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TOUCHDOWN IS THE ONLY FINITE TIME SINGULARITY IN A

THREE-DIMENSIONAL MEMS MODEL

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

ABSTRACT. Touchdown is shown to be the only possible finite time singularity that may take place

in a free boundary problem modeling a three-dimensional microelectromechanical system. The

proof relies on the energy structure of the problem and uses smoothing effects of the semigroup

generated in L1 by the bi-Laplacian with clamped boundary conditions.

1. INTRODUCTION

We consider a model for a three-dimensional microelectromechanical system (MEMS) includ-

ing two components, a rigid ground plate of shape D ⊂ R
2 and an elastic plate of the same shape

(at rest) which is suspended above the rigid one and clamped on its boundary, see Figure 1. Both

plates being conducting, holding them at different voltages generates a Coulomb force across the

device. This, in turn, induces a deformation of the elastic plate, thereby modifying the geometry of

the device and transforming electrostatic energy into mechanical energy. When applying a suffi-

ciently large voltage difference, a well-known phenomenon that might occur is that the two plates

come into contact; that is, the elastic plate touches down on the rigid plate. For this feature – usu-

ally referred to as pull-in instability or touchdown [6, 18] – some mathematical models have been

developed recently [3, 6, 15, 17, 18]. Since the pioneering works [3, 7, 10, 17], their mathematical

analysis has been the subject of numerous papers. We refer to [5,14] for a more complete account

and an extensive list of references.

We focus here on a model describing the evolution of the vertical deformation of the elastic

plate from rest and the electrostatic potential between the plates. More precisely, we assume that

D is a bounded and convex domain in R
2 with a C∞-smooth boundary. Then, after an appropriate

rescaling and neglecting inertial forces, the ground plate is located at z = −1 while the elastic

plate’s rest position is at z = 0, and the evolution of the vertical deformation u = u(t, x) of the

elastic plate at time t > 0 and position x ∈ D is given by

∂tu+ β∆2u−
(

τ + a‖∇u‖2L2(D)

)

∆u = −λ g(u) , x ∈ D , t > 0 , (1.1a)

where

g(u(t))(x) := ε2|∇ψu(t)(x, u(t, x))|2 + |∂zψu(t)(x, u(t, x))|2 , x ∈ D , t > 0 . (1.1b)
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FIGURE 1. Cross section of an idealized MEMS device

Throughout the paper, ∇ and ∆ denote the gradient and the Laplace operator with respect to

x ∈ D, respectively. We supplement (1.1a) with clamped boundary conditions

u = ∂νu = 0 , x ∈ ∂D , t > 0 , (1.1c)

and initial condition

u(0, x) = u0(x) , x ∈ D . (1.1d)

As for the electrostatic potential ψu(t)(x, z), it is defined for t > 0 and (x, z) ∈ Ω(u(t)), where

Ω(u(t)) is the three-dimensional cylinder

Ω(u(t)) := {(x, z) ∈ D × (−1,∞) : −1 < z < u(t, x)}
enclosed within the rigid ground plate at z = −1 and the deflected elastic plate at z = u(t). For

each time t > 0, the electrostatic potential ψu(t) solves the rescaled Laplace equation

ε2∆ψu(t) + ∂2zψu(t) = 0 , (x, z) ∈ Ω(u(t)) , t > 0 , (1.2a)

supplemented with non-homogeneous Dirichlet boundary conditions

ψu(t)(x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)) , t > 0 . (1.2b)

In (1.1)-(1.2), the aspect ratio ε > 0 is the ratio between vertical and horizontal dimensions

of the device while λ > 0 is proportional to the square of the applied voltage difference. The

parameters β > 0, τ ≥ 0, and a ≥ 0 result from the modeling of the mechanical forces and

are related to bending and stretching of the elastic plate, respectively. We emphasize that (1.1)-

(1.2) is a nonlinear and nonlocal system of partial differential equations featuring a time-varying

boundary, which makes its analysis rather involved. Still, its local in time well-posedness can be

shown in a suitable functional setting, as we recall below, and the aim of this note is to improve

the criterion for global existence derived in [12].
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2. MAIN RESULT

Expanding upon the above discussion on global existence we recall the following result estab-

lished in [12, Theorem 1.1].

Theorem 2.1. Let 4ξ ∈ (7/3, 4), and consider an initial value u0 ∈ W 4ξ
2 (D) such that u0 > −1

in D and u0 = ∂νu
0 = 0 on ∂D.

(i) There is a unique solution u to (1.1) on the maximal interval of existence [0, Tm) in the

sense that

u ∈ C
(

[0, Tm),W 4ξ
2 (D)

)

∩ C
(

(0, Tm),W 4
2 (D)

)

∩ C1
(

(0, Tm), L2(D)
)

(2.1)

satisfies (1.1) together with

u(t, x) > −1 , (t, x) ∈ [0, Tm)×D ,

and ψu(t) ∈W 2
2

(

Ω(u(t))
)

solves (1.2) in Ω(u(t)) for each t ∈ [0, Tm).
(ii) If Tm <∞, then

lim
t→Tm

‖u(t)‖
W 4ξ

2
(D)

= ∞ or lim
t→Tm

min
x∈D̄

u(t, x) = −1 . (2.2)

It is worth pointing out that, since Ω(u(t)) is only a Lipschitz domain, the W 2
2 -regularity of

ψu(t) does not seem to follow from standard elliptic theory. Actually, this property is one of the

cornerstones in the proof of Theorem 2.1 and guarantees that the function g in (1.1b) is well-

defined (see Proposition 3.1 below).

Further results regarding (1.1)-(1.2) are to be found in [12]. In particular, global existence holds

true under additional smallness assumptions on both λ and u0. Moreover, stationary solutions exist

for small values of λ and, when D is a ball in R
2, no stationary solution exists for λ large enough.

This last property is actually connected with the touchdown phenomenon already alluded to in

the introduction. In the same vein, whether a finite time singularity may occur for the evolution

problem for suitable choices of λ and u0 is yet an open problem, though such a feature is expected

on physical grounds.

Coming back to the global existence issue, the criterion (2.2) stated in Theorem 2.1 entails

that non-global solutions blow up in finite time in the Sobolev space W 4ξ
2 (D) or a finite time

touchdown of the elastic plate on the ground plate occurs, the occurrence of both simultaneously

being not excluded a priori. From a physical point of view, however, only the latter seems possible.

For the investigation of the dynamics of MEMS devices it is thus of great importance to rule out

mathematically the norm blowup in finite time. In [11] this was done if D = (−1, 1) is one-

dimensional, that is, in case the elastic part is a beam or a rectangular plate that is homogeneous in

one direction. The situation considered herein, where D is an arbitrary two-dimensional (convex)

domain, is more delicate. Indeed, the right-hand side of (1.1) – being given by the square of the

gradient trace of the electrostatic potential – has much less regularity properties due to the fact that

the moving boundary problem (1.2) for the electrostatic potential is posed in a three-dimensional

domain Ω(u). We shall see, however, that we can overcome this difficulty using the gradient flow

structure of the evolution problem along with the regularizing effects of the fourth-order operator

in (negative) Besov spaces. More precisely, we shall show the following result.

Theorem 2.2. Under the assumptions of Theorem 2.1 let u be the unique maximal solution to

(1.1) on the maximal interval of existence [0, Tm). Assume that there are T0 > 0 and κ0 ∈ (0, 1)
such that

u(t) ≥ −1 + κ0 in D , t ∈ [0, Tm) ∩ [0, T0] . (2.3)
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Then Tm ≥ T0.

Moreover, if, for each T > 0, there is κ(T ) ∈ (0, 1) such that

u(t) ≥ −1 + κ(T ) in D , t ∈ [0, Tm) ∩ [0, T ] ,

then Tm = ∞.

The second statement in Theorem 2.2 obviously follows from the first one applied to an arbitrary

T0 > 0. The proof of Theorem 2.2 is given in the next section. As mentioned above and similarly

to the case D = (−1, 1) considered in [11], it relies on the gradient flow structure of (1.1)-(1.2),

where the corresponding energy is given by

E(u) := Em(u)− λEe(u)
with mechanical energy

Em(u) :=
β

2
‖∆u‖2L2(D) +

τ

2
‖∇u‖2L2(D) +

a

4
‖∇u‖4L2(D)

and electrostatic energy

Ee(u) :=
∫

Ω(u)

(

ε2|∇ψu(x, z)|2 + |∂zψu(x, z)|2
)

d(x, z) .

We shall see that assuming the lower bound (2.3) on the solution u provides a control on the

electrostatic energy. Using the gradient flow structure we thus derive a bound on the (a priori

unbounded) mechanical energy and, in turn, on the W 2
2 (D)-norm of u(t) for t ∈ [0, Tm)∩ [0, T0].

This yields an L1(D)-bound on the right-hand side of (1.1). We then apply semigroup techniques

in negative Besov spaces to obtain a bound on u(t) in the desired Sobolev norm of W 4ξ
2 (D) for

t ∈ [0, Tm) ∩ [0, T0] which only depends on T0 and κ0.

Remark 2.3. It is worth pointing out that the issue whether a norm blowup or touchdown occurs

in finite time is still an open problem for the second-order case β = 0 (and τ > 0), even in the

one-dimensional setting D = (−1, 1).

3. PROOF OF THEOREM 2.2

Suppose the assumptions of Theorem 2.1 and let u denote the unique maximal solution to (1.1)

on the maximal interval of existence [0, Tm). We want to show that, if (2.3) is satisfied, then

‖u(t)‖
W 4ξ

2
(D)

≤ c(T0, κ0) , t ∈ [0, Tm) ∩ [0, T0] ,

so that Theorem 2.1 (ii) in turn implies Theorem 2.2. To this end we first need to derive suitable

estimates on the right-hand side g(u) of (1.1) given by the square of the gradient trace of the

electrostatic potential ψu.

3.1. Estimates on the electrostatic potential. In the following we let κ ∈ (0, 1) and set

S(κ) := {v ∈W 2
3 (D) : v = 0 on ∂D and v ≥ −1 + κ in D} .

We begin with the regularity of the variational solution to (1.2), see [12].

Proposition 3.1. Given v ∈ S(κ), there is a unique solution ψv ∈W 2
2 (Ω(v)) to

ε2∆ψ + ∂2zψ = 0 , (x, z) ∈ Ω(v) , (3.1a)

ψ(x, z) =
1 + z

1 + v(x)
, (x, z) ∈ ∂Ω(v) , (3.1b)
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in the cylinder

Ω(v) := {(x, z) ∈ D × (−1,∞) : −1 < z < v(x)} .
Furthermore, g(v) ∈ L2(D).

We recall that theL2(D)-integrability of g(v) is a straightforward consequence ofψv ∈W 2
2 (Ω(v)).

Indeed the latter implies that
(

x 7→ ∇ψv(x, v(x))
)

∈W
1/2
2 (D) →֒ L4(D).

We next provide pointwise estimates on ψv.

Lemma 3.2. Let v ∈ S(κ). Then, for (x, z) ∈ Ω(v),

0 ≤ ψv(x, z) ≤ min

{

1,
1 + z

κ

}

.

Proof. Clearly, (x, z) 7→ m is a solution to (3.1a) for m = 0, 1 and 0 ≤ ψv ≤ 1 on ∂Ω(v)
since v = 0 on ∂D, hence 0 ≤ ψv ≤ 1 in Ω(v) by the comparison principle. Moreover, setting

Σ(x, z) := (1+ z)/κ for (x, z) ∈ Ω(v), it readily follows that Σ is a supersolution to (3.1) so that

ψv ≤ Σ in Ω(v) again by the comparison principle. �

Lemma 3.2 provides uniform estimates on the derivatives of ψv on the v-independent part of

the boundary of Ω(v).

Corollary 3.3. Let v ∈ S(κ). If x ∈ ∂D and z ∈ (−1, 0), then ∂zψv(x, z) = 1, while if x ∈ D,

then

0 ≤ ∂zψv(x,−1) ≤ 1

κ
, ∂zψv(x, v(x)) ≥ 0 ,

and

∇ψv(x,−1) = 0 , ∇ψv(x, v(x)) = −∂zψv(x, v(x))∇v(x) .

Proof. The first assertion follows from ψv(x, z) = 1 + z, (x, z) ∈ ∂D × (−1, 0). Next, from

(3.1b) and Lemma 3.2 we derive, for (x, z) ∈ D × (−1, 0),

0 ≤ ψv(x, z) − ψv(x,−1)

1 + z
≤ 1

κ
, ψv(x, v(x)) − ψv(x, z) ≥ 0 ,

hence

0 ≤ ∂zψv(x,−1) ≤ 1

κ
, ∂zψv(x, v(x)) ≥ 0 .

The formulas for ∇ψv follow immediately from ψv(x,−1) = 0 and ψv(x, v(x)) = 1 for x ∈ D
due to (3.1b). �

Given v ∈ S(κ) we next introduce the notation

γ(x) := ∂zψv(x, v(x)) , γb(x) := ∂zψv(x,−1) (3.2)

for x ∈ D and recall the following identity, which is proven in [4, Lemma 5] in the one-dimensional

case D = (−1, 1),

Lemma 3.4. Let v ∈ S(κ). Then, with the notation (3.2),
∫

D

(

1 + ε2|∇v|2
) (

γ2 − 2γ
)

dx =

∫

D

(

γ2b − 2γb
)

dx .



6 PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

Proof. We recall the proof for the sake of completeness and point out that it is somewhat related

to the Rellich equality [16, Equation (5.2)]. We multiply the rescaled Laplace equation (3.1a) by

∂zψv − 1 and integrate over Ω(v). Denoting the outward unit normal vector field to ∂D and the

surface measure on ∂D by ν and σ, respectively, we deduce from Green’s formula that

0 =

∫

Ω(v)

(

ε2∆ψv + ∂2zψv

)

(∂zψv − 1) d(x, z)

= ε2
∫

∂D

∫ 0

−1
(∂zψv − 1)∇ψv · ν dz dσ

− ε2
∫

D
(∂zψv(x, v(x)) − 1)∇ψv(x, v(x)) · ∇v(x) dx

− ε2
∫

Ω(v)
∇ψv · ∂z∇ψv d(x, z) +

∫

D

(

(∂zψv(x, v(x)))
2

2
− ∂zψv(x, v(x))

)

dx

−
∫

D

(

(∂zψv(x,−1))2

2
− ∂zψv(x,−1)

)

dx .

Due to Corollary 3.3 the first integral on the right-hand side vanishes while the others can be

simplified to get

0 =− ε2
∫

D
(γ(x)− 1)∇ψ(x, v(x)) · ∇v(x) dx− ε2

2

∫

D
|∇ψv(x, v(x))|2 dx

+
ε2

2

∫

D
|∇ψv(x,−1)|2 dx+

∫

D

(

γ2

2
− γ

)

dx−
∫

D

(

γ2b
2

− γb

)

dx

= ε2
∫

D
(γ − 1)γ|∇v|2 dx− ε2

2

∫

D
γ2|∇v|2 dx+

∫

D

(

γ2

2
− γ

)

dx−
∫

D

(

γ2b
2

− γb

)

dx

=

∫

D

(

γ2

2
− γ

)

(

1 + ε2|∇v|2
)

dx−
∫

D

(

γ2b
2

− γb

)

dx ,

which yields the assertion. �

Given v ∈ S(κ) we recall that

g(v)(x) := ε2|∇ψv(x, v(x))|2 + |∂zψv(x, v(x))|2 , x ∈ D ,

with ψv still denoting the solution to (3.1). The next result bounds the L1(D)-norm of g(v) in

terms of the H1(D)-norm of v.

Corollary 3.5. For v ∈ S(κ),

‖g(v)‖L1(D) ≤
(

4 +
2

κ2

)

|D|+ 4ε2‖∇v‖2L2(D) .

Proof. Since

g(v)(x) = ε2|∇ψv(x, v(x))|2 + |∂zψv(x, v(x))|2 =
(

1 + ε2|∇v(x)|2
)

γ(x)2
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for x ∈ D by Corollary 3.3, we deduce from Corollary 3.3 and Lemma 3.4 that

‖g(v)‖L1(D) = 2

∫

D

(

1 + ε2|∇v|2
)

γ dx+

∫

D
(γ2b − 2γb) dx

≤ 1

2

∫

D

(

1 + ε2|∇v|2
)

γ2 dx+ 2

∫

D

(

1 + ε2|∇v|2
)

dx+
|D|
κ2

≤ 1

2
‖g(v)‖L1(D) + 2ε2‖∇v‖2L2(D) +

(

2 +
1

κ2

)

|D| ,

from which the assertion follows. �

We next recall the following identity for the electrostatic energy established in [13, Equa-

tion (3.13)] in the one-dimensional case D = (−1, 1). We extend it here to the two-dimensional

setting, also providing a simpler proof below.

Lemma 3.6. For v ∈ S(κ),

Ee(v) = |D| −
∫

D
v
(

1 + ε2|∇v|2
)

γ dx .

Proof. We multiply the rescaled Laplace equation (3.1a) by ψv(x, z) − 1 − z and integrate over

Ω(v). As in the proof of Lemma 3.4 we use Green’s formula to obtain

0 =

∫

Ω(v)

(

ε2∆ψv + ∂2zψv

)

(x, z) (ψv(x, z) − 1− z) d(x, z)

= ε2
∫

∂D

∫ 0

−1
(ψv(x, z) − 1− z)∇ψv · ν dz dσ

− ε2
∫

D
(ψv(x, v(x)) − 1− v(x))∇ψv(x, v(x)) · ∇v(x) dx

− ε2
∫

Ω(v)
|∇ψv|2 d(x, z) +

∫

D
(ψv(x, v(x)) − 1− v(x)) ∂zψv(x, v(x)) dx

−
∫

D
ψv(x,−1)∂zψv(x,−1) dx−

∫

Ω(v)
(∂zψv − 1) ∂zψv d(x, z) .

Employing (1.2b) we see that the first and the fifth term on the right-hand side vanish while the

others can be gathered due to Corollary 3.3 as

0 =− ε2
∫

D
v|∇v|2γ dx− ε2

∫

Ω(v)
|∇ψv|2 d(x, z)−

∫

D
vγ dx

−
∫

Ω(v)
(∂zψv)

2 d(x, z) +

∫

D
(ψv(x, v(x)) − ψv(x,−1)) dx .

The last integral being equal to |D| according to (1.2b), we obtain

Ee(v) = |D| −
∫

D
v
(

1 + ε2|∇v|2
)

γ dx ,

hence the assertion. �

We are now in a position to derive a lower bound on the total energy.
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Corollary 3.7. For v ∈ S(κ),

E(v) ≥ Em(v)− 3λε2‖∇v‖2L2(D) − λ|D|
(

4 +
1

2κ2

)

.

Proof. Since v ≥ −1 in D and, by Corollary 3.3, γ ≥ 0 in D, we infer from Lemma 3.6 that

E(v) = Em(v) − λEe(v) = Em(v)− λ|D|+ λ

∫

D
v
(

1 + ε2|∇v|2
)

γ dx

≥ Em(v) − λ|D| − λ

∫

D

(

1 + ε2|∇v|2
)

γ dx ,

so that the Cauchy-Schwarz inequality and Corollary 3.5 imply that

E(v) ≥ Em(v)− λ|D| − λ

(
∫

D

(

1 + ε2|∇v|2
)

dx

)1/2

‖g(v)‖1/2L1(D)

≥ Em(v)− λ|D|

− λ

(
∫

D

(

1 + ε2|∇v|2
)

dx

)1/2 (2|D|
κ2

+ 4

∫

D

(

1 + ε2|∇v|2
)

dx

)1/2

≥ Em(v)− λ|D| −
√

2|D|λ
κ

(
∫

D

(

1 + ε2|∇v|2
)

dx

)1/2

− 2λ

∫

D

(

1 + ε2|∇v|2
)

dx .

The assertion follows then from Young’s inequality. �

3.2. Estimates on the plate deflection. Under the assumptions of Theorem 2.1 let now u be the

unique maximal solution to (1.1) on the maximal interval of existence [0, Tm). We may assume

that 7/3 < 4ξ < 3. Let κ0 ∈ (0, 1) and T0 > 0 be such that (2.3) holds true; that is,

u(t, x) ≥ −1 + κ0 , t ∈ [0, Tm) ∩ [0, T0] , x ∈ D . (3.3)

Throughout this section, c denotes a positive constant which may vary from line to line and de-

pends only on β, τ , a, λ, D, ε, u0, κ0, and T0 (in particular, it does not depend on Tm).

To prove Theorem 2.2 we shall show that

‖u(t)‖
W 4ξ

2
(D)

≤ c , t ∈ [0, Tm) ∩ [0, T0] , (3.4)

the assertion then follows from Theorem 2.1 (ii). Note that (3.3) just means that u(t) ∈ S(κ0) for

t ∈ [0, Tm) ∩ [0, T0] so that the results of the preceding section apply (with κ = κ0).

We first provide an L2(D)-bound on u.

Lemma 3.8. There is c > 0 such that

‖u(t)‖L2(D) ≤ c , t ∈ [0, Tm) ∩ [0, T0] .

Proof. Let t ∈ [0, Tm). It readily follows from (1.1) and the lower bounds u(t) ≥ −1 and

g(u(t)) ≥ 0 in D that

1

2

d

dt
‖u(t)‖2L2(D) + 2Em(u(t)) = −λ

∫

D
u(t)g(u(t)) dx ≤ λ‖g(u(t))‖L1(D) .
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Now, Corollary 3.5 along with interpolation and Young’s inequality imply, for t ∈ [0, Tm)∩[0, T0],

‖g(u(t))‖L1(D) ≤ c
(

1 + ‖∇u(t)‖2L2(D)

)

≤ c
(

1 + ‖u(t)‖L2(D) ‖∆u(t)‖L2(D)

)

≤ 1

λ
Em(u(t)) + c

(

1 + ‖u(t)‖2L2(D)

)

.

Combining the two inequalities yields

1

2

d

dt
‖u(t)‖2L2(D) + Em(u(t)) ≤ c

(

1 + ‖u(t)‖2L2(D)

)

, t ∈ [0, Tm) ∩ [0, T0] ,

from which the assertion follows. �

We next show that the lower bound (3.3) on u implies that the mechanical energy is dominated

by the total energy.

Lemma 3.9. There is c > 0 such that

E(u(t)) ≥ 1

2
Em(u(t))− c , t ∈ [0, Tm) ∩ [0, T0] .

Proof. We infer from Corollary 3.7 along with interpolation and Young’s inequality that, for some

constant c > 0,

E(u(t)) ≥ Em(u(t))− c‖u(t)‖L2(D)Em(u(t))1/2 − c

≥ 1

2
Em(u(t)) − c

(

1 + ‖u(t)‖2L2(D)

)

for t ∈ [0, Tm) ∩ [0, T0]. Lemma 3.8 yields the claim. �

We next exploit the gradient flow structure of the evolution problem to obtain additional esti-

mates.

Corollary 3.10. There is c > 0 such that

‖u(t)‖H2(D) +

∫ t

0
‖∂tu(s)‖2L2(D) ds ≤ c , t ∈ [0, Tm) ∩ [0, T0] .

Proof. Analogously to [11, Proposition 1.3] (see also [13]) the energy inequality

E(u(t)) +
∫ t

0
‖∂tu(s)‖2L2(D) ds ≤ E(u0) , t ∈ [0, Tm) ,

holds; that is, due to Lemma 3.9,

E(u0) ≥ 1

2
Em(u(t)) − c+

∫ t

0
‖∂tu(s)‖2L2(D) ds , t ∈ [0, Tm) ∩ [0, T0] .

The claim follows then from the fact that E(u0) <∞ and the definition of Em. �

Combining now Corollary 3.5 and Corollary 3.10 we readily obtain an L1(D)-bound on the

right-hand side of (1.1).

Corollary 3.11. There is c > 0 such that

‖g(u(t))‖L1(D) ≤ c , t ∈ [0, Tm) ∩ [0, T0] .
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3.3. Proof of Theorem 2.2. It remains to prove that the L1(D)-bound from Corollary 3.11 im-

plies a bound on u in the Sobolev space W 4ξ
2 (D), that is, inequality (3.4).

For this purpose we introduce Bs
1,1,B(D) for s ∈ R \ {1, 2}, i.e. the Besov space Bs

1,1(D)
incorporating the boundary conditions appearing in (1.1c) (if meaningful):

Bs
1,1,B(D) :=























{w ∈ Bs
1,1(D) : w = ∂νw = 0 on ∂D} , s > 2 ,

{w ∈ Bs
1,1(D) : w = 0 on ∂D} , s ∈ (1, 2) ,

Bs
1,1(D) , s < 1 .

The spaces W s
2,B(D) are defined analogously with Bs

1,1 replaced by W s
2 , but for s > 3/2, s ∈

(1/2, 3/2), and s < 1/2, respectively.

From now on, we fix α ∈ (4ξ − 3, 0). Hereafter, the constant c may also depend on ξ and α
(but still not on Tm). The dependence upon additional parameters is indicated explicitly.

Lemma 3.12. The operator −A, given by

−Av := (−β∆2 + τ∆)v , v ∈ B4+α
1,1,B(D) ,

generates an analytic semigroup {e−tA ; t ≥ 0} on Bα
1,1(D) and, when restricted to W 4

2,B(D), on

L2(D). Given θ ∈ (0, 1) with θ 6∈ {(1 − α)/4, (2 − α)/4}, there are c > 0 and c(θ) > 0 such

that, for t ∈ [0, T0],

‖e−tA‖
L(W 4ξ

2,B
(D))

≤ c and tθ‖e−tA‖
L(Bα

1,1(D),B4θ+α
1,1,B

(D)) ≤ c(θ) . (3.5)

Proof. It is readily seen that the principal part −β∆2 of the operator −A with symbol −A0(iζ) =
−β|ζ|4 is elliptic and, when supplemented with the normal system B = (tr, ∂ν) of boundary

operators, satisfies the Lopatinskii-Shapiro condition (o) from [8, p. 268]. Indeed, given x ∈ ∂D,

ζ ∈ R
2, r ≥ 0, and ϑ ∈ [−π/2, π/2] with ζ · ν(x) = 0 and (ζ, r) 6= (0, 0), this condition requires

that zero is the only bounded solution on [0,∞) to
(

−A0

(

iζ + ν(x)∂t
)

− reiϑ
)

v = 0 , B
(

iζ + ν(x)∂t
)

v(0) = 0 ,

that is, to

∂4t v(t)− 2|ζ|2∂2t v(t) +
(

|ζ|4 + reiϑ
)

v(t) = 0 , t > 0 , (3.6a)

v(0) = ∂tv(0) = 0 . (3.6b)

Introducing

M± :=

√

|ζ|2 ±
√
rei(ϑ+π)/2 , ReM± > 0 ,

the solution to (3.6) is

v(t) =

(

−M− +M+

2M−

k1 −
M− −M+

2M−

k2

)

e−M−t + k1e
−M+t

+

(

−M− −M+

2M−

k1 −
M− +M+

2M−

k2

)

eM−t + k2e
M+t

for t ≥ 0 with kj ∈ R. Since v must be bounded, k1 = k2 = 0 and thus v ≡ 0. Consequently,

assumptions (m), (n), and (o) from [8, Theorem 2.18] are satisfied and it follows that the operator

−A generates an analytic semigroup {e−tA ; t ≥ 0} on Bα
1,1(D) (recall that α ∈ (4ξ − 3, 0) ⊂
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(−2, 1)). Similarly, [1, Remarks 4.2 (b)] ensures that −A restricted to W 4
2,B(D) generates an

analytic semigroup {e−tA ; t ≥ 0} on L2(D). Notice then that [9, Proposition 4.13] implies that
(

Bα
1,1(D), B4+α

1,1,B(D)
)

θ,1

.
= B4θ+α

1,1,B (D) , 4θ ∈ (0, 4) \ {1− α, 2 − α} ,
with (·, ·)θ,1 denoting the real interpolation functor. Thus, standard regularizing effects of analytic

semigroups [2, II.Lemma 5.1.3] imply (3.5). �

Proof of Theorem 2.2. To finish off the proof of Theorem 2.2 we first recall the continuity of the

following embeddings

B4+α
1,1,B(D) →֒ Bs

1,1,B(D) →֒ B0
1,1,B(D) →֒ L1(D) →֒ Bα

1,1(D) , s ∈ (0, 4 + α) , (3.7)

bearing in mind that α < 0. Now, introducing

h(t) := −λg(u(t)) + a‖∇u(t)‖2L2(D)∆u(t) , t ∈ [0, Tm) ,

we deduce from (3.7), Corollary 3.10, and Corollary 3.11 that

‖h(t)‖Bα
1,1(D) ≤ c ‖h(t)‖L1(D) ≤ c , t ∈ [0, Tm) ∩ [0, T0] . (3.8)

Since α ∈ (4ξ − 3, 0) we can fix θ ∈ (0, 1) and 4ξ1 ∈ (4ξ, 4) \ {3} such that

4θ + α > 4ξ1 + 1 > 4ξ + 1

and, consequently, (see [1, Section 5] for instance),

B4θ+α
1,1,B (D) →֒ B4ξ1

2,2,B(D)
.
=W 4ξ1

2,B (D) →֒W 4ξ
2,B(D) . (3.9)

Therefore, from (3.5), (3.8), (3.9), and Duhamel’s formula

u(t) = e−tAu0 +

∫ t

0
e−(t−s)Ah(s) ds , t ∈ [0, Tm) ,

it follows that

‖u(t)‖
W 4ξ

2,B
(D)

≤ ‖e−tA‖
L(W 4ξ

2,B
(D))

‖u0‖
W 4ξ

2,B
(D)

+ c(θ)

∫ t

0
‖e−(t−s)Ah(s)‖B4θ+α

1,1,B
(D)

≤ c+ c(θ)

∫ t

0
‖e−(t−s)A‖

L(Bα
1,1(D),B4θ+α

1,1,B
(D))‖h(s)‖Bα

1,1(D) ds

≤ c(θ)

for t ∈ [0, Tm) ∩ [0, T0]. We have thus shown (3.4) and the proof of Theorem 2.2 is complete

according to Theorem 2.1. �
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