, We thank Marjorie Sweetko for English language revision of the manuscript

, Reference, vol.375

Y. An, R. Friedman, and R. Draughn, Animal models of fracture or osteotomy, p.376

R. Friedman, Animal models in orthopaedic research, pp.197-217, 1999.

M. Bozlar, B. Aslan, A. Kalaci, L. Baktiroglu, A. Yanat et al., Effects of human granulocyte- 378 colony stimulating factor on fracture healing in rats, Saudi Med J, vol.26, pp.1250-1254, 2005.

E. Czekanska, J. Ralphs, M. Alini, and M. Stoddart, Enhancing inflammatory and chemotactic 380 signals to regulate bone regeneration, Eur Cell Mater, vol.28, pp.320-334, 2014.

G. Eghbali-fatourechi, J. Lamsam, D. Fraser, D. Nagel, B. Riggs et al., Circulating Osteoblast-Lineage Cells in Humans, New England Journal of Medicine, vol.352, issue.19, pp.1959-1966, 2005.
DOI : 10.1056/NEJMoa044264

M. Froberg, U. Garg, D. Stroncek, M. Geis, J. Mccullough et al., , p.384

, osteocalcin and bone-specific alkaline phosphatase are associated with bone pain in donors 385

, receiving granulocyte-colony-stimulating factor for peripheral blood stem and progenitor cell 386 collection, Transfusion, vol.39, issue.4, pp.410-414, 1999.

F. Granero-molto, J. Weis, M. Miga, B. Landis, T. Myers et al., Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing, Stem Cells, vol.26, issue.pt 2, pp.1887-1898, 2009.
DOI : 10.1097/00003086-199810001-00025

M. Herrmann, S. Zeiter, U. Eberli, M. Hildebrand, K. Camenisch et al.,

, Granulocyte Colony-Stimulating Factor Treatment Increases Bone Formation and Reduces Gap 391

, Size of a Rat Segmental Bone Defect: A Pilot Study, Front Bioeng Biotechnol. Feb, vol.126, pp.5-392, 2018.

K. Iguchi, S. Inoue, and A. Kumar, Effect of recombinant human granulocyte colony-stimulating factor 393

, administration in normal and experimentally infected newborn rats, Exp Hematol, vol.19, pp.352-394, 1991.

K. Ishida, T. Matsumoto, K. Sasaki, Y. Mifune, K. Tei et al., , p.396

, of granulocyte colony-stimulating factor via neovascularization and osteogenesis, Tissue Eng, vol.397

, Part A, vol.16, pp.3271-3284, 2010.

M. Kaygusuz, C. Turan, N. Aydin, I. Temel, S. Firat et al., , p.399

, naproxen sodium on the serum TGF-beta1 level and fracture healing in rat tibias, Life Sci, vol.40080, pp.67-73, 2006.

K. Kumagai, A. Vasanji, J. Drazba, R. Butler, and G. Muschler, Circulating cells with osteogenic 402 potential are physiologically mobilized into the fracture healing site in the parabiotic mice model, p.403

, J Orthop Res, vol.26, pp.165-175, 2008.

S. Kumar and S. Ponnazhagan, Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect, Bone, vol.50, issue.4, pp.1012-1020, 2012.
DOI : 10.1016/j.bone.2012.01.027

R. Kuroda, T. Matsumoto, T. Niikura, Y. Kawakami, T. Fukui et al., , p.407

, of granulocyte colony stimulating factor-mobilized CD34+ cells for patients with femoral and 408

, tibial nonunion: pilot clinical trial, Stem Cells Transl Med, vol.3, issue.1, pp.128-162, 2014.

Y. Kuroda and M. Dezawa, Mesenchymal Stem Cells and Their Subpopulation, Pluripotent Muse Cells, in Basic Research and Regenerative Medicine, The Anatomical Record, vol.7, issue.Suppl 2, pp.98-109, 2014.
DOI : 10.1089/107632701300062859

S. Kuznetsov, M. Mankani, S. Gronthos, P. Bianco, and P. Robey, Circulating Skeletal Stem Cells, The Journal of Cell Biology, vol.156, issue.5, p.412
DOI : 10.1002/1097-4644(20000901)78:3<391::AID-JCB5>3.0.CO;2-E

, Cell Biol, vol.153, pp.1133-1140, 2001.

M. Labat, G. Milhaud, M. Pouchelet, and P. Boireau, On the track of a human circulating mesenchymal stem cell of neural crest origin, Biomedicine & Pharmacotherapy, vol.54, issue.3, pp.146-162, 2000.
DOI : 10.1016/S0753-3322(00)89048-4

M. Lambertini, D. Mastro, L. Bellodi, A. Pronzato, and P. , The five "Ws" for bone pain due to the 416 administration of granulocyte-colony stimulating factors (G-CSFs), Crit Rev Oncol Hematol, vol.41789, issue.1, pp.112-128, 2014.

D. Lee, T. Cho, J. Kim, H. Lee, W. Yoo et al., Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis, Bone, vol.42, issue.5, pp.932-941, 2008.
DOI : 10.1016/j.bone.2008.01.007

J. Levesque, I. Winkler, S. Larsen, and J. Rasko, Mobilization of Bone Marrow-Derived Progenitors, Handb Exp Pharmacol, vol.180, pp.3-36, 2007.
DOI : 10.1007/978-3-540-68976-8_1

T. Matsumoto, R. Kuroda, Y. Mifune, A. Kawamoto, T. Shoji et al., , p.423

, endothelial/skeletal progenitor cells for bone regeneration and healing, Bone, vol.43, pp.434-443, 2008.

K. Minamino, Y. Adachi, M. Okigaki, H. Ito, Y. Togawa et al., Macrophage Colony-Stimulating Factor (M-CSF), As Well As Granulocyte Colony-Stimulating Factor (G-CSF), Accelerates Neovascularization, Stem Cells, vol.30, issue.3, pp.347-354, 2005.
DOI : 10.1111/j.1349-7006.1990.tb02510.x

S. Otsuru, K. Tamai, T. Yamazaki, H. Yoshikawa, and Y. Kaneda, Bone marrow-derived osteoblast 428 progenitor cells in circulating blood contribute to ectopic bone formation in mice, Biochem, vol.429

, Biophys Res Commun, vol.354, pp.453-501, 2007.

S. Otsuru, K. Tamai, T. Yamazaki, H. Yoshikawa, and Y. Kaneda, Circulating bone marrow-derived 431

, osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell- 432 derived factor-1 pathway, Stem Cells, vol.26, pp.223-234, 2008.

R. Pignolo and M. Kassem, Circulating Osteogenic Cells, J Bone Miner Res, vol.34, pp.1685-1693, 2011.
DOI : 10.1016/j.exphem.2006.04.002

M. Pulsipher, P. Chitphakdithai, B. Logan, W. Navarro, J. Levine et al., Lower risk 436 for serious adverse events and no increased risk for cancer after PBSC vs BM donation, Blood, vol.437123, issue.23, pp.3655-63, 2014.

K. Sasaki, R. Kuroda, K. Ishida, S. Kubo, T. Matsumoto et al., , p.439

, bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating 440 factor, Am J Sports Med, vol.36, pp.1519-1527, 2008.

L. Sidney, M. Branch, S. Dunphy, H. Dua, and A. Hopkinson, Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors, STEM CELLS, vol.15, issue.Pt 2, pp.1380-1389, 2014.
DOI : 10.1007/s10456-011-9251-z

K. Tatsumi, H. Otani, D. Sato, C. Enoki, T. Iwasaka et al., Granulocyte-Colony Stimulating Factor Increases Donor Mesenchymal Stem Cells in Bone Marrow and Their Mobilization Into Peripheral Circulation but Does Not Repair Dystrophic Heart After Bone Marrow Transplantation, Circulation Journal, vol.72, issue.8, pp.1351-1359, 2008.
DOI : 10.1253/circj.72.1351

C. Tigue, J. Mckoy, A. Evens, S. Trifilio, M. Tallman et al., , p.448

, stimulating factor administration to healthy individuals and persons with chronic neutropenia or 449 cancer: an overview of safety considerations from the Research on Adverse Drug Events and 450

. Reports, Bone Marrow Transplant, vol.40, pp.185-192, 2007.

C. Toupadakis, J. Granick, M. Sagy, A. Wong, E. Ghassemi et al., Mobilization of 452 endogenous stem cell populations enhances fracture healing in a murine femoral fracture model, p.453

, Cytotherapy, vol.15, pp.1136-1147, 2013.

C. Toupadakis, A. Wong, D. Genetos, D. Chung, D. Murugesh et al., , p.455

, administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair, p.456

, Orthop Res, vol.30, pp.1853-1862, 2012.

C. Turner and D. Burr, Basic biomechanical measurements of bone: A tutorial, Bone, vol.14, issue.4, pp.458-595, 1993.
DOI : 10.1016/8756-3282(93)90081-K

S. Utvåg, O. Grundnes, and O. Reikerås, Graded exchange reaming and nailing of non-unions

, Strength and mineralisation in rat femoral bone, Arch Orthop Trauma Surg, vol.118, pp.1-6, 1998.

S. Utvåg, L. Korsnes, D. Rindal, and O. Reikerås, Influence of flexible nailing in the later phase of 462

, fracture healing: strength and mineralization in rat femora, J Orthop Sci, vol.6, pp.576-584, 2001.

S. Utvåg and O. Reikerås, Effects of nail rigidity on fracture healing. Strength and mineralisation in 464 rat femoral bone, Arch Orthop Trauma Surg, vol.118, pp.7-13, 1998.

C. Wan, Q. He, and G. Li, Allogenic peripheral blood derived mesenchymal stem cells (MSCs), p.466

, enhance bone regeneration in rabbit ulna critical-sized bone defect model, J Orthop Res, vol.24, pp.467-610, 2006.

Y. Wu, C. Chien, Y. Chao, M. Hamrick, W. Hill et al., Granulocyte colony- 469 stimulating factor administration alters femoral biomechanical properties in C57BL/6 mice, p.470

, Biomed Mater Res A, vol.87, pp.972-981, 2008.

X. Wu, S. Yang, D. Duan, X. Liu, Y. Zhang et al., A combination of granulocyte colony- 472 stimulating factor and stem cell factor ameliorates steroid-associated osteonecrosis in rabbits, p.473

, Rheumatol, vol.35, pp.2241-2249, 2008.

V. Zhdanov, L. Stavrova, A. Dygai, and E. Goldberg, , p.475

, mesenchymal stem cell under the effect of granulocyte colony-stimulating factor, Bull Exp Biol, p.476

, Med, vol.144, pp.151-154, 2007.