA melting campaign (500

to 761 m) and is described briefly.

The IWA-35EP analyzer uses a near-infrared, tunable

diode laser that scans over three nearby absorption peaks,

H16
2 O, H18

2 O and HDO, located near the 1.4 µm wavelength.

The instrument uses an OA-ICOS technique (Baer et al.,

2002), in which the laser is directed off axis into an opti-

cal cavity. The semi-transparent cavity absorption cell has

highly reflective mirrors, yielding an effective path length of

several kilometers. The transmitted intensities are recorded

by a photo detector. Laser spectroscopy analyzers are able to

provide simultaneous measurements of δ18O,δD and water

vapor mixing ratios.

Aemisegger et al. (2012) characterized the response time

characteristics of commercially available analyzers, finding

that the L1115-i Picarro CRDS analyzer has a longer re-

sponse time compared to the LGR IWA by ∼ 31 and 22 s

for δD and δ18O, respectively. Additionally, the signal for

the L1115-i is biased by isotope-specific time lags (hence-

forth called lag bias), with δD having a ∼ 10 s longer re-

sponse time than δ18O. A δ signal without lag bias is impor-

tant when calculating high-frequency d-excess values. The

faster response time and lack of lag bias of our custom se-

tups allows us to explore the maximum extent to which

the rapidly changing δ signal preserved in an ice core can

be resolved. The pumping rate of the cavity is higher for

the IWA (500 to 800 mL min−1) compared to the L1115-i

(25 mL min−1) setup, which increases the turnover rate of

the cavity, a contributing factor to the short response time of

the IWA (Aemisegger et al., 2012).

Sturm and Knohl (2010) reported on temperature sensi-

tivity of the IWA. Recent IWA models have an enhanced

performance (EP) feature, which improved the thermal con-

trol of the cavity by keeping the temperature of the cavity

(∼ 46.3 ◦C) stable and elevated above the ambient tempera-

ture. Recent models also have the capability to measure δ17O,

such as the TIWA-45EP from LGR (Berman et al., 2013) and

L2140-i from Picarro (Steig et al., 2014). Our IWA-35EP an-

alyzer was updated in December 2013 to a TIWA-45EP an-

alyzer, which added the capability of measuring δ17O using

a second tunable diode laser. The update of the analyzer en-

abled us to include δ17O in our evaluation of the WVISS and

the 2014 custom setup.

2.2 Evaporation/vapor introduction systems

We evaluate the performance of two water evaporation units,

the WVISS calibration unit and the custom 2013 setup. In ad-

dition to this we present preliminary data and results from the

updated custom 2014 setup and new previously unpublished

results from a CRDS L2140-i Picarro ice core setup (UC

setup) with a custom-made vaporizer (vaporizer and setup

described in Gkinis et al., 2010; Steig et al., 2014). The UC

setup was optimized with stability in mind.

2.2.1 WVISS system

The original WVISS unit (WVISS v.2 evaporation unit; man-

ufactured December 2013) was set up to run a single water

standard. A stream of water standard is continuously evapo-

rated by the WVISS during calibration events. The WVISS

unit consists of a heated (75 ◦C) 1.1 L jar into which a neb-

ulizer injects a constant stream of minuscule water droplets

that rapidly evaporate. For incoming dry air, the WVISS in-

corporates a built-in compressor and drier, but we chose to

plumb to an external compressed dry air source to maximize

stability and minimize noise and vibration in the laboratory.

The dry air is split up into two flows inside the WVISS: one

constant flow that goes through the nebulizer and the second,

constituting the majority of the dry air flow, that is regulated

by a mass flow controller (MFC) and is introduced to the

evaporation jar. Tests of the WVISS unit were performed us-

ing external compressed dry air (< 20 ppm). When provided

by the manufacturer, the nebulizer (Savillex, PFA C-flow 50

nebulizer) is set up to self-aspirate a flow of 50 µL min−1

from a 0.5 L glass water bottle. We use a multi-port valve

(C25-3186EMH, VICI), which enables us to use more than

one water standard. Additional flow resistance introduced by

www.atmos-meas-tech.net/8/2869/2015/ Atmos. Meas. Tech., 8, 2869–2883, 2015
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Table 1. Technical detail and properties for the different setups.

Setup name Analyzer Manufacturer Technology Vaporizer Reference

Custom 2013 IWA-EP35 LGR OA-ICOS modified WVISS This study

Custom 2014 TIWA-EP45 LGR OA-ICOS modified WVISS This study

WVISS TIWA-EP45 LGR OA-ICOS WVISS

UC L2130-i Picarro CRDS Capillary and a furnace, Gkinis et al. (2010, 2011);

see ref. Steig et al. (2013)

the multi-port valve necessitated the use of a peristaltic pump

(P2; MP2, Elemental Scientific) to provide a more stable wa-

ter flow to the evaporation chamber. The WVISS unit is de-

scribed more in depth in Rambo et al. (2011) and Kurita et

al. (2012).

The performance of an unaltered WVISS evaporation unit

was also evaluated, using the TIWA-45EP LGR analyzer.

2.2.2 Experimental setup for water vapor isotope

measurements

Building on the design of the WVISS as a calibration unit

supporting measurement of vapor samples, a key principle of

our customized design was that both the ice core melt stream

and isotopic standards passed through the same vaporization

process. All changes to the WVISS involved readily avail-

able components that could easily be integrated within the

WVISS shell and controlled with the IWA-WVISS system.

In the custom setups, we modified the following aspects of

the setup: (1) volume of the evaporation chamber, (2) materi-

als, (3) evaporation temperature, (4) introduction of the sam-

ple into the carrier gas and (5) reduction of travel distances

of the samples. We will explain the rationale and outcome of

these changes in the following sections.

Volume of the evaporation chamber

We reduced the internal volume of the WVISS evaporation

chamber of 1.1 L to 40 mL in the 2013 custom vaporizer.

The substantially smaller volume increases the turnover rate

and reduces the response time. This is particularly important

when analyzing multiple standards and/or a rapidly chang-

ing continuous flow signal (e.g., from an ice core). The max-

imum resolution will be determined by the time it takes to

replace the vapor volume in the evaporation chamber.

The evaporation chamber volume is less important for one-

standard calibration setups (without the requirement of rapid

volume exchange), as used for example to obtain real time

measurements of atmospheric vapor for which the WVISS

was designed (Rambo et al., 2011; Aemisegger et al., 2012).

Material

The WVISS setup has a Savilex sealed 1.1 L jar evaporation

chamber. For the custom 2013 setup we use borosilicate glass

Figure 1. Diagram of glass evaporation chamber. A moist air stream

is generated from the nebulizer, merged with the MFC regulated

dry air, mixed at 170 ◦C and subsequently flows out of the glass

evaporation chamber to the IWA.

for the evaporation chamber. A cavity was milled within an

aluminum block to hold the glass evaporation chamber in

place and to conduct heat from the furnace efficiently into

the evaporation chamber. Glass was chosen as the material

for the evaporation chamber because it can be molded when

heated to form the precise desired shape of the chamber

(Fig. 1).

Evaporation temperature

To achieve complete evaporation at higher vapor throughput

rates, we increased the temperature of our custom furnace to

∼ 170 ◦C compared to the WVISS, which operates at 75 ◦C.

The temperature of the custom furnace and WVISS evapora-

Atmos. Meas. Tech., 8, 2869–2883, 2015 www.atmos-meas-tech.net/8/2869/2015/
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tion jar is regulated using a PID regulated Omega tempera-

ture controller (CN7500).

Introduction of the sample into the carrier gas

Filtered compressed dry air (< 20 ppm) was used for evap-

oration of water sample flow and to transport the vapor to

the IWA. Only a small portion of the total dry air flow goes

through the nebulizer. The nebulizer injects a mixture of wa-

ter and dry air into a glass evaporation chamber inside a cus-

tomized furnace, where the sample water is instantaneously

evaporated.

In the 2013 evaporation chamber, the moist air stream gen-

erated by the nebulizer (Fig. 1) and a line with dry air flow

passes through the furnace parallel to each other in separate

lines. These two gas streams are later merged, with the va-

por line from the nebulizer being centered inside the dry air

stream at the merger. Separating the two lines has the advan-

tage that it provides a longer residence time in the furnace

for the sample that is injected by the nebulizer. This ensures

complete evaporation; if all of the dry air were to be intro-

duced directly adjacent to the nebulizer, the throughput rate

of moist air could exceed the rate at which the dry air can

be heated, causing inefficient and incomplete evaporation at

a high vapor throughput rate. The dry air line represents the

majority of the total air flow (0 to 10 L min−1) and the dry

air flow is controlled by an Omega MFC.

After the vapor has left the furnace the internal pluming of

the WVISS was used to transport the sample vapor to the an-

alyzer. The water vapor concentration introduced to the an-

alyzer was ∼ 20 000 ppm. Excess vapor was vented to the

atmosphere through the WVISS exhaust.

Further modifications were made in a custom 2014 setup,

which uses two ceramic heating elements (122 mm, 250 W,

and 230 V) to heat a stainless steel evaporation block to

165 ◦C. The block is painted with high-temperature black

paint to uniformly absorb radiant heat generated by the el-

ements within a reflective cavity. The inner surface of the

block is electro-polished. The same nebulizer is used as in the

2013 setup, and the mixing chamber is of similar dimensions.

Dry air is pre-warmed in baffles and introduced adjacent to

the nebulizer. Compared to the 2013 setup, a higher sample

flow of∼ 150 µL min−1 matched with dry air flow to achieve

∼ 20 000 ppm water vapor concentrations is used. Prelimi-

nary results from the 2014 setup are reported here and differ

only in the vaporizer construction and in delivery of mixed

vapor to the IWA directly through an open split. The 2014

open split is a simple step down in PFA tubing sizes rather

than within the WVISS plumbing and exhaust system: 1/4”

O.D. tubing is connected to the IWA and inserted 5 cm and

centered within the larger size tubing 1/2” O.D. carrying flow

from the vaporizer.

Reduction of travel distance of the sample

The 1/4” PFA tubing between the WVISS and the IWA,

which provides the analyzer with sample, was kept short

(59 cm) and a heat tape was wrapped around the tubing to

prevent condensation and reduce adsorption to the tubing

walls.

The sample flow from the ice core melt head separates the

sample stream from the inner and outer parts of the core,

allowing for clean chemical sampling from the inner sec-

tion. For CFA δ measurements it is not necessary to have

an ultra-clean sampling regime, but we recommend taking

the sample stream from the inner line to prevent blocking

of the nebulizer. The δ-measurement flow requires only 50

to 150 µL min−1 and thus represents a minimal draw on the

available sample volume. The melt rate was monitored to al-

low the association of each continuous ice core measurement

with a depth.

The old air entrapped in the ice is first separated from the

water sample by a debubbler (DB1) and led to spectroscopic

analyzers to measure CH4 and δ18O in the air. After this step

air bubbles are introduced to the keep the water sample flow

segmented. To keep the water vapor mixing ratio generated

from the evaporation unit constant, the introduced bubbles

are removed in DB2 before the evaporation unit and multi-

port valve (V2). A more detailed description of the melt head

and the sealed debubbler (DB1, Fig. 2) used during the 2013

and 2014 RICE melting campaign is provided in Bigler et

al. (2011). The multi-port valve (C25-3186EMH, VICI) en-

ables us to switch between samples from the ice core and

multiple water standards (V2, Fig. 2 and Table 2). Switching

between sample and calibration cycles was initiated through

a control and data acquisition interface that was built in Lab-

VIEW software (National Instruments). Once the calibration

cycle was initiated, switches between water standards were

automated. RS-232-to-USB cables were used to control and

log positions of the valves (stored in calibration log files).

P2 provides a constant water flow rate of 50 to 150 µL min−1

to the nebulizer (Savillex, PFA C-flow 50 nebulizer, part no.

800-1-005-01-00). PFA tubing was used for the water and

vapor flows.

The custom 2013 setup has proven to be reliable. The sys-

tem performed without malfunction during the entire 2013

RICE melting campaign of 35 processing days.

3 Results and discussion

3.1 Signal stability (instrument drift)

Stability tests were performed to determine precision for dif-

ferent lengths of averaging times (τm) and to quantify at

which timescales instrumental drift affects the δ signal (Al-

lan, 1966; Werle, 2011). Allan deviation (σAllan, square root

of Allan variance, Eq. (1); Werle, 2011) was calculated us-

www.atmos-meas-tech.net/8/2869/2015/ Atmos. Meas. Tech., 8, 2869–2883, 2015
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Table 2. δ18O and δD discrete-IWA measurements of water standards in relation to the VSMOW/SLAP scale and their role during two-point

calibration.

Standard N δ18O (‰) ± σ δD (‰) ± σ Calibration

WS 1 4 −10.84 0.099 −74.15 0.938 QA/QC

RICE 30 −22.54 0.049 −175.02 0.193 Slope and normalization

ITASE 30 −37.39 0.046 −299.66 0.183 Slope

Figure 2. Flow chart of CFA IWA-custom vaporizer setup, where

MH stands for melt head, V for valve, P for peristaltic pump and

DB for debubbler. Blue lines represent the liquid part of the setup

and the black lines represent the dry and moist air portion.

ing several stability tests consisting of measurements on the

Lower Hutt Milli-Q water (LHW) standard for extended time

periods. Tests were performed on the 2013 and 2014 cus-

tom and the WVISS setups at water vapor concentrations of

∼ 20 000 ppm (Table 3).

σ 2
Allan(τm)=

1

2m

m∑
j=1

(
δj+1− δj

)2
, (1)

where τm is the averaging time and δ̄j+1 and δ̄j are the mean

values of neighboring time intervals j and j + 1.

Representative results from the 29 June 2013 are provided

in Fig. 3. For δ18O two relatively stable periods can be seen

separated by a transition period of instrumental drift between

11 and 13 h. We find that the instrumental drift is nonlinear

and therefore challenging to correct for.

3.1.1 Custom vaporizer

The Allan deviation analysis for the custom 2013 setup

shows that precision increases with longer averaging times

until the optimal averaging time is reached after ∼ 200 and

∼ 600 s with a precision of ∼ 0.04 and ∼ 0.07 ‰ for δ18O

and δD, respectively (Figs. 4 and 5). For longer averaging

times, instrumental drift becomes apparent. For this reason,

averaging times beyond these values will have poorer preci-

sion.

After an averaging time of 60 s (approximately the re-

sponse time of the whole ice core CFA setup) a precision of

0.05 and 0.15 ‰ is achieved for δ18O and δD, respectively.

This level of precision is comparable to IRMS analyzes for

δ18O (IRMS δ18O: 0.024 to 0.1 ‰) and outperforms IRMS

analyzes for δD (IRMS δ D: 0.5 to 1.0 ‰; Sturm and Knohl,

2010, and references therein).

Due to competing requirements of various CFA analytical

lines, calibrations were not run frequently enough during the

2013 RICE ice core processing campaign to avoid influence

from instrumental drift on the CFA δ data. Calibrations were

on average conducted every 2.4 h. Thus, the maximum tem-

poral distance of any δ-CFA measurement to a calibration

event is ∼ 1.2 h. The peak uncertainty is therefore given by

the Allan deviation after 1.2 h, which is∼ 0.17 and∼ 0.13 ‰

for δ18O and δD, respectively (Figs. 4. and 5). Analytical un-

certainty in d-excess was estimated to range between 0.31

and 1.37 ‰ using Eq. (2). We note that Eq. (2) assumes δ18O

and δD are uncorrelated, which was verified to be true for the

vast majority of our measurements on standards averaged at

15 s intervals. Peak uncertainty (1.37 ‰) occurs at the center

point between calibrations (Figs. 4 and 5; 1.2 h= 4320 s) and

the minimum uncertainty (0.31 ‰) occurs near calibration

points, within the optimal integration time for δ18O (200 s).

σd =

[
(σδD)

2
+ (8 · σδ18O)

2
]1/2

(2)

For d-excess ice core measurements, a precision of ≤ 0.1

and ≤ 1.0 ‰ for δ18O and δD, respectively, is required

(σd = 1.28 ‰; Masson-Delmotte et al., 2008). The δ18O

measurements are more drift sensitive compared to δD data

and are therefore the limiting factor for d-excess data. To

achieve high-precision measurements for δ18O (< 0.1 ‰), a

standard would have to be run for drift correction every∼ 1 h,

which is incompatible with CFA methane gas analyses.

To reduce the response time and the influence from instru-

mental drift, we are currently working towards a new setup,

focusing on reducing the response time and the influence

from instrumental drift even further. A reduced response time

would allow us to run a drift standard during melting, only

missing a small quantity of ice core analysis. Such an ap-

proach would accommodate competing requirements, such

as frequent calibrations for isotope measurements and long

periods of uninterrupted melting for methane measurements.

Furthermore, if the instrumental drift is reduced then less fre-

quent calibrations will be required.
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Table 3. Date, duration, mean water vapor concentration and standard deviation for stability tests.

Date Setup Duration (h) Mean (ppm) Std (ppm)

24 May 2013 Custom 2013 18.45 21 466 639

01 June 2013 Custom 2013 23.81 19 941 479

09 June 2013 Custom 2013 22.04 19 530 400

23 June 2013 Custom 2013 23.98 19 870 456

29 June 2013 Custom 2013 23.26 19 642 401

24 January 2014 WVISS 31.22 18 092 145

28 January 2014 WVISS 24.47 19 770 135

30 January 2014 WVISS 31.67 19 641 144

19 July 2014 Custom 2014 30.49 20 216 304

20 July 2014 Custom 2014 18.92 21 486 132

30 May 2014 Gkinis 2014 30.00 – –

Figure 3. Results from a stability test using the 2013 custom vaporizer setup, measured over a 24 h period. Moving averages of 60 s of the

2 Hz data are displayed. Deviation from mean value is shown for each point in (a) for δD and (b) for δ18O. (c) Water vapor concentration

(ppm) and (d) analyzer cavity temperature (◦C).

3.1.2 WVISS system

For the WVISS system the optimum averaging times are 700,

1000 and 1500 s with precisions of 0.04, 0.06 and 0.04 ‰ for

δ18O, δD and δ17O, respectively.

The optimal averaging time is reached faster for the cus-

tom setups compared to the WVISS system, indicating that

the custom setup has higher precision compared to the

WVISS during shorter integration times (e.g., 0 to 300 s for

δ18O, Fig. 4). However, the 2013 custom setup is more sus-

ceptible to long-term drift beyond the optimal averaging time

(Figs. 4 and 5).

The variability observed at long averaging times (beyond

the optimum averaging time) shows the randomness of the

drift, as drift occurs after different lengths of times for dif-

ferent tests (Figs. 4, 5 and S1 in the Supplement). Previous

studies have shown results from singular tests (Gkinis et al.,

2010; Sturm and Knohl, 2010; Aemisegger et al., 2012), av-

erages from several tests (Steig et al., 2014) or from several

tests but only for short integration times (≤1000 s; Maselli

et al., 2013). Showing results from a suite of tests provides

an improved estimate of the uncertainty of the results and

the nonlinear nature of the drift. However, if the system is

less drift sensitive, a single long-term test can be sufficient to

characterize the stability of the system.

Aemisegger et al. (2012) conducted stability test compar-

isons for averaging times from 0 to 104 s (2.78 h). However,

to investigate drift for longer averaging times, we consider

averaging times up to 105 s (27.8 h) and compare these re-

sults to the UC setup (Picarro instrument; L2140-i).

Our results show that the custom and WVISS setups are

affected by instrumental drift. At averaging times of 104 s the
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Figure 4. Allan deviation as a function of averaging time for δ18O

from stability tests of the custom vaporizer setups (2013 setup

brown lines and 2014 setup blue lines), the WVISS setup (green

line) and the University of Copenhagen setup (UC black line).

Average precision (1σ ; standard deviation) for individual discrete

samples measured on the IWA-35EP analyzer is shown as a black

dashed horizontal line.

WVISS setup has σAllan values of 0.15, 0.06 and 0.10 ‰ for

δ18O, δD and δ17O, respectively. For the custom 2013 setup

the σAllan values at 104 s are and 0.3 and 0.25 ‰ for δ18O and

δD, respectively.

For the custom 2013 setup the precision after integration

times of 103 s are 0.060 and 0.070 ‰ for δ18O and δD, re-

spectively. For the WVISS setup the precision is 0.035, 0.070

and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively.

Preliminary data from the updated custom 2014 setup (blue

lines, Figs. 4, 5, and S1) show that this system is less affected

by instrumental drift compared to the 2013 setup; after inte-

gration times of 103 s the 2014 system achieves σAllan values

of 0.030 ‰ for δ18O, 0.043 ‰ for δ17O and 0.060 ‰ for δD.

Results from the University of Copenhagen setup show

that the Picarro CRDS analyzer (L2140-i) and vaporizer

achieve σAllan values of 0.011 ‰ for δ18O, 0.010 ‰ for δ17O

and 0.048 ‰ for δD, after averaging times of 103 s. The Uni-

versity of Copenhagen setup achieves higher precision and

is less affected by drift compared to the custom and WVISS

setups. No instrumental drift can be detected for δ18O and

δ17O for the L2140-i setup (Figs. 4 and S1).

When analyzing for secondary parameters, such as d-

excess and 17O-excess, a system that is optimized for sta-

bility, like the UC setup, has an advantage over the custom

and WVISS setups (Fig. S2), which to a larger extent are in-

fluenced by instrumental drift (with δ18O being more drift

sensitive than δD). The susceptibility of OA-ICOS analyz-

ers to instrumental drift for δ18O has also been shown by

Aemisegger et al. (2012). Therefore, more frequent measure-

Figure 5. Allan deviation as a function of averaging time for δD

from stability tests of the custom vaporizer setups (2013 setup

brown lines and 2014 setup blue lines), the WVISS setup (green

line) and the University of Copenhagen setup (UC black line).

Average precision (1σ ; standard deviation) for individual discrete

samples measured on the IWA-35EP analyzer is shown as a black

dashed horizontal line.

ments of drift correction standards will have to be performed

for the custom setups in order to achieve the high precision

measurements achieved by the L2140-i setup.

3.2 Response time

Isotopic step changes between water standards are used to

calculate response times for the customized and the WVISS

setup (Tables 4 and 5). The water vapor concentration was

kept constant over the isotopic step change (∼ 20 000 ppm).

Cumulative distribution functions of the log normal distri-

bution were fitted to the isotopic steps following Gkinis et

al. (2010).

δfit(t)=
K1

2

[
1+ erf

(
ln t − tvalve

S
√

2

)]
+K2, (3)

where t is the time and K1, K2, tvalve and S are constants es-

timated using least square optimization (LSO). The isotopic

transition period, and thus the response time, was defined be-

tween 5 and 95 % of the total isotopic step change (Eqs. 4

and 5). Beyond these limits, it becomes difficult to distin-

guish a step change from random signal noise.

1δstep = δstd1− δstd2, (4)

δ% =
δfit− δstd2

1δstep

, (5)

where 1δstep is the size of the δ step between standard 1

(δstd1) and standard 2 (δstd2) and δ% is the percent change

using the δ signal from the fitted function in Eq. (3) δfit.
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Table 4. Response times for δ18O and δD from isotopic step tests between water standards.

Response time (s)

Isotopic step Setup Step 118O 1D # steps δ18O ±σ Fit mean δD ±σ Fit mean

(‰) (‰) mean rmse mean rmse

ITASE RICE Custom 2013 Pos. 14.5 124.2 5 53.4 1.9 0.51 54.1 1.7 0.51

RICE ITASE Custom 2013 Neg. 14.5 124.2 10 54.6 1.8 0.54 55.6 0.9 1.56

RICE ITASE WVISS Neg. 14.5 124.2 7 61.3 2.6 0.55 61.8 2.4 1.82

ITASE RICE WVISS Pos. 14.5 124.2 3 61.7 3.3 0.57 63.1 3.6 0.81

RICE ITASE Custom 2014 Neg. 14.5 124.2 10 18.4 0.8 0.48 18.5 1.0 1.56

ITASE WS 1 Custom 2014 Pos. 26.5 225.5 7 18.4 0.9 0.44 18.8 0.5 0.67

Standard −40 CPH-DI Gkinis 2014 Pos. 31.6 252.6 1 90.3 – 0.33 93.6 – 1.03

Table 5. Response times for δ17O for water standard isotopic step tests.

Response time (s)

Isotopic step Setup Step 117O # steps δ17O ±σ Fit mean

(‰) mean rmse

RICE ITASE WVISS Neg. 7.7 7 61.2 3.9 0.79

ITASE RICE WVISS Pos. 7.7 3 60.2 1.5 0.81

RICE ITASE Custom 2014 Neg. 7.7 10 19.2 1.7 0.74

ITASE WS 1 Custom 2014 Pos. 13.7 7 19.2 2.2 0.67

Standard −40 CPH-DI Gkinis 2014 Pos. 17.0 1 90.3 – 0.34

The response times for the customized setups are∼ 54 and

∼ 18 s for the 2013 and 2014 setup, respectively. This is an

improvement compared to the WVISS setup, which has a re-

sponse time of ∼ 62 s (Fig. 6, Tables 4 and 5).

The UC L2140-i (Picarro) analyzer and vaporizer unit

setup achieves response times of 90 s for δ18O and δ17O and

94 s for δD (Fig. 6e and f, Tables 4 and 5). The custom setups

(the 2014 version in particular) are more responsive com-

pared to the WVISS and UC setup.

We hypothesize that a more responsive system can of-

ten become less stable when optimized for responsiveness

by reducing evaporation chamber volume or increasing the

amount of dry air flow. This could partially be due to the fact

that it can be harder to control and keep environmental pa-

rameters constant in a more responsive system. For example,

if the dry air flow is increased to reduce the response time,

the system can become more sensitive to ambient temper-

ature changes (as it will be harder to preheat a larger vol-

ume of air), which can induce drift. However, another way

to obtain a more responsive system would be to minimize

the amount of dead volume and mixing volumes in the wa-

ter sample lines, which would not necessarily result in a less

stable system. The dead volume in the sample lines for the

custom setups was not minimized due to lab space limitations

and due to the fact that the δ-CFA system shared sample lines

with other CFA analytical equipment.

Furthermore, the δD isotopic step transition for the

WVISS setup (Fig. 6d) is influenced by memory effects. A

long tail is evident in the data before the final isotopic value

is reached. The fit with the cumulative distribution function

(Eq. 3) is poor while an exponential function improves the fit

with the data. In contrast, the 2013 and 2014 custom setup

reaches the final stable isotopic value faster (Fig. 6b), which

suggests it is less influenced by memory effects.

Figure 6 provides an example of a step change between

two water standards RICE and ITASE for the custom setups

(Fig. 6a and b) and WVISS (Fig. 6c and d) setup. A step

change from the UC setup of similar isotopic size is also pro-

vided for comparison (Fig. 6e and f). The impulse response

functions, the derivative of the isotopic fit (∂δfit/∂t) for the

setups, are shown in Fig. 6g and h.

The response time values presented in Table 4 are valid as

a comparison between the WVISS and custom setups. How-

ever, the response times for the custom setups are not repre-

sentative of the whole CFA system, as the V2 valve is located

downstream of the melter and debubbler (Fig. 2). Hence the

attenuation of the δ signal prior to the valve is not taken into

account. Gkinis et al. (2011) presented a method to calcu-

late the attenuation for the CFA system using a power spec-

trum of the CFA data and a spectrum from discrete offline

measurements (ice pieces cut directly from the core) over the

same depth interval as the CFA measurements.

Aemisegger et al. (2012) reported δD, δ18O and water va-

por mixing ratio response times of 4.5, 3 and 2.9 s, respec-

tively, for an IWA-WVISS setup. However, their isotopic step

change is between one standard from the WVISS unit and the
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Figure 6. (a–f) Shows δ-CFA data (blue dots and green dots for the 2013 and 2014 custom setup, respectively), a LSO fitted curve (black

line), 5 and 95 % of change in the response time (RT) transition period (red line) for the custom setups (a and b) and WVISS setup (c and

d) and the University of Copenhagen setup (UC; e and f). (g–h) The impulse response function for the fit for the 2013 custom (black line),

the 2014 custom (green line), the Gkinis 2014 (blue line) and the WVISS (red line) setup. The left column of plots (a, c, e and g) are for

δ18O and the right column of plots (b, d, f and h) are for δD.

ambient air, which provides the response times of the IWA.

This way the evaporation chamber volume does not have to

be replaced for the isotopic step to be complete. When an

evaporation unit is used for switching between multiple stan-

dards and/or a changing CFA signal (e.g., from CFA sam-

ple stream from an ice core), it becomes critical to have a

small evaporation chamber volume, as the vapor volume in

the evaporation chamber needs to be replaced before the cur-

rent signal can be analyzed.

The lag bias introduced by the IWA–vaporizer setups are

negligible (for both the custom setups and WVISS setups).

On average δD lags δ18O by 1 s (Table 4). A δ signal without

lag bias enables the calculation of high-frequency d-excess

values. For the WVISS and the custom 2014 setup we can

also confirm there is no observable bias between δ18O and

δ17O, which is relevant for 17O-excess measurements (Ta-

bles 4 and 5). Furthermore, for the custom setups we find no

relationship between the size of the isotopic step and the re-

sponse time or the response time and the direction of the step

(positive or negative).

We reduced the tubing length in our system for the va-

por introduction to the analyzer compared to a typical atmo-

spheric science setup, where it is necessary to have longer air

intake lines. We hypothesize that our setup experiences less

adsorption to tubing walls. This is important, as adsorption

can cause a bias between δ18O and δD. The tubing between

evaporation chamber and analyzer is only 59 cm, which re-

quired orientating the analyzer with the back towards the

WVISS. Moreover, we applied heat tape to the tubing to re-

duce adsorption to tubing walls.

To conclude discussion on this topic, we note that the re-

sponse times reported above do not represent the full re-

sponse time of the entire CFA system, as measured from the

melt head. Limited experimentation produced an estimate of

∼ 43 s for the response time of the entire 2014 CFA system.

This is a more rapid response than all systems reported in Ta-

ble 3 except the custom 2014 setup. Thus, to take full advan-

tage of the fastest response times, the isotope analysis sys-

tem could be placed closer to the melt head by changing the

overall CFA design or shortening the sample line between the

melt head and DB1.

3.3 Calibration

We use four internal standards (Table 2 and Fig. 7): LHW,

Working Standard 1 (WS1), RICE (derived from RICE snow)

and ITASE (derived from US-ITASE, West Antarctic snow).

The values of the internal standards in relation to the VS-

MOW/SLAP scale were determined using discrete laser ab-
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Figure 7. Example of raw data from a melting session and calibra-

tion events from 25 June 2013. Ice core sections of 1 m were stacked

on top each other during melting sessions. The ice core data are

bracketed by calibration events. Water standards from the first cal-

ibration event are color marked. Yellow marking is for LHW stan-

dard, red for WS1, green for RICE and blue for the ITASE water

standard.

sorption spectroscopy measurements on the IWA-35EP ana-

lyzer (Table 2).

The CFA data import and processing is handled with MAT-

LAB routines (MATLAB version 8.0.0.783 (R2012b), Math-

Works, Inc., Natick, Massachusetts, United States). A semi-

automatic MATLAB script was set up for extracting standard

measurements during calibrations and associating calibration

events with the corresponding ice core melt section.

Water vapor generated from Milli-Q water (18 M� water)

is supplied to the analyzer between calibration and ice core

melting periods, allowing us to easily distinguish between

these events. We identify the start of the calibration measure-

ment after the transition from Milli-Q to standard by finding

the first time where the derivative of the δ CFA measurement

drops below a threshold. The time lag between the V2 valve

and the analyzer is found using the calculated start time of

the standard measurement and the time of the valve switch

recorded in the calibration log file. Running Milli-Q water

when the sample or standards are not analyzed also has the

advantage that there is less risk of deposit buildup that can

block the nebulizer.

Figure 7 shows an example of a typical section from δ-

CFA processing of the RICE ice core. Three or four 1 m ice

core sections were typically melted between calibrations, by

stacking consecutive cores on top of each other during melt-

ing. Normally the stack of cores takes up to 2.4 h between

calibrations, and one calibration cycle takes ∼ 30 min.

The multiple water standard calibration cycle consists of

three internal standards: WS1, RICE and ITASE. The values

of the internal standards in relation to the VSMOW/SLAP

Figure 8. Normalized measurement of QA/QC standard (WS1)

over 35 days. Raw data are shown as gray stars and corrected data

as black dots (a) for δ18O and (b) for δD. The corrected data have

a standard deviation of 0.11 and 0.75 ‰ for δ18O and δD, respec-

tively. The mean corrected anomaly (black line) from the true WS1

standard value (thick red line) is −0.07 and −0.51 ‰ for δ18O and

δD, respectively.

scale are provided in Table 2. The isotope standards bracket

the isotopic ice core record (Fig. 7).

Throughout our measurements the water vapor mixing ra-

tio was kept at∼ 20 000 ppm in order to ensure data stability.

To remove data that are affected by sudden changes in water

mixing ratios (often caused by small air bubbles or drips) we

used the following criteria: CFA data are removed when the

difference between the 30 s moving average and 200 s mov-

ing average of water mixing ratio (ppm) exceeds 1 standard

deviation (σ) of the 60 s moving average. In addition, a cut-

off limit of 15 000 ppm was implemented, which removes

data that are stable but measured at mixing ratios that de-

viate from our set measurement level (∼ 20 000 ppm). If an

offset occurred from the target water mixing ratio, the ana-

lyzer’s water vapor dependence is corrected accurately if the

magnitude of the offset in between calibrations is constant.

Each standard is analyzed for 500 s; the first 100 and last

100 s of each standard measurement are discarded to conser-

vatively avoid influence from memory effects. Measurements

shorter than 250 s are omitted. Figure 7 shows an example of

the standards analyzed during a calibration cycle. Average

values over 300 s were calculated for each standard.

We follow the recommendation by the International

Atomic and Energy Agency (IAEA) of measuring multiple

water standards for calibration (Kurita et al., 2012). We fit

a multi-port valve to switch between different water stan-

dards to the nebulizer to perform calibrations. The RICE and

ITASE standards are used for the two-point linear correction

of the CFA data. Correction slopes were calculated using the

RICE and ITASE standards directly before and directly after
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Figure 9. The 60 s moving average of the corrected 2 Hz δ CFA

data (black line), results from discrete measurements (green dots

for measurements from the IWA-35EP analyzer and yellow dots for

measurements on the DLT-100 analyzer) and δ-CFA data integrated

over the discrete vial depth intervals (red dots); (a) for δ18O, (b) for

δD and (c) for d-excess.

each melting period. The data are normalized to the RICE

standard to reduce the influence from instrument drift and

WS1 is used as a QA/QC standard. The calibration and nor-

malization were linearly time weighted between the calibra-

tion events.

The averages of correction slopes from calibra-

tions throughout the RICE processing campaign are

δ18O= 0.941± 0.0057 (mean ±1σ ; N = 324) and

δD= 0.997± 0.0043. The average of the correction slopes

are shown here for characterization purposes. However,

for isotope raw-data correction we use adjacent calibration

slopes to calibrate the data. This approach was applied

as correction slopes have been shown to be instrument

specific and vary slightly over time due to instrumental

drift (Kurita et al., 2012). To correct for drift, our system

is designed for calibrations performed at a time interval

averaging 2.4 h. Recent studies have obtained similar correc-

tion slopes (δ18O= 0.941± 0.008 and δD= 0.994± 0.003

(Aemisegger et al., 2012) and δ18O= 0.946± 0.005 and

δD= 1.00± 0.003; Kurita et al., 2012) using an IWA-

WVISS setup. It is important to use a two-point calibration

correction, as it is not feasible to calculate correction

slopes using a single-standard correction approach, and any

resulting deviation from the predominant slope would bias

the calibration.

The custom setups can be applied to the field of atmo-

spheric science, enabling rapid, automated and robust cali-

bration cycles using multiple water standards (two-point cal-

ibration), compared to the one-standard setup that the unal-

tered WVISS is fitted with by the manufacturer. Reducing

the length of calibration while including multiple standards

should maximize data quality while minimizing the loss of

atmospheric measurements during calibration cycles. Addi-

tionally, the setup has proven to be a robust system that can

run continuously for months and operate unattended for days.

3.4 Long-term precision and accuracy

The RICE and ITASE standards are used for the two-point

linear correction of the δ-CFA data, and the RICE standard

is also used for normalization to minimize influence from

drift. Measurement of a QA/QC standard (WS1) was con-

ducted as a check throughout the RICE processing campaign

(35 days). The corrected CFA measurements of the QA/QC

standard provide a measure of the long-term precision and

accuracy of the corrected δ-CFA data measured on the cus-

tom 2013 setup (Fig. 8). The data in Fig. 8 have been nor-

malized using the VSMOW/SLAP value of the QA/QC stan-

dard (WS1; Table 2). The overall precision of the 177 stan-

dard measurements over the 35 days was 0.11 and 0.75 ‰ for

δ18O and δD, respectively. The mean anomaly values of the

corrected QA/QC standard values are −0.07 and −0.51 ‰

for δ18O and δD, respectively, and they provide an estimate

of the overall accuracy of the measurements (black dashed

line in Fig. 8). On 16 June 2013 (day 167), problems were

diagnosed with the vacuum pump for the IWA (N940, KNF),

which appears to have affected the accuracy of δD (Fig. 8b).

3.5 High-resolution ice core record

To evaluate the quality of the calibration procedure, the cor-

rected δ-CFA data were compared to discrete data (Fig. 9).

Discrete measurements measured on an IWA-35EP (green

dots) and DLT-100 analyzer (yellow dots) can be compared

with δ-CFA data integrated over the discrete vial depth inter-

vals (red dots). Figure 9 verifies the validity of the calibration

procedure.

The discrete and CFA data for the 133 to 144 m section

of the RICE ice core were investigated further by creating

histograms of the difference between the discrete data mea-

sured on the IWA-35EP analyzer and the CFA data. A differ-

ence was calculated for each discrete sample (N = 215). The

averages of the CFA δ over the discrete vial depth intervals

were calculated to make a direct comparison with the lower

resolution discrete measurements.

The difference between the averaged CFA and discrete

data was calculated to be 0.09± 0.16 and 0.70± 1.07 ‰

(mean± 1σ) for δ18O and δD, respectively (Fig. 10). d-

excess was calculated for the discrete and averaged CFA

data, the difference being −0.05± 0.25 ‰ (Fig. 10c).

4 Conclusions

This study outlines the process used to develop experimen-

tal CFA equipment for δ measurements with high temporal
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Figure 10. Histogram showing the difference between discrete and

the CFA data: (a) for δ18O, (b) for δD and (c) d-excess for depths

from 133 to 144 m of the RICE ice core.

resolution (sub-annual) in the RICE ice cores and describes

the performance and operation of the equipment as well as

potential improvements. This continuous-flow laser system

is the first to use OA-ICOS in combination with a vaporizer

unit to continuously analyze sample from an ice core.

Stability tests comparing the custom and the WVISS se-

tups were performed and Allan deviations (σAllan) were cal-

culated to determine precision at different averaging times.

For the 2013 modified setup, the σAllan after integration times

of 103 s are 0.060 and 0.070 ‰ for δ18O and δD, respectively.

The corresponding σAllan values for the custom 2014 setup

are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respec-

tively. For the WVISS setup the precision is 0.035, 0.070 and

0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both

the modified and WVISS setup are influenced by instrumen-

tal drift, and δ18O is more drift sensitive than δD.

The peak precision uncertainty for the custom 2013 CFA

δ data is given by the Allan deviation after 1.2 h (center point

between calibrations), which is ∼ 0.17 and ∼ 0.13 ‰ for

δ18O and δ D, respectively. Allan deviation for d-excess was

estimated to range between 0.31 and 1.37 ‰ using Eq. (2).

1.37 ‰ is the peak uncertainty (1.2 h) and the minimum un-

certainty (0.31 ‰) occurs near calibration points, within the

optimal integration time for δ18O (200 s).

Results from the UC setup show that the Picarro CRDS

analyzer (L2140-i) and vaporizer achieves σAllan values of

0.011 ‰ for δ18O, 0.010 ‰ for δ17O and 0.048 ‰ for δD,

after averaging times of 103 s. The UC setup outperforms the

custom setups on the basis of precision.

The mean response times for the customized setup are 54

and 18 s for 2013 and 2014 setup, respectively. This is an

improvement compared to the WVISS setup, which has a

response time of 62 s. The UC L2140-i (Picarro) analyzer

and vaporizer unit setup achieves response times of 90 s for

δ18O and δ17O and 94 s for δD. The custom setups (the 2014

version in particular) are more responsive compared to the

WVISS and UC setup and can therefore provide measure-

ments with higher temporal resolution.

The two-point calibration process was evaluated by com-

paring the CFA data to discrete measurements. The overall

difference between CFA and IWA-35EP discrete measure-

ments was 0.09± 0.16 and 0.70± 1.07 ‰ (mean ±1σ) for

δ18O and δD, respectively.

The custom setups used during the 2013 and 2014 RICE

ice core processing campaign achieved high precision mea-

surements, in particular for δD, with high temporal (sub-

annual) resolution for the upper part of the core.

The Supplement related to this article is available online

at doi:10.5194/amt-8-2869-2015-supplement.
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