S. I. Nikitenko, L. Venault, R. Pflieger, T. Chave, I. Bisel et al., Potential applications of sonochemistry in spent nuclear fuel reprocessing: A short review, Ultrasonics Sonochemistry, vol.17, issue.6, pp.17-1033, 2010.
DOI : 10.1016/j.ultsonch.2009.11.012

A. Dossier and A. , Tome Architecture et Gestion du stockage géologique, 2005.

E. Gaucher, C. Robelin, J. Matray, G. Négrel, Y. Gros et al., ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian???Oxfordian formation by investigative drilling, Physics and Chemistry of the Earth, Parts A/B/C, vol.29, issue.1, pp.55-77, 2004.
DOI : 10.1016/j.pce.2003.11.006

URL : https://hal.archives-ouvertes.fr/hal-00664755

A. Vinsot, S. Mettler, and S. Wechner, In situ characterization of the Callovo-Oxfordian pore water composition, Physics and Chemistry of the Earth, Parts A/B/C, vol.33, pp.75-86, 2008.
DOI : 10.1016/j.pce.2008.10.048

I. Walczak, M. F. Libert, S. Camaro, and J. M. Blanchard, Quantitative and qualitative analysis of hydrosoluble organic matter in bitumen leachates, Agronomie, vol.21, issue.3, pp.247-257, 2001.
DOI : 10.1051/agro:2001121

URL : https://hal.archives-ouvertes.fr/hal-00886113

A. Albrecht, A. Bertron, and M. Libert, Microbial Catalysis of Redox Reactions in concrete cells of nuclear waste repositories: a review and introduction in cement-based materials for nuclear waste storage, Cem. ? Based Mater. Nucl. Waste Storage, pp.2013-147, 2016.

X. Cao, D. Qian, and X. Meng, Effects of pH on nitrite accumulation during wastewater denitrification, Environmental Technology, vol.60, issue.1, pp.45-51, 2013.
DOI : 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2

M. Alquier, C. Kassim, A. Bertron, C. Sablayrolles, Y. Rafrafi et al., Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals, Journal of Environmental Management, vol.132, pp.32-41, 2014.
DOI : 10.1016/j.jenvman.2013.10.013

Y. Rafrafi, H. Ranaivomanana, A. Bertron, A. Albrecht, and B. Erable, Surface and bacterial reduction of nitrate at alkaline pH: Conditions comparable to a nuclear waste repository, International Biodeterioration & Biodegradation, vol.101, pp.12-22, 2015.
DOI : 10.1016/j.ibiod.2015.03.013

URL : https://hal.archives-ouvertes.fr/hal-01150718

C. Glass and J. Silverstein, Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation, Water Research, vol.32, issue.3, pp.831-839, 1998.
DOI : 10.1016/S0043-1354(97)00260-1

V. Mateju, S. Cizinska, J. Krejci, and T. Janoch, Biological water denitrification???A review, Enzyme and Microbial Technology, vol.14, issue.3, pp.170-1830141, 1992.
DOI : 10.1016/0141-0229(92)90062-S

L. Truche, G. Berger, A. Albrecht, and L. Domergue, Abiotic nitrate reduction induced by carbon steel and hydrogen: Implications for environmental processes in waste repositories, Applied Geochemistry, vol.28, pp.155-163, 2013.
DOI : 10.1016/j.apgeochem.2012.10.010

URL : https://hal.archives-ouvertes.fr/hal-01315515

M. Libert, O. Bildstein, L. Esnault, M. Jullien, and R. Sellier, Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories, Physics and Chemistry of the Earth, Parts A/B/C, vol.36, issue.17-18, pp.1616-1623, 2011.
DOI : 10.1016/j.pce.2011.10.010

S. Poulain, C. Sergeant, M. Simonoff, C. L. Marrec, and S. Altmann, Microbial Investigations in Opalinus Clay, an Argillaceous Formation under Evaluation as a Potential Host Rock for a Radioactive Waste Repository, Geomicrobiology Journal, vol.62, issue.5, pp.240-249, 2008.
DOI : 10.1016/j.cub.2003.12.012

L. Hallbeck, Principle organic materials in a repository for spent nuclear fuel, in: Rapport Swedish Nuclear Fuel and Waste Management Co n ? SKB TR-19, 2010.

C. L. Valera and M. Alexander, Nutrition and physiology of denitrifying bacteria, Plant and Soil, vol.64, issue.3, 1961.
DOI : 10.1007/BF01400460

J. M. Tiedje, Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium, pp.179-244, 1988.

V. Ashok and S. Hait, Remediation of nitrate-contaminated water by solid-phase denitrification process???a review, Environmental Science and Pollution Research, vol.61, issue.4, pp.8075-8093, 2015.
DOI : 10.1016/j.soilbio.2012.09.017

J. S. Almeida, M. A. Reis, and M. J. Carrondo, Competition between nitrate and nitrite reduction in denitrification byPseudomonas fluorescens, Biotechnology and Bioengineering, vol.21, issue.5, pp.476-484, 1995.
DOI : 10.1042/bj2460779

A. Rizoulis, H. M. Steele, K. Morris, and J. R. Lloyd, Abstract, Mineralogical Magazine, vol.76, issue.08, pp.3261-3270, 2012.
DOI : 10.1180/minmag.2012.076.8.39

Y. C. Ersan, H. Verbruggen, I. De-graeve, W. Verstraete, N. De-belie et al., Nitrate reducing CaCO 3 precipitating bacteria survive in mortar and inhibit steel corrosion, Cement and Concrete Research, vol.83, pp.19-30, 2016.
DOI : 10.1016/j.cemconres.2016.01.009

F. Berendes, G. Gottschalk, E. Heine-dobbernack, E. R. Moore, and B. J. Tindall, Halomonas desiderata sp. nov, a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works, Systematic and Applied Microbiology, vol.19, issue.2, pp.158-167, 1996.
DOI : 10.1016/S0723-2020(96)80041-5

H. C. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.79, issue.9, pp.623-633, 2010.
DOI : 10.1038/nrmicro2415

C. Carde, R. Franç-ois, and J. Torrenti, Leaching of both calcium hydroxide and C-S-H from cement paste: Modeling the mechanical behavior, Cement and Concrete Research, vol.26, issue.8, pp.1257-12680008, 1996.
DOI : 10.1016/0008-8846(96)00095-6

C. Carde and R. , Franç ois, Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties, Cem. Concr. Res, vol.2797, pp.539-550, 1997.

A. Bertron, N. Jacquemet, B. Erable, C. Sablayrolles, G. Escadeillas et al., Reactivity of nitrate and organic acids at the concrete???bitumen interface of a nuclear waste repository cell, Nuclear Engineering and Design, vol.268, pp.51-57, 2014.
DOI : 10.1016/j.nucengdes.2013.11.085

A. Bertron, Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts, Materials and Structures, vol.287, issue.3???4, pp.1787-1806, 2014.
DOI : 10.1016/j.chemgeo.2011.06.008

URL : http://doi.org/10.1617/s11527-014-0433-1

D. Savage, Abstract, Mineralogical Magazine, vol.75, issue.04, pp.2401-2418, 2011.
DOI : 10.1180/minmag.2011.075.4.2401

URL : https://hal.archives-ouvertes.fr/hal-01185136

K. Mcneill and I. R. Hamilton, FEMS Microbiology Letters, vol.310, issue.Suppl., pp.25-30, 2003.
DOI : 10.1016/S0076-6879(99)10035-1

M. Parmentier, P. Ollivier, C. Joulian, A. Albrecht, J. Hadi et al., Enhanced heterotrophic denitrification in clay media: The role of mineral electron donors, Chemical Geology, vol.390, pp.87-99, 2014.
DOI : 10.1016/j.chemgeo.2014.10.014

URL : https://hal.archives-ouvertes.fr/hal-01174193

J. Ma, Q. Yang, S. Y. Wang, L. Wang, A. Takigawa et al., Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge, Journal of Hazardous Materials, vol.175, issue.1-3, pp.518-523, 2010.
DOI : 10.1016/j.jhazmat.2009.10.036

G. M. Jiang, O. Gutierrez, and Z. G. Yuan, The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms, Water Research, vol.45, issue.12, pp.3735-3743, 2011.
DOI : 10.1016/j.watres.2011.04.026

L. Yang, X. Wang, and T. L. Funk, Strong influence of medium pH condition on gas-phase biofilter ammonia removal, nitrous oxide generation and microbial communities, Bioresource Technology, vol.152, pp.74-79, 2014.
DOI : 10.1016/j.biortech.2013.10.116

A. C. Anthonisen, R. C. Loehr, T. B. Prakasam, and E. G. Srinath, Inhibition of nitrification by ammonia and nitrous-acid, J. Water Pollut. Control Fed, pp.48-835, 1976.

, Denitrifying genes in bacterial and Archaeal genomes, Biochim. Biophys. Acta-Gene Struct. Expr, vol.1577, issue.02, pp.355-376, 2002.

L. Bergaust, J. Shapleigh, A. Frostegard, and L. Bakken, : the influence of nitrate, nitrite and oxygen availability, Environmental Microbiology, vol.61, issue.11, pp.3070-3081, 2008.
DOI : 10.1099/00221287-28-4-607

J. Thomsen, T. Geest, and R. Cox, Mass-spectrometric studies of the effect of ph on the accumulation of intermediates in denitrification by Paracoccus-Denitrificans, Appl. Environ. Microbiol, pp.60-536, 1994.

M. A. Cavigelli and G. P. Robertson, THE FUNCTIONAL SIGNIFICANCE OF DENITRIFIER COMMUNITY COMPOSITION IN A TERRESTRIAL ECOSYSTEM, Ecology, vol.81, issue.5, pp.1402-1414, 2000.
DOI : 10.1016/0006-291X(76)90932-3

C. M. Jones, B. Stres, M. Rosenquist, and S. Hallin, Phylogenetic Analysis of Nitrite, Nitric Oxide, and Nitrous Oxide Respiratory Enzymes Reveal a Complex Evolutionary History for Denitrification, Molecular Biology and Evolution, vol.52, issue.9, 1955.
DOI : 10.1016/S0065-2911(06)52003-X