S. W. Tan, J. C. Meiller, and K. R. Mahaffey, The endocrine effects of mercury in humans and wildlife, Crit. Rev. Toxicol, vol.39, pp.228-269, 2009.

L. Atwell, K. A. Hobson, and H. E. Welch, Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis, Can. J. Fish. Aquat. Sci, vol.55, pp.1114-1121, 1998.

C. H. Lamborg, A global ocean inventory of anthropogenic mercury based on water column measurements, Nature, vol.512, pp.65-68, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02163104

, Scientific RepoRts |, vol.8, 2018.

G. C. Compeau and R. Bartha, Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment, Appl. Environ. Microbiol, vol.50, pp.498-502, 1985.

S. Jensen and . Jernelöv, Biological methylation of mercury in aquatic organisms, Nature, vol.223, pp.753-754, 1969.

V. Celo, D. R. Lean, and S. L. Scott, Abiotic methylation of mercury in the aquatic environment, Sci. Total Environ, vol.368, pp.126-163, 2006.

D. Cossa, B. Averty, and N. Pirrone, The origin of methylmercury in open Mediterranean waters, Limnol. Oceanogr, vol.54, pp.837-844, 2009.

R. P. Mason and W. F. Fitzgerald, Alkylmercury species in the equatorial Pacific, Nature, vol.347, p.457, 1990.

C. R. Hammerschmidt and K. L. Bowman, Vertical methylmercury distribution in the subtropical North Pacific Ocean, Mar. Chem. 132, vol.133, pp.77-82, 2012.

D. Cossa, Mercury in the Southern Ocean, Geochim. Cosmochim. Acta, vol.75, pp.4037-4052, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02163122

L. E. Heimbürger, Methyl mercury distributions in relation to the presence of nano-and picophytoplankton in an oceanic water column (Ligurian Sea, Geochim. Cosmochim. Acta, vol.74, pp.5549-5559, 2010.

M. Monperrus, Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea, Mar. Chem, vol.107, pp.49-63, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01590330

L. R. Monteiro, V. Costa, R. W. Furness, and R. S. Santos, Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments, Mar. Ecol. Prog. Ser, vol.141, pp.21-25, 1996.

C. A. Choy, B. N. Popp, J. J. Kaneko, and J. C. Drazen, The influence of depth on mercury levels in pelagic fishes and their prey, Proc. Natl. Acad. Sci. USA, vol.106, pp.13865-13869, 2009.

T. Chouvelon, Enhanced bioaccumulation of mercury in deep-sea fauna from the Bay of Biscay (north-east Atlantic) in relation to trophic positions identified by analysis of carbon and nitrogen stable isotopes, Deep. Res. Part I Oceanogr. Res. Pap, vol.65, pp.113-124, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00694521

J. Burger and M. Gochfeld, Marine birds as sentinels of environmental pollution, EcoHealth J. Consort, vol.1, pp.263-274, 2004.

J. Fort, G. J. Robertson, D. Grémillet, G. Traisnel, and P. Bustamante, Spatial ecotoxicology: migratory Arctic seabirds are exposed to mercury contamination while overwintering in the Northwest Atlantic, Environ. Sci. Technol, vol.48, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01100234

A. Carravieri, P. Bustamante, C. Churlaud, and Y. Cherel, Penguins as bioindicators of mercury contamination in the Southern Ocean: birds from the Kerguelen Islands as a case study, Sci. Total Environ, pp.141-149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00807268

A. Carravieri, Y. Cherel, A. Jaeger, C. Churlaud, and P. Bustamante, Penguins as bioindicators of mercury contamination in the southern Indian Ocean: geographical and temporal trends, Environ. Pollut, vol.213, pp.195-205, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330644

A. G. Kooyman, Diving behavior and energetics during foraging cycles in King Penguins, Ecol Monogr, vol.62, pp.143-163, 1992.

Y. Cherel and K. A. Hobson, Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean, Mar. Ecol. Prog. Ser, vol.329, pp.281-287, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00182469

C. A. Bost, Large-scale climatic anomalies affect marine predator foraging behaviour and demography, Nat. Commun, vol.6, p.8220, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227390

C. A. Bost, K. Putz, and J. Lage, Maximum diving depth and diving patterns of the gentoo penguin Pygoscelis papua at the Crozet Islands, Marine Ornithology, vol.22, pp.237-244, 1994.

V. Ridoux, The diets and dietary segregation of seabirds at the Subantarctic Crozet Islands, Mar. Ornithol, vol.22, pp.65-128, 1994.

Y. Tremblay and Y. Cherel, Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins, Mar. Ecol. Prog. Ser, vol.251, pp.279-297, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00189789

C. Bon, Influence of oceanographic structures on foraging strategies: Macaroni penguins at Crozet Islands, Mov. Ecol, vol.3, p.32, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204536

M. Renedo, Seabird Tissues As Efficient Biomonitoring Tools for Hg Isotopic Investigations: Implications of Using Blood and Feathers from Chicks and Adults, Environ. Sci. Technol, vol.52, pp.4227-4234, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01763770

W. Zheng, D. Foucher, and H. Hintelmann, Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase, J. Anal. At. Spectrom, vol.22, p.1097, 2007.

K. Kritee, J. D. Blum, M. W. Johnson, B. A. Bergquist, and T. Barkay, Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms, Environ. Sci. Technol, vol.41, pp.1889-1895, 2007.

P. Rodriguez-gonzalez, Species-specific stable isotope fractionation of mercury during Hg (II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions, Environ. Sci. Technol, vol.43, pp.9183-9188, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01843572

K. Kritee, T. Barkay, and J. D. Blum, Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury, Geochim. Cosmochim. Acta, vol.73, pp.1285-1296, 2009.

V. Perrot, Successive methylation and demethylation of methylated mercury species (MeHg and DMeHg) induce mass dependent fractionation of mercury isotopes, Chem. Geol, vol.355, pp.153-162, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01561348

V. Perrot, Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment, Environ. Sci. Technol, vol.49, pp.1365-1373, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01843567

B. A. Bergquist and J. D. Blum, Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, vol.318, pp.417-437, 2007.

V. Perrot, Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia), Environ. Sci. Technol, vol.46, pp.5902-5913, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01590289

C. Feng, Specific pathways of dietary methylmercury and inorganic mercury determined by mercury speciation and isotopic composition in zebrafish (Danio rerio), Environ. Sci. Technol, vol.49, pp.12984-12993, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01546713

V. Perrot, Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury, Metallomics, vol.8, pp.170-178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01495524

J. Chen, Isotopic evidence for distinct sources of mercury in lake waters and sediments, Chem. Geol, vol.426, pp.33-44, 2016.

S. Y. Kwon, Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity, Environ. Sci. Technol, vol.46, pp.7527-7561, 2012.

J. D. Blum, L. S. Sherman, and M. W. Johnson, Mercury isotopes in Earth and environmental sciences, Annu. Rev. Earth Planet. Sci, vol.42, pp.249-269, 2014.

J. D. Blum, B. N. Popp, J. C. Drazen, C. Choy, and M. W. Johnson, Methylmercury production below the mixed layer in the North Pacific Ocean, Nat. Geosci, vol.6, pp.879-884, 2013.

D. B. Senn, Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico, Environ. Sci. Technol, vol.44, pp.1630-1637, 2010.

R. D. Day, Mercury stable isotopes in seabird eggs reflect a gradient from terrestrial geogenic to oceanic mercury reservoirs, Environ. Sci. Technol, vol.46, pp.5327-5335, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01590287

M. Li, Environmental origins of methylmercury accumulated in subarctic estuarine fish indicated by mercury stable isotopes, Env. Sci Technol, vol.50, pp.11559-15568, 2016.

M. A. Vanderklift and S. Ponsard, Sources of variation in consumer-diet ?15N enrichment: A meta-analysis, Oecologia, vol.136, pp.169-182, 2003.

A. A. Cransveld, Mercury stable isotopes discriminate different populations of European seabass and trace potential Hg sources around Europe, Environ. Sci. Technol, vol.51, pp.12219-12228, 2017.

Y. Cherel, K. A. Hobson, C. Guinet, and C. Vanpe, Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean, J. Anim. Ecol, vol.76, pp.826-836, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00185936

, Scientific RepoRts |, vol.8, 2018.

L. Laffont, Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon, Env. Sci Technol, vol.43, pp.8985-8990, 2009.
URL : https://hal.archives-ouvertes.fr/ird-00452959

L. S. Sherman, J. D. Blum, A. Franzblau, and N. Basu, New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes, Env. Sci Technol, vol.47, pp.3403-3409, 2013.

M. Li, Assessing sources of human methylmercury exposure using stable mercury isotopes, Environ. Sci. Technol, vol.48, pp.8800-8806, 2014.

N. Gantner, H. Hintelmann, W. Zheng, and D. C. Muir, Variations in stable isotope fractionation of Hg in food webs of Arctic lakes, Environ. Sci. Technol, vol.43, pp.9148-54, 2009.

D. Point, Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems, Nat. Geosci, vol.4, pp.1-7, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01590299

G. E. Gehrke, J. D. Blum, D. G. Slotton, and B. K. Greenfield, Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments, Environ. Sci. Technol, vol.45, pp.1264-70, 2011.

S. Y. Kwon, J. D. Blum, C. Y. Chen, D. E. Meattey, and R. P. Mason, Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the Northeastern U, S. Env. Sci Technol, vol.48, pp.10089-10097, 2014.

D. K. Sackett, Carbon, Nitrogen, and Mercury Isotope Evidence for the Biogeochemical History of Mercury in Hawaiian Marine Bottomfish, Environ. Sci. Technol, vol.51, pp.13976-13984, 2017.

C. H. Rose, S. Ghosh, J. D. Blum, and B. A. Bergquist, Effects of ultraviolet radiation on mercury isotope fractionation during photoreduction for inorganic and organic mercury species, Chem. Geol, vol.405, pp.102-111, 2015.

P. Chandan, S. Ghosh, and B. A. Bergquist, Mercury isotope fractionation during aqueous photoreduction of monomethylmercury in the presence of dissolved organic matter, Environ. Sci. Technol, vol.49, pp.259-267, 2015.

W. Zheng, Z. Xie, and B. A. Bergquist, Mercury stable isotopes in ornithogenic deposits as tracers of historical cycling of mercury in Ross Sea, Antarctica. Env. Sci Technol, vol.49, pp.7623-7632, 2015.

J. D. Gleason, Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments, Geochim. Cosmochim. Acta, vol.197, 2016.

R. T. Pollard, H. J. Venables, J. F. Read, and J. T. Allen, Large-scale circulation around the Crozet Plateau controls an annual phytoplankton bloom in the Crozet Basin, Deep. Res. Part II Top. Stud. Oceanogr, vol.54, pp.1915-1929, 2007.

R. P. Mason, Mercury biogeochemical cycling in the ocean and policy implications, Environ. Res, vol.119, pp.101-117, 2012.

C. W. Sullivan, K. R. Arrigo, C. R. Mcclain, J. C. Comiso, and J. Firestone, Distributions of phytoplankton blooms in the Southern. Ocean. Science, vol.262, pp.1832-1837, 1993.

S. Sokolov and S. R. Rintoul, On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean, J. Geophys. Res. Ocean, vol.112, pp.1-17, 2007.

P. W. Boyd, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, vol.407, pp.695-702, 2000.

J. L. Rodrigues, Mercury speciation in whole blood by gas chromatography coupled to ICP-MS with a fast microwave-assisted sample preparation procedure, J. Anal. At. Spectrom, vol.26, pp.436-442, 2011.

J. D. Blum and B. Bergquist, Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem, vol.388, pp.353-359, 2007.

D. Foucher and H. Hintelmann, High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry, Anal. Bioanal. Chem, vol.384, pp.1470-1478, 2006.

, R Core Team: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2016.