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Abstract6

As part of the EU Common Agricultural Policy (CAP) reform of 2020,7

each EU member country is expected to suggest new farmland management8

protocols. Currently, farmers must manually declare each year their crop types9

into the Land-Parcel Identification Systems (LPIS), a geographic information10

system identifying the land use of agricultural parcels within each EU member11

country. Such a protocol remains tedious and error-prone. Automatic Earth12

observation image analysis can help achieving such a task. Leveraging the13

recent availability of precise and frequent Sentinel acquisitions, this work aims14

to automate the LPIS update.15

We propose modeling the crop type of parcels from a sequence of (radar16

and optical) satellite acquisitions, as well as LPIS entries of previous years,17

with a linear-chain Conditional Random Field. The novelty lies on the fusion18

of multi-modal images at the feature level and the integration of temporal19

knowledge extracted from existing land-cover databases. We tested our model20

on two large-scale French study areas (≥1250 km2), which are geographically21

distant and show different agronomic rules: the Seine et Marne (North of22

France) and the Alpes de Haute-Provence (South East). We use a granular23

nomenclature comprised of 25 categories.24

Our model demonstrates promising results for the task of automating25

the LPIS update: 89.0% overall accuracy is reached in Seine et Marne (1026

categories of the 25 present on the area) and 72.9% in Alpes de Haute-Provence27

(14 categories). We show that the temporal modeling increases the accuracy28

by +2.6% and +4.6%, respectively.29

Keywords: classification, temporal regularization, conditional random fields,30

agriculture, monitoring, Sentinel images31
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1. Introduction32

1.1. Motivation33

The Sentinel 1&2 satellites provide open and free acquisitions exhibiting34

unprecedented characteristics which are perfectly tailored to agriculture35

monitoring. Most critically, the high temporal frequency (5-6 days) is very36

beneficial for identifying crop types. The Sentinel program will be maintained37

at until at least 2030, which allows us to chronicle both short and long-term38

evolutions. Besides, the multispectral Sentinel-2 images display relevant39

spectral bands to agricultural monitoring, that are complementarity to C-40

Band Sentinel-1 radar images. Finally, the high spatial resolution of both41

optical and radar images (10-20 m) authorizes parcel-level approaches. For42

all these reasons, the European Commission strongly recommended the use of43

the Sentinel programme for reshaping the procedures to monitor the Common44

Agricultural Policy (CAP) European Commission [1]. This therefore becomes45

a significant line of research in the forthcoming decade.46

In Europe, several use-cases of agricultural monitoring using Sentinel47

images have been proposed [1], such as crop monitoring (crop area estimates,48

crop map products, crop phenology indicators), controlling CAP payments49

with remote sensing (permanent grasslands, greening measures, . . .), updating,50

and controlling the quality of the Land Parcel Identification System (LPIS)51

or precision farming at the farm-level.52

In this paper, we focus on automating crop type mapping. In Europe,53

the agricultural land cover information is manually updated yearly by the54

farmers themselves. They input the type and surface area of their parcels.55

This manual declaration is complicated for farmers, error-prone and leads to56

expensive control procedures by external agencies. In this context, a pre-filled57

agricultural declaration based on supervised classification techniques would58

allow the farmers to only have to validate the declaration, cutting down on59

control and input errors. The automation of crop type declarations requires60

a robust classification model, based on Sentinel images observations but also61

on ancillary data such as LPIS archives to improve the classification results.62

Indeed, the crop type identification may be improved using a priori63

knowledge on management practices and especially on crop rotations per64

parcel. The choice of the crop type and agricultural practices on a parcel are65

strongly dependent on past events over previous years. The LPIS archives66

provide such information. Modeling these temporal structures in combination67
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with the Sentinel image time series can lead to significant gains in classification68

accuracy. In this paper, we focus on benefiting from crop rotation knowledge.69

1.2. Related work70

1.2.1. Multi-temporal satellite images for crop mapping71

In the literature, many studies showed the potential of multi-temporal72

satellite images for crop type mapping [2]. Inglada et al. [3] assessed state-73

of-the-art methods for automatic crop mapping with multi-temporal and74

very high spatial resolution optical images. For this purpose, five different75

classification approaches using SPOT4 and Landsat-8 images were compared76

on 12 different study areas worldwide. Best results (Overall accuracy of 80%77

for 6 annual crop classes) were obtained with the Random Forest classifier [4].78

Immitzer et al. [5] used mono-temporal Sentinel-2 images for agricultural and79

forest land cover classification. A multi-temporal approach has been proposed80

by Kussul et al. [6]. Landsat-8 and Sentinel-1 time series were used on a study81

area in Ukraine. A pixel-based classification accompanied with a parcel-based82

regularization (majority voting) was proposed using LPIS ancillary data. An83

overall accuracy of 89% was reached but the nomenclature was limited to 684

annual crops (Winter wheat, Winter rapeseed, Maize, Sugar beet, Sunflower,85

Soybeans) and large parcels were generally considered (> 250 ha). More86

recently, experiments were led at the country level (Czech Republic) by the87

Sen2-Agri consortium [7]. A multi-sensor (Sentinel-1, Sentinel-2) pixel-based88

supervised classification was performed. The LPIS was used for both learning89

and validation steps. A crop map was produced every month using Sentinel-190

radar images (December to September) and Sentinel-2 optical images (March91

to September). The overall accuracy was greater than 80% and each land92

cover type had a F-score greater than 60%. The quality of the classification93

was further increased as more data was acquired. However, the nomenclature94

was here again very limited (7 classes) and does not fully integrate temporal95

knowledge from existing data.96

Two major aspects of the state-of-art of crop type classification remain to97

be improved in order to obtain a reliable pre-filled declaration system: the98

precision on small parcels and the granularity of the nomenclature.99

1.2.2. Crop rotation consideration100

Crop rotations are known to be useful management practices, improving101

agricultural yields [8] and soil quality [9]. References in literature on their role102

in agriculture are numerous [10]. To take into account crop rotations in crop103
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type prediction, two questions have to be answered: (i) how to model the crop104

rotations? (ii) how to integrate crop rotations in a land cover classification105

process?106

1.2.3. Modeling crop rotations107

Two different approaches can be used to model rotations. The first one108

consists in using a priori agronomist expert knowledge. The second one109

would be to automatically learn crop rotations from the statistical analysis of110

past practices, as found in the LPIS archives. The crop rotation knowledge111

can then be modeled with a common representation in agronomy: transition112

matrices representing transition probabilities between crop types from year113

to year.114

The ROTAT model [11] is based on expert knowledge. The tool automati-115

cally generates all possible crop rotations over an area and performs a selection116

taking expert knowledge into account. Castellazzi et al. [12] introduce a math-117

ematical framework based on transition matrices to model crop rotations at118

the landscape scale. Dury et al. [13] review various crop rotation models119

and emphasize that these models are too static. To improve the models,120

the authors propose integrating different time scale dynamics. Indeed, crop121

rotation models have several limitations. The information is never available122

at the parcel scale. The models are strongly dependent on the study area;123

they cannot adapt to environmental or agricultural management changes.124

Some studies have been proposed to overcome these limitations. Aurbacher125

and Dabbert [14] underline the importance of having rotation information at126

the parcel-level and consequently propose to use Markov chains. Concerning127

adaptation capacities to different study areas, Detlefsen and Jensen [15] use128

network modeling techniques to find on a given parcel the optimal rotations129

knowing a selection of crops. Finally, the influence of environmental changes130

such as global warming on agricultural practices has been studied by Olesen131

et al. [16], then modeled by Aurbacher et al. [17]. Nevertheless, few studies132

take this parameter into account in crop rotation models.133

Learning rotations using past data on crop types is a way of overcoming134

the limitations of a priori expert knowledge approaches.Both approches can135

also be successfully combined. For instance, the CarrotAge tool [18] allows to136

perform a spatio-temporal analysis by training a Hidden Markov Models with137

a land cover database. Results are thereafter interpreted by an agronomist in138

order to be integrated in soil or water management studies. Another example139

is the CropRota method [19] that combines agronomic criteria and land cover140
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information to generate crop models at the farm or region levels. The ROTOR141

model [20] relies on control sampled farms, field surveys and expert knowledge.142

These three models can take into account changes in agricultural practices or143

study areas. However, expert knowledge is still required, and such models144

can not be used at the parcel level.145

The parcel-level crop information provides a finer crop type nomenclature146

but needs heavy field surveys and more complex models than those described147

above. Xiao et al. [21] used such parcel-based information to describe the148

spatial distribution of crop sequences at a large regional scale, but with a149

limited 3-class nomenclature. For many years, several European countries150

as well as the United States maintain and annually update a geographical151

information system on agricultural parcels, i.e. the Land Parcel Identification152

System (LPIS) [22]. Parcel-based crop rotation information at a national scale153

can be derived by exploiting past annual versions of the LPIS. The information154

on environmental or agricultural changes is then implicitly contained in these155

data. Several studies proposed to use the LPIS to study and model crop156

rotations. Leteinturier et al. [23] used several years of LPIS to compute crop157

rotation indicators. More recently, Osman et al. [24] produced and assessed a158

land cover classification based on the former version of the French LPIS.159

1.2.4. Integrating crop rotations into classification pipelines160

Only few studies have focused on the integration of crop rotation infor-161

mation into classification pipelines. Osman et al. [24] studied early crop162

mapping using only the LPIS. A prediction model based on Markov logic was163

proposed, but not in combination with remote sensing observations. Results164

showed that this model has better classification precision than models based165

on remote sensing observations at the beginning of the crop growing season.166

This is mainly due to the fact that few satellite images are available at the167

beginning of growing season and that crops are hard to distinguish at this168

development stage: observation-based classification is unreliable compared169

to temporal prediction. This statement remains to be confirmed with the170

use of higher temporal resolution Sentinel images. Other studies proposed171

to introduce a temporal structure, using the Hidden Markov Chains, in a172

classification pipeline but they aim at modeling phenology instead of crop173

rotations [25, 26, 27]. Modeling phenology is useful to detect optimal temporal174

intervals to acquire remote sensing images for crop mapping [28]. Kenduiywoa175

et al. [29] modeled phenology information into a Conditional Random Field,176

but the classification is performed at different dates through the year.177
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1.3. Specific objectives178

The general objective of this article is to assess the feasibility of a pre-filled179

agricultural declaration based on Sentinel 1+2 images for crop types and180

surfaces. This paper focuses on crop type predictions. Related work described181

in Section 1.2, allow us to formulate the following specific objectives:182

• Thematic contribution. Sentinel images are part of a recent satellite183

program (October 2014 and December 2015 for radar and optical images,184

respectively). Few research studies have yet assessed the crop type185

prediction accuracies that could be obtained with these time series.186

This study will especially focus on using an exhaustive national crop187

nomenclature, the consideration of all agricultural parcels (with no188

minimal crop area consideration), and the complementarity between189

Sentinel-1 and Sentinel-2 images.190

• Methodological contribution. Crop rotations have rarely been com-191

bined with satellite observations into a classification pipeline. Our192

objective is to propose a method that integrates the crop rotation tem-193

poral structure into the classification process and to assess the capacity194

of the proposed method to improve crop type prediction accuracies.195

Sentinel data, LPIS, and the study sites will be described in Section 2 as196

well as the necessary image and vector preprocessing steps. Two study sites197

with very different agricultural management practices and parcel sizes are198

chosen. In Section 3, we propose a parcel-based classification with a Random199

Forest classifier [4] and a temporal-structured framework to integrate crop200

rotation information. Results are given and discussed in Section 4. The201

models learned for the LPIS crop rotations and land cover prediction from202

the Sentinel images are first assessed independently. A combination of both203

models is finally evaluated and discussed.204

2. Site and material205

2.1. Study sites206

In order to assess the feasibility of a pre-filled declaration of crop types, two207

complementary large-scale sites were chosen in France. The characteristics208

and location of each site are provided in Figure 1 and Table 1.209
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The first one is located in South Eastern France, in the Alpes de Haute-210

Provence region, in the Durance river Valley. It is representative of a Mediter-211

ranean cultivated area. This site will be called Site04 in reference to the212

national number of the corresponding region. It covers 1050 km2 and is213

characterized by a highly variable topography, a very fragmented parcellar214

while giving a high diversity of crop types. The site is an observatory of the215

French mapping agency (IGN) where crop observations are made annually.216

The second one is located near Paris, in the Seine et Marne region, at the217

north of Coulommiers town. It covers 233 km2. Contrarily to the Site04, this218

site is characterized by a flat relief, with a large parcellar and a majority of219

cereal crops. This site is a permanent observatory of a Group of Scientific220

Interest; GIS Oracle (http://gisoracle.irstea.fr/). This site will be221

noted Site77 in reference to the national number of the corresponding region.222

Table 1 illustrates the difference of both sites in terms of covered area and223

cultivated crop types. Figure 3 gives for both sites the normalized histograms224

of parcels area. Figures 4 and 5, show Site04 and Site77, respectively, with225

the corresponding parcels and nomenclatures.226

50°0′ 50°0′

45°0′ 45°0′

-5°0′

-5°0′

0°0′

0°0′

5°0′

5°0′

10°0′
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Site77

Figure 1: Localisation of Site04 and Site77

2.2. Land Parcellar Identification system227

In France, the Land Parcellar Identification System is called Registre228

Parcellaire Graphique (RPG). It is available on the whole territory since 2002.229

It corresponds to a Geographic Information System (GIS) of cultivated and230
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non cultivated areas (NCA) that may correspond to isolated trees, hedges,231

groves, artificial areas . . . For cultivated areas, the RPG gathers the geometric232

information (i.e., the parcel delimitation) and the corresponding semantic233

information allowing to identify each agricultural parcel such as the owner,234

the operator, the area, the crop type etc (cf. Figure 2).235

NCA (a)
NCA

NCA

a block(b) containing 4 parcels (c)

Figure 2: Details of the French LPIS (RPG). (a) Non cultivated areas (NCA); (b) a block
of contiguous parcels, belonging to the same operator (dashed lines); (c) a Parcel, defined
by its owner, operator, surface, crop type. . .

All this information has to be entered in April-May period for each year236

by the farmers. Until 2014, the declarations were made at a parcel block scale237

for contiguous parcels with the same operator. Since 2015, the declarations238

are made at the parcel scale. The crop type is specified among more than239

300 sub-classes, which are organized into 28 classes. This study focuses on a240

parcel-based approach. Thus, to be in tune with Sentinel-2 images availability,241

only the 2016 parcel-based RPG edition is used for training and validation.242

The geometrically stable blocks of parcels from 2010 to 2014 (available LPIS243

data) were used to learn crop rotations. The latter step was processed on the244

corresponding departments of both sites ((77): 5915 km2 and (04): 6925 km2),245

in order to get more robust crop type transitions.246

2.3. Nomenclature247

The 28-class nomenclature used in the RPG declarations is driven agri-248

cultural monitoring needs: hence, it exhibits a fine-grained categorization.249

However, some classes are indistinguishable from purely remote sensing obser-250

vations, such as lands left in fallow for different amount of times. Consequently,251

we present in Table 1 a slightly adjusted nomenclature of 25 classes. 14 and252

10 of these classes are present on Site04 and Site77, respectively.253
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Class # parcels - Site04 # parcels - Site77
Corn 147 350

Barley 517 158
Other cereals 2176 889

Rape seed 154 85
Sun flower 293 7

Other oilseeds 116 7

Protein(peas) 87 76
Fiber plants 7 76
Forage crops 1215 46

Meadows 3652 725
Fruit trees 298 30
Vignards 249 7

Olive groves 1029 7

Aromatic crops 1452 7

Vegetables 520 131
Total nb classes 14 10
Total nb parcels 11905 2566
Site area (km2) 1050 233

Total nb stable parcels 2015/2016 9230 1902
Total transitions 2010-14 29478 36891

Table 1: Comparison of both study sites in terms of area and crop types.

Figure 3 shows the distribution of parcel sizes on both sites. One can see254

that Site04 is much more fragmented with very small parcels while Site 77255

shows large parcels reaching 20 ha.256

Figures 4 and 5 show the 2016 RPG edition i.e., the ground truth data257

on Site04 and Site77 respectively, with the corresponding classes on each258

site. One can observe that, on Site04, dominant crops are: cereals (23.8%),259

meadows (30.7%), aromatic crops (12.2%), forage crops (10.2%) and olive260

groves (8.6%). For Site77, two dominant crops are present: cereals (57.7%),261

meadows (28.3%), followed by vegetables (5.1%). The data are much more262

imbalanced in the latter case, making the 77 classification task more complex.263

2.4. Multimodal Sentinel-1 & Sentinel-2 images264

Our framework is fed with multimodal and temporal Sentinel images265

dedicated to agricultural applications and environmental monitoring. The266
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Figure 3: Normalized histogram of parcel area for Site04 and Site77.

high spectral resolution of the images and high temporal sampling rate267

make these acquisitions particularly well-suited for crop mapping (Table 2).268

Sentinel-1 (S1) sensor provides band-C SAR images while Sentinel-2 (S2)269

provides multispectral images.270

Figure 6 shows a Sentinel-2 optical and a Sentinel-1 radar acquisitions on271

Site04, more precisely on Oraison Village.272

Sentinel-2 (S2) is a multispectral sensor with 13 bands covering the VIS-273

SWIR domain, which measures the reflectance of surface objects in different274

optical domains. In particular, its near infra-red (NIR) and red-edge bands275

allow a fine characterization of crops. Sentinel-1 is a C-band SAR. This allows276

to measure scattering coefficients that are related to an emitted waveform277

(λ = 5.5 cm in C-band). The recorded energy depends on the characteristics of278

the encountered object (slope, roughness, humidity,etc.) and on the emitted279

waveform (wavelength, polarization). Sentinel-1 has different acquisition280
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Figure 4: Site04 : 2016 RPG parcellar superimposed to a very high resolution Digital
Terrain Model.
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Figure 5: Site77 : 2016 RPG parcellar superimposed to a SRTM Digital Terrain Model.

Acquisition date Sensor Characteristics
Sentinel-1 3 April 2014 (S1A) C-SAR (5,4 GHz) Cycle: 12 jours

25 April 2016 (S1B) # satellites: 2 (S1A et S1B)

Revisit period: 6 days

Resolution: 5·20 m by default (mode IW)

Polarization: dual (VV,VH)

Sentinel-2 23 June 2015 (S2-A) Multispectral Cycle: 10 days

7 March 2017 (S2-B) image # satellites: 2 (S2A et S2B)

Revisit period: 5 days

Resolution: 10 m - 60 m according to band

Spectral: 13 bands (2 NIR and 3 Red-edge)

Table 2: Characteristics of Sentinel sensors and used images: Sentinel-1, Sentinel-2.
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Figure 6: Site04, focus on Oraison village: Sentinel-1 (5 Aug. 2015). Composed color
image with different polarizations related to retrodiffusion coefficients: σvv, σvh,σvh

σvv
. Site04-

Oraison village: Color-infrared Sentinel-2 (3 Aug. 2015). See text for more details.

modes that differ according to observed surface, sensor spatial resolution and281

polarization. The available mode on the studied sites was the Interferometric282

Wide (IW) mode. This mode presents a dual polarization:283

• VV : Incident waveform is polarized vertically and the antenna records it284

vertically. This polarization allows us to characterize the soil roughness.285

• VH : Incident waveform is polarized vertically and the antenna records286

it horizontally. This polarization provides volumetric information on287

vegetation.288

In addition, we use directly the GRD (Ground Range Detected) image289

format, which corresponds to the average of approximately five Single Look290

Complex ((SLC) acquisitions corrected by the incidence angle and resampled291

at 10 m spatial resolution (Section 2.5.2).292

2.5. Sentinel image pre-processing293

Figure 7 illustrates the optical and radar pre-processing steps to obtain294

parcel-based features that will be fed into our classification workflow.295

2.5.1. Sentinel images repositories296

Sentinel images are available on several platforms: the Copernicus scihub297

(https://scihub.copernicus.eu/) at the European level, the scihub mirror298

Peps (https://peps.cnes.fr) and the downstream service Theia (https:299

//www.theia-land.fr/) at the French national level. Sentinel-2 images (10300

bands) were automatically downloaded from the Theia platform as they were301
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Sentinel 2 images (Optical)
TOC product level

SAR Calibration
(σ0 backscattering coefficient)

Missing data interpolation

Cropping study area

Sentinel 1 images (Radar)
GRD product level

Orthorectification

Merging images

Spatial Speckle filtering

Cropping study area

Merging Sentinel-2 tiles

Parcel-based feature computation

Figure 7: Sentinel-1 and 2 pre-processing steps

available in tiled format, calibrated as Top of Canopy (TOC) reflectance and302

accompanied with robust cloud mask information. Radar Sentinel-1 images303

were downloaded from the Peps platform in the Ground Range Detected304

format (GRD). The total number of images is illustrated in Table 3 and305

confirms the complementarity between Sentinel-1 and Sentinel-2 images, where306

the latter may suffer from an important cloud cover while Sentinel-1 radar307

images allow to get more information. For instance, on Site77, particularly308

obstructed by cloudy skies, Sentinel-2 images (12) are 7 times fewer than the309

S1 images (85). On the particular Sentinel-2 orbit covering the Site77 study310

area, many acquisition problems occurred in 2016. On the contrary, Site77311

is located where ascendant Sentinel-1 images overlap making the available312

radar images more numerous.313
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2.5.2. Sentinel 1 pre-process314

The dual polarization GRD S1 images were first calibrated to σ0 radar315

backscattering coefficient. Then, the orthorectification was performed using316

the SRTM digital terrain model and the georeferencing information supplied317

with the GRD files. The speckle is partly removed using a simple 5 × 5318

Lee filter [30]. The information was then averaged at the parcel level. In319

addition to VV and VH radar features, an extra radar feature (σ0V H

σ0V V
) was320

derived. This ratio is known to be more robust to acquisition system errors321

or environmental factors such as soil moisture. As a result, Veloso et al.322

[31] argue that it is a more temporal stable indicator than the σ0V V
et σ0V H

323

backscattering coefficient.324

Average and standard deviation of these three features per radar image325

are then computed for each date and for each parcel of the study sites. The326

number of obtained features are shown in Table 3 .327

Site Nb of dates Optical features Radar features Total
04 Optical: 23 20 per image 6 per image Optical: 460

Radar: 28 (σ and µ of (σ and µ of Radar: 168
10 bands + NDVI) 3 radar features) total: 628

77 Optical: 12 20 per image 6 per image Optical: 240
Radar: 85 (σ and µ of (σ and µ of Radar: 509

10 bands) 3 radar features) total: 749

Table 3: Characteristics of the parcel-based features for both sites. See text for more
details.

2.5.3. Sentinel 2 pre-process328

Sentinel-2 images downloaded from Theia platform were already orthorec-329

tified in a cartographic system and calibrated in TOC reflectance. When the330

study area covered more than one tile, the corresponding tiles and cloud masks331

were merged. On Site77, only 12 Sentinel-2 optical images were obtained332

in 2016 as shown in Figure 8 with corresponding cloud cover whereas 23333

images are available on Site04. The missing data (clouds) were filled using a334

multi-temporal spline interpolation [32]. Average and standard deviation of335

the 10 spectral bands per optical image were then computed for each date336

and for each parcel of the study sites. The number of obtained features are337

shown in Table 3.338
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Figure 8: S2 optical images over the year 2016 and corresponding cloud cover on Site77.

2.6. LPIS pre-process339

Seven editions of the French LPIS were used. From 2010 to 2014, the crop340

type is defined at the block level (Figure 2) (i.e., the majority crop type of341

the block) with a nomenclature of 28 classes. For 2015 and 2016 editions, the342

crop type is known at the parcel-level with a detailed nomenclature (over 300343

classes). In order to use all available editions, all LPIS were aggregated to344

the 25 considered classes. Geometrically stable parcels were identified using345

a GIS spatial join between 2015 and 2016 versions. The number of stable346

parcels for both sites is given in Table 1. The 2016 stable parcels were used347

for training and validation of the supervised classification model (Section 3.1).348

The 2015 stable parcels were necessary to train the temporal structured349

method (Section 3.2). Finally, a similar GIS spatial join was performed at350

the block level for 2010-2014 LPIS editions, over the whole corresponding351

regions (04 and 77) in order to get more robust crop transitions. Thus, a352

5-year series of crop type transitions were obtained on stable blocks over both353

04 and 77 regions. The number of transitions for each study site is given in354

Table 1. These transitions will be used in the temporal structure estimation355

(Section 3.2.1).356

3. Methodology357

Our method can be broken down into two components: parcel-wise clas-358

sification and temporal modeling. The first part aims to predict the crop359

types per parcel using Sentinel time series with no temporal structure. The360

second component consists in integrating into a structured model the temporal361

structure derived from previous LPIS editions and based on crop rotations.362

3.1. Parcel-based multi-source classification363

The first step in our pipeline is crafting discriminative features from364

sequential satellite acquisitions. For each parcel, we consider all available365

(and interpolated) optical and radar data over one year. To obtain parcel-366

based rather than pixel-based features, we consider the average and standard367
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deviation of each spectral band over the pixels composing the parcel. Those368

attributes are aggregated into a tensor of dimensions equal to twice the369

number of acquisitions over the year for each parcel.370

We then perform feature selection by iteratively removing the features371

with the least importance until the cross-validated classification score starts372

decreasing over our learning set. For a given parcel i and a given year t373

we denote X(t)
i ∈ RD the tensor of aggregated selected features, with D the374

selected feature size. As certain classes were over-represented in our data sets,375

each class is weighted proportionally to the square root of the inverse of its376

number of instances.377

A Random Forest classifier is selected for the classification task. It provides378

parcel-wise prediction under the form of a pseudo-probability.379

3.2. Temporal-structured classification of parcels380

We now consider the temporal structure of each parcel independently. We381

denote by Xi ∈ RT×D the sequence of features X(t)
i ∈ Rd for the parcel i for382

the years t = 1, · · · , T . Likewise, we denote Y ∈ KN×T the labels of each383

parcel for each observed year with K the set of all possible labels.384

3.2.1. Temporal structure385

The aim of this step is to model the yearly crop rotations in order to386

improve crop type prediction.387

As stated in 1.2.2, crop rotation has a significant impact on land cover.
This dependency is modeled with a discriminative linear chain Conditional
Random Field (CRF) of order m, as shown in Figure 9. For a parcel i, we
model the posterior distribution P (Yi | Xi) of the labels Yi given the observed
features Xi as:

P (Yi | Xi) = 1
Z

exp
(

T∑
t=1

O(Y (t)
i , Xi) +

T∑
t=m+1

I(Y (t−m)
i , · · · , Y (t)

i , X)
)
, (1)

where Z is a normalizing factor, O the observation potential, and I the
interaction potential, described below.
Observation potential: The observation potential models the link between
the observed features and the label of each parcel. O(Y (t)

i , Xi) is taken as
the logarithm of the pseudo-probability given by the random forest classifier,
described in Section 3.1.
Interaction potential: This potential models the temporal dependencies

17



between the parcel’s labels. We model this potential as the transition prob-
ability from a sequence Y (t−m)

i , · · · , Y (t−1)
i to a label Y (t)

i . For the sake of
simplicity, we choose an homogeneous parameterization, independent of the
observed features, and shared by all parcels and years:

I(Y (t−m)
i , · · · , Y (t)

i , X) = log
(
M(Y (t−m)

i , · · · , Y (t)
i ))

)
,

with M ∈ Rkm

+ a tensor such that ∑{i1,··· ,im−1}∈Km−1 Mi1,··· ,im−1,im = 1 for all388

im ∈ K. This tensor can be interpreted as a transition probability from a389

sequence in Km−1 to a label in K [33].390

Y
(1)
i

... Y
(t−2)
i Y

(t−1)
i Y

(t)
i

X
(1)
i

... X
(t−2)
i X

(t−1)
i X

(t)
i

Figure 9: Graph structure of the temporal dependency at order 2.

3.3. Learning391

The observation potential is obtained by training the random forest
classifier. Learning the transition tensor M̂ from labeled data can be done in
close form. For i1, . . . , im ∈ Km, let:

M̂i1,...,im = Ni1,...,im

Ni1,...,im−1

,

with Ni1,...,im the number of sequences i1, . . . , im observed in the labeled data392

for all parcels and all years, and Ni1,...,im−1 the number of sequences i1, . . . , im−1393

observed for the T −m first years.394

To account for the large size of this matrix (km) and to prevent numeric395

issues, we perform a Laplacian smoothing with α = 1 as described in Manning396

et al. [34, 11.3.2].397
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3.4. Inference398

The aim of this step is to predict the label Y (t)
i from the labels and

observations of the previous years for an unseen parcel. This can be directly
computed by injecting the observation and interaction potentials obtained
from the trained models into

p(Y (t)
i = k | Y (t−m,··· ,t−1)

i , Xi) ∝ exp
(
O(k,X(t)

i ) + I(Y (t−m)
i , · · · , Y (t−1)

i , k)
)
,

and normalizing the results to obtain a probability.399

4. Results and discussions400

In this section, we present the experimental setup and the evaluation401

metrics. Results are illustrated on both sites and will be discussed with402

regard to methodological and thematic objectives presented in Section 1.3.403

4.1. Experimental setup404

The random forest classifier is composed of 100 decision trees. The405

meta-parameters of the forest, such as the maximum number of attributes406

considered at each node, are chosen by k-fold cross-validation with k = 4.407

For the temporal structure, spatio-temporal homogeneity hypothesis al-408

lows us to estimate the transition tensor M̂ . For each study site, only the409

geometrically-stable parcel-blocks over the corresponding departments and a410

period of 5 years are used. The number of 5-year transitions that contribute411

to estimate M̂ is given in Table 1.412

The data is randomly split equally into a training and a testing sets. In413

practice, the availability of numerous LPIS editions allows us to have a high414

number of training parcels. The model is trained and validated on the training415

set while the quality of the model is estimated on the testing set. The overall416

accuracy (OA) is used to assess the general performance of the model, while417

the F-score for each class allows us to estimate the per-class quality. To sum418

up this information, the F-scores are averaged, with and without weighting419

by the class cardinality. The results are given as an average over 10 runs of420

the random forest classifier.421

4.2. Transition matrix assessment422

The transitions were computed on geometrically stable parcels between423

2010-2014. In this study, only first order transitions were computed, i.e.,424
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Figure 10: Site 77 - Representation of the transition matrix with a Hinton diagram.

between one given year and the previous year. Figures 10 and 11 give the425

estimated transitions between crop classes as Hinton diagrams, for both sites.426

On Site04, the most probable transitions are to and from permanent427

crops, such as olive groves, vignards, orchards, estive landes, meadows and428

fruit trees reaching 98.34%, 93.87%, 92.72%, 98.31%, 91.89% and 84.23%,429

respectively. From the transition matrix, we can observe that the standard430

rotation patterns of annual crops are generally not applied in this area. The431

rape seed, proteins and sun flowers have probabilities of 76.53%, 66.78% and432

64.25%, respectively to be transformed to other cereals the following year.433

On Site77, the most probable transitions are conversely observed for the434

annual crops. Agronomical rules for annual crops rotation seems to be much435

more enforced in this area. The rape seed and proteins have probabilities436

of 97.09% and 94.85%, respectively to be transformed to other cereals the437

following year. The rapeseed → winter wheat (in other cereals) → barley is a438
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Figure 11: Site 04 - Representation of the transition matrix with a Hinton diagram.

well-known 3-year rotation for farmers of this area. Permanent crops such as439

meadows, orchards, fruit trees, vineyards have a probability of being carried440

over the next year of 94.45%, 83.65%, 81.39% and 62.12%, respectively.441

4.3. Quantitative and qualitative analysis442

This section illustrates prediction accuracies using different feature combi-443

nations and both unstructured and structured approaches.444

4.3.1. Quantitative evaluation on Site04445

From the results displayed in Table 4, one can see that for parcel-based446

crop type prediction using image observations, optical data give better results447

than radar data (+9.1% for OA and +10.4% for weighted F-score). This can448

be explained by the finer resolution of optical imagery, as well as the small449

parcel size of Site04 (cf. Section 4.3.2. Furthermore, Site04 being situated450
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in sunny Southern France, it has generally little cloud cover, making optical451

data very available.452

Table 4: Global prediction accuracies on Site04, using different feature and methodological
configurations.

Unstructured
Config OA F-score Weighted F-score
Radar 0.639 0.587 0.610
Optical 0.730 0.669 0.714
Radar Optical 0.729 0.679 0.713

Structured
Radar 0.757 0.592 0.698
Optical 0.776 0.627 0.725
Radar Optical 0.775 0.645 0.723

The results confirm that optical and radar combination leads to the best453

results in both unstructured and structured approaches.However, the global454

results remain low for this site, with F-scores varying between 0.58 and 0.64.455

This is due to the very small size of parcels and highly imbalanced classes.456

For example, parcels of permanent classes (meadows, fruit trees, vignards,457

olive groves) are overrepresented, as shown in Figure 4.458

The confusion matrix for unstructured optical/radar configuration (Ta-459

ble 6) shows that most ambiguities occur on meadows classes, other cereals and460

forage crops. When integrating the temporal structure, the overall accuracy461

is improved by 4.6%. Moreover, while the OA using radar data is very low462

(63.9%), it is improved by the structured approach by 11.8%, confirming the463

impact of temporal structure even if the accuracy of the parcel-wise prediction464

is low.465

In Table 5, we display the F-score, recall, and accuracy measures per class466

for both unstructured and structured approaches using radar and optical467

combination.468

As for per-class accuracies, temporal structure highly improves the accu-469

racies of permanent crops (fruit trees +36%, vignards +29.7%, olive groves470

+25.6%, aromatic groves +19%) reaching F-scores higher than 92.9%. The471

F-score for meadows (permanent and temporary) is improved by 4.1%. These472
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Table 5: Effect of temporal structure on Classification metrics on Site04, using aggregated
radar and optical attributes.

Unstructured Structured
Class F score Recall Precision F score Recall Precision
Corn 0.888 0.953 0.832 0.780 0.836 0.732
Barley 0.393 0.848 0.256 0.185 0.673 0.107
Other cereals 0.846 0.830 0.862 0.783 0.730 0.845
Rape seed 0.923 1 0.857 0.712 1 0.554
Sun flower 0.789 0.785 0.793 0.713 0.749 0.681
Other oilseeds 0.570 0.745 0.463 0.408 1 0.258
Protein 0.484 1 0.321 0 0.0714 0
Forage crops 0.469 0.735 0.344 0.096 0.884 0.051
Meadows 0.759 0.675 0.867 0.800 0.674 0.983
Fruit trees 0.609 0.863 0.471 0.969 0.962 0.975
Vignards 0.690 0.740 0.646 0.987 0.996 0.979
Olive groves 0.737 0.819 0.670 0.993 0.997 0.989
Aromatic crops 0.739 0.646 0.864 0.929 0.938 0.921
Vegetables 0.611 0.725 0.529 0.674 0.891 0.542

results were expected since the permanent crops have the highest transition473

probability as shown in Section 4.2.474

However, F-scores of annual crops classes decrease when using temporal475

structure; only slightly so for corn, other cereal, rape seed and sunflowers476

but barley, other oilseeds, protein and forage crops are significantly more477

misclassified (cf. table 6). This is due to the fact that the transitions of annual478

crops are less stable and highly vary with regard to agricultural practices and479

operators in this area.480

4.3.2. Impact of parcel size on Site04481

Figure 12 shows the impact of parcel size on parcel-wise global accuracies.482

Since Site04 is highly fragmented, when keeping only large parcels (area483

>3 ha), the number of parcels is reduced by 77.5%. Overall accuracies are484

highly improved by 15%, 5.9% and 8.7% for radar, optical and aggregated485

optical/radar attributes, respectively). Indeed, due to the limited spatial486

resolution of Sentinel-1 images, radar attributes are more sensitive to small487

23



Table 6: Confusion matrices using aggregated optical and radar attributes on Site04.
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Unstructured Optical radar
Corn 31 - - - 1 2 - - - - 1 - - 3
Barley - 47 9- - - - - 3 37 - - - 13 -
O. cereals - 5 684 - 5 1 - 5 59 - - 4 25 1
Rape seed - - 1 56 - - - - 10 - - - - -
Sun flower - - 1 - 78 - - - 2 - - - 13 4
O. oilseeds 1 - - - 7 18 - - 4 - 1 - 2 7
Protein - 2 6 - - - 10 1 7 - - - 2 -
Forage crops - - 18 - 1 - - 173 239 6 3 9 64 2
Meadows - 3 16 - 3 1 - 47 1294 - 9 27 77 3
Fruit trees 1 - 1 - - - - - 52 56 1 9 5 -
Vignards - - - - - - - - 18 - 74 4 19 -
Olive groves - - 4 - - 1 - 1 113 1 6 311 26 1
Arom crops - - 1 - - - - - 64 - 2 6 480 2
Vegetables - - 2 - 6 4 - 2 18 - 4 6 9 60

Structured Optical radar
Corn 28 - 7 - 1 - - - 1 - - - 1 -
Barley - 20 123 - - - - - 47 - - - - -
O. cereals 1 1 676 - 2 - - - 1-2 - - - 6 1
Rape seed - 5 21 35 - - - - 6 - - - - -
Sun flower - - 6 - 67 - - 1 13 - - - 8 3
O. oilseeds 4 - 4 - 7 10 - - 14 - - - - 1
Protein - 2 21 - - - - - 5 - - - - -
Forage crops 1 - 15 - 3 - - 25 461 - - - 9 1
Meadows - 1 16 - 1 - - 2 1456 - - 1 3 -
Fruit trees - - - - - - - - 2 122 1 - - -
Vignards - - - - - - - - 3 - 112 - - -
Olive groves - - 1 - - - - - 3 2 - 458 - -
Arom crops - 1 17 - - - - - 26 - - - 511 -
Vegetables - - 20 - 10 - - - 16 3 - - 4 58
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parcel sizes. When considering parcels greater than 3 ha, radar OA reaches488

the optical OA at 79.3%.489
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Figure 12: Impact of the parcel size on the global accuracy for parcel-wise classification on
Site04 in the year 2016. x-axis: only parcels whose surface area exceeds the threshold (in
ha) are considered.

4.3.3. Quantitative evaluation on Site77490

Overall accuracies and F-scores are displayed in Table 7. They are averaged491

over 10 runs of the random forest classifier. Contrarily to the previous site,492

on Site77, radar attributes give better results than optical attributes (OA =493

0.892 Vs. 0.824) for the unstructured approach. This is due to a combination494

of frequent acquisition problems and high cloud cover in 2016, leading to495

many missing optical Sentinel-2 data on this study area (cf. Figure 8). In496

addition, the parcels on Site77 are larger and thus more compatible with497

radar Sentinel-1 image spatial resolution. However, aggregated optical and498
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radar attributes still give the best results for the unstructured approach.499

Table 7: Global prediction accuracies on Site77, using different attribute and methodological
configurations.

Unstructured
Config OA F-score Weighted F-score
Radar 0.892 0.734 0.878
Optical 0.824 0.624 0.809
Radar Optical 0.890 0.744 0.885

Structured
Radar 0.919 0.776 0.911
Optical 0.870 0.675 0.853
Radar Optical 0.916 0.762 0.906

When looking at per-class accuracies in Table 8, one can see that unlike500

Site04, very good overall accuracies are obtained for annual crops (Corn501

(94.1%), Barley (89.8%), Other cereals (94.7%), Rape seed (95.9%), . . . ) with502

the exception of forage crops. Indeed this class is hard to classify using503

satellite imagery since it is an agronomic class, making it harder to identify504

using only spectral or radar scattering information even on temporal images.505

As with Site04, Table 8 shows that the meadows class is often confused with506

other classes, particularly fruit trees and other cereals. In this case, this is507

due to the combination of trees and bare soil found in meadows, which has a508

low volumetric radar response.509

The structured approach improves overall accuracies by 2.7%, 4.6% and510

2.6% for radar, optical, and aggregated optical/radar attributes, respectively.511

The improvement of temporal structure is lower than for Site04, as the initial512

parcel-wise accuracies are already strong (OA>82%). However, one can513

observe that the structured approach leads to the best results with radar514

attributes only.515

As for Site04, the best improvements occur on permanent crops such as516

meadows and fruit trees (cf. Table 9). Moreover, the temporal structure517

improves the prediction of some annual crops such as other cereals, Rape518

seeds and proteins since they have a high first order transition probability to519

other cereals.520
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Table 8: Effect of temporal structure on Classification metrics on Site77, using aggregated
radar and optical attributes.

Class Unstructured Structured
Class F-score Recall Precision F-score Recall Precision
Corn 0.941 0.929 0.953 0.878 0.831 0.935

Barley 0.898 0.937 0.862 0.816 0.785 0.849
Other cereals 0.947 0.956 0.9378 0.954 0.941 0.968

Rape seed 0.959 0.975 0.944 0.969 0.985 0.954
Protein 0.949 0.932 0.968 0.953 0.967 0.939

Fiber plants 0.974 1 0.950 0 0.1 0
Forage crops 0 0.1 0 0.705 0.778 0.648

Meadows 0.868 0.814 0.930 0.955 0.943 0.967
Fruit trees 0.010 0.090 0 0.940 1 0.892
Vegetables 0.895 0.914 0.877 0.451 0.970 0.297

4.3.4. Impact of parcel size on Site77521

Figure 13 shows the impact of parcel size on the global accuracies of the522

parcel-wise prediction. Since Site77 is less fragmented than Site04, keeping523

only large parcels (area > 3 ha), reduces the number of parcels by % 52,3%.524

As with Site04, when considering larger parcels, the overall accuracy is525

greatly improved with radar attributes (by 7.3% reaching 97.1%), which526

confirms the high sensitivity of radar images to parcel size.527

For optical attributes, the relation between parcel size and accuracy is528

less clear. This may be due to the data imbalance, with some classes that are529

more present in small parcels (0.5-1.5 ha) and which are well identified such530

as Rape seed or Protein. Thus, removing these small parcels may decrease531

the overall accuracy. The classes that are responsible for the higher OA532

observed between 0 and 0.75 ha are Fiber plants and Meadows where meadows533

parcels are much smaller than for other classes and that fiber plants parcels534

are homogeneous in terms of area (cf. Figure 5).535

As for radar data sensitivity to limited parcel sizes, some improvements of536

our framework could be undertaken on radar pre-processing. Indeed, the GRD537

Sentinel-1 images were used as input images when each GRD radar pixel is538

already an average of 5 pixels of the SLC (Single Look Complex). Using SLC539

images directly would allow us to achieve greater spatial resolution. Then, a540
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Table 9: Confusion matrices using aggregated optical and radar attributes on Site77.
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Unstructured Optical radar
Corn 119 - - - - - - 6 - -
Barley 1 48 2 - 1 - - 3 - -
Other cereals - 2 309 - - - - 19 - 1
Rape seed - - - 38 - - - 3 - -
Fiber plants - - - - 27 - - 1 - -
Protein - - - - 1 9 - - - -
Forage crops - - 1 - - - - 20 - -
Meadows 10 1 9 1 - - - 276 - 1
Fruit trees - - - - - - - 12 - -
Vegetables 1 - 1 - - - - 1 - 27

Structured Optical radar
Corn 118 1 1 - - - 3 2 - -
Barley 1 48 5 - - - - 1 - -
Other cereals - 2 321 1 - - - 7 - -
Rape seed - - 1 39 - - - 1 - -
Fiber plants - - 1 - 27 - - - - -
Protein 1 8 - - 1 - - - - -
Forage crops - 1 2 - - - 13 5 - -
Meadows 4 - 4 - - - 1 289 - -
Fruit trees - - - - - - - - 12 -
Vegetables 19 - 2 - - - - - - 9

simple speckle filter was used [30] on a restricted local neighborhood (5×5).541

This is not a problem for large parcels as the radar scattering coefficients542

are averaged afterwards at the agricultural parcel level. However, when543

parcel surface areas approach the Sentinel-1 spatial resolution, this method544

is no longer suitable. The robustness of adaptive radar speckle filtering to545

small objects should be investigated [35]. Finally, using a very high spatial546

resolution Digital Terrain Model instead of the SRTM could improve absolute547

28



0 0.5 1 1.5 2 2.5 3 3.5
82

84

86

88

90

92

94

96

98

100

Threshold on parcel size in Hectares

O
ve

ra
ll

A
cc

ur
ac

y
(%

)
Radar
Optical

Radar+Optical

Figure 13: Unstructured parcel-based classification for year 2016, Site77 - Impact of parcel
size on accuracy; x-axis: only parcels whose surface area exceeds the threshold (in ha) are
considered.

orthorectification accuracy of Sentinel-1 images and allows us to correct radar548

scattering coefficient from the effect of terrain slope (γ0 calibration). As a549

result, the intra-class variability of signal could be reduced.550

5. Conclusion and perspectives551

This study demonstrated the efficiency of an automatic prediction of crop552

types using Sentinel 1 and 2 images and LPIS archives as a first step for an553

automatic filled pre-declaration intended for farmers.554

From a thematic point of view, this paper demonstrates the efficiency555

of multi-temporal and multi-source Sentinel (optical and radar) images for556

crop type classification on two different sites. Very satisfactory discrimination557

results are obtained even with a large number of classes (>10). The remaining558
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limitations are essentially the parcel size with regard to the spatial resolution559

of images and the complexity of the nomenclature. Results highlight the560

high sensitivity of radar data to small parcel sizes, especially on Site04. This561

issue can be reduced by a refining the preprocessing framework of radar data.562

Moreover, the complexity of certain agronomic classes such as forage crops563

should be discussed with agronomists in order to design a proper hierarchical564

classification.565

From a methodological point of view, we integrated the temporal structure566

by automatically modeling the crop rotations using prevision editions of LPIS.567

This model appears to be very efficient, improving the global classification568

prediction of crop types. However, the impact of integrating temporal struc-569

ture varies highly among classes. Although a positive impact is demonstrated570

on permanent crops using first order crop transitions, this impact is fairly571

limited or even detrimental for annual crops. Other transition orders should572

be investigated to confirm the interest of temporal structure for annual crops.573

Finally, thanks to the large volume of available LPIS data that can be used574

as ground truth, and the free availability of numerous Sentinel images, deep575

learning methods should be tested to learn parcels’ embeddings.576
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[2] Y. Palchowdhuri, R. Valcarce-Diñeiro, P. King, M. Sanabria-Soto, Classi-585

fication of multi-temporal spectral indices for crop type mapping: a case586

study in coalville, uk, The Journal of Agricultural Science 156 (2018)587

24–36.588

[3] J. Inglada, M. Arias, B. Tardy, O. Hagolle, S. Valero, D. Morin, G. Dedieu,589

G. Sepulcre, S. Bontemps, P. Defourny, et al., Assessment of an oper-590

ational system for crop type map production using high temporal and591

30

https://ec.europa.eu/jrc/sites/jrcsh/files/Copernicus_concept_note_agriculture.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/Copernicus_concept_note_agriculture.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/Copernicus_concept_note_agriculture.pdf


spatial resolution satellite optical imagery, Remote Sensing 7 (2015)592

12356–12379.593

[4] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.594

[5] M. Immitzer, F. Vuolo, C. Atzberger, First experience with Sentinel-2595

data for crop and tree species classifications in central Europe, Remote596

Sensing 8 (2016) 166.597

[6] N. Kussul, G. Lemoine, F. J. Gallego, S. V. Skakun, M. Lavreniuk, A. Y.598

Shelestov, Parcel-based crop classification in Ukraine using Landsat-8599

data and Sentinel-1a data, IEEE Journal of Selected Topics in Applied600

Earth Observations and Remote Sensing 9 (2016) 2500–2508.601

[7] Sen2-Agri, Czech agriculture national demonstrator - final re-602

port. http://www.esa-sen2agri.org/wp-content/uploads/docs/603

CzechAgri%20Final%20Report%201.2.pdf, 2018. Accessed on February604

6, 2018.605
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