Evidence of an Important Role of Photochemistry in the Attenuation of the Secondary Contaminant 3,4-Dichloroaniline in Paddy Water - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Environmental Science and Technology Année : 2018

Evidence of an Important Role of Photochemistry in the Attenuation of the Secondary Contaminant 3,4-Dichloroaniline in Paddy Water

Résumé

The secondary pollutant 3,4-dichloroaniline (DCA) is produced by the biological degradation of several herbicides, including propanil in paddy fields. The enzymatic hydrolysis of propanil yields DCA with almost quantitative yield. DCA undergoes rather fast photodegradation in paddy water, mostly by direct photolysis. An exception might be represented by the cases (rather rare in paddies) of quite high nitrate concentration (around 50 mg of NO3– L–1), when DCA degradation by CO3•– would play a comparable role to that by direct photolysis. The experimentally measured photoreactivity parameters were used as input data for a photochemical model, which predicted a DCA lifetime of 0.5–1 days in sunlit paddy fields in late May, when propanil is usually applied. The model predictions compare remarkably well with the DCA attenuation data reported in field studies, carried out in paddies in temperate regions. Moreover, a consecutive reaction model based on typical biological (propanil) and photochemical (DCA) lifetimes reproduced quite well the time trends of both compounds in paddies, as reported in the literature. These successful comparisons suggest that photodegradation in general, and direct photolysis in particular, may play a key role in DCA attenuation in paddy water.

Domaines

Chimie
Fichier non déposé

Dates et versions

hal-01845504 , version 1 (20-07-2018)

Identifiants

Citer

Luca Carena, Mariagrazia Proto, Marco Minella, Giovanni Ghigo, Cristina Giovannoli, et al.. Evidence of an Important Role of Photochemistry in the Attenuation of the Secondary Contaminant 3,4-Dichloroaniline in Paddy Water. Environmental Science and Technology, 2018, 52 (11), pp.6334 - 6342. ⟨10.1021/acs.est.8b00710⟩. ⟨hal-01845504⟩
21 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More