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Tomographic wave-front reconstruction is the main computational bottleneck to realize real-time correc-
tion for turbulence-induced wave-front aberrations in future laser-assisted tomographic adaptive-optics
(AO) systems for ground-based Giant Segmented Mirror Telescopes (GSMT), because of its unprece-
dented number of degrees of freedom, N, i.e. the number of measurements from wave-front sensors
(WES). In this paper, we provide an efficient implementation of the minimum-mean-square error (MMSE)
tomographic wave-front reconstruction mainly useful for some classes of AO systems not requiring a
multi-conjugation, such as laser-tomographic AO (LTAO), multi-objcet AO (MOAO) and ground-layer
AO (GLAO) systems, but also applicable to multi-conjugate AO (MCAO) systems. This work expands
that by R. Conan [ProcSPIE, 9148, 91480R (2014)] to the multi-wave-front, tomographic case using natural
and laser guide stars. The new implementation exploits the Toeplitz structure of covariance matrices used
in a MMSE reconstructor, which leads to an overall O(N log N) real-time complexity compared to O(N?)
of the original implementation using straight vector-matrix multiplication. We show that the Toeplitz-
based algorithm leads to 60 nm rms wave-front error improvement for the European Extremely Large
Telescope Laser-Tomography AO system over a well-known sparse-based tomographic reconstruction,
but the number of iterations required for suitable performance is still beyond what a real-time system

can accommodate to keep up with the time-varying turbulence.

© 2018 Optical Society of America

OCIS codes: (010.1080) Active or adaptive optics; (100.3190) Inverse problems
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1. INTRODUCTION

The tomographic wave-front reconstruction (WFR) in adaptive-
optics (AO) systems using multiple guide-stars (GS) and wave-
front sensors (WFS) represents a computational challenge for
real-time atmospheric turbulence correction at a few hundreds
to thousands Hertz frame-rates. This is especially so for AO
systems in future giant segmented mirror telescopes (GSMT)
with primary diameters in the 20 m—40 m range, because of its
unprecedented number of degrees of freedom, N, i.e. the num-

ber of measurements from WESs. A flurry of methods has been
developed, providing reduced complexity algorithms that could
accelerate simulation of large systems and later be mapped onto
real-time computers [1-6].

The tomographic WER problem can be divided into two steps:
i) the estimation of the wave-front in the pupil plane along GS
directions and ii) the three-dimensional estimation in the turbu-
lence volume from its projections. Efficient methods to solve for
the first step are for instance the Fourier-domain reconstructor
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[1, 2] and more recently [3] that promise to decrease the com-
putational complexity from its original O(N?) to respectively
O(Nlog(N)) and O(N). Work reviewed in Ramlau et al [4] falls
under this category.

A somewhat different path has been followed by others in
that an explicit minimum-mean-square error (MMSE) residual
cost-functional is solved for leading to formulations that are
amenable to sparse representations under some reasonable ap-
proximations (and therefore to efficient computational recon-
struction methods). The most representative examples are re-
viewed in Ellerbroek et al [5], with some more additions along
the same lines from [6] using a fractal approximation of the
regularizing stratified phase covariance term.

More recently, for some classes of AO systems not requiring
multi-conjugation, it has been noted that the MMSE reconstruc-
tion can be further simplified if we skip the explicit estimation
of the 3D wave-front profiles to estimate instead the pupil-plane
wave-front in the directions of interest only [7-10] (hereinafter,
referred to as spatio-angular WFR), which is suitable for multi-
object AO (MOAO), laser-tomography AO (LTAO) and option-
ally ground-layer AO (GLAO) systems. The spatio-angular WFR
doesn’t require any approximation and thus can provide more
accurate estimation than the sparse reconstructor. However, for
large-scale systems, this explicit formulation requires instan-
tiating huge covariance matrices with the overall complexity
remaining O(N?) which is still a cause of computational bottle-
neck.

An efficient implementation of the spatio-angular WER is pro-
posed by R. Conan [10] for a natural GS (NGS) based classical
single-conjugate AO system (SCAO). This implementation re-
duces the computational complexity to O(N log(N)) from its
original O(N?) by exploiting the Toeplitz structure of the covari-
ance matrices. In this paper we generalize this method to the
tomographic system using NGSs and laser GSs (LGS). Especially
for tomographic systems with multiple LGSs, we develop a way
to deal with the spatial sampling change at high altitudes due to
the cone effect of LGSs and the removal of low-order modes not
measurable by LGSs, whilst keeping the Toeplitz structure of the
covariance matrices. In passing, although this is not the main
motivation of this paper, in doing so we can show that MCAO
systems are also covered by the implementation presented here.

This paper is organized as follows. In §2 we review the re-
construction formulations and the fast implementations they are
amenable to when considering large systems for GSMT. We give
a thorough account of the development of a spatio-angular WFR
algorithm exploiting the Toeplitz block structure of the recon-
structor matrices. In §3 we compare performance on 8 m class
telescopes by analytic and Monte-Carlo, physical-optics simu-
lations and extend to the European Extremely Large Telescope
in §4. In §5, the real time readiness of the Toeplitz algorithm
using parallel computing with graphical processing unit (GPU)
is discussed. Final discussion and remarks are laid out in §6.

2. TOMOGRAPHIC WAVE-FRONT RECONSTRUCTION

We assume a situation shown in Fig.1, where the atmospheric
turbulence is expressed as Ny, thin turbulent layers at mul-
tiple altitudes /i (k = 1,-- -, Nigyer), and the phase aberration
on the atmospheric layer grids (circle symbols in Fig.1) is noted
as @. This term is referred to as the layered phase. The tomo-
graphic computation is made based on Ngs GSs in directions
of wj = (le,a]y) (j=1,--+,Ngs) using measurements from Nys
WEFSs with DM corrections applied over Nigre.t target directions
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Fig. 1. Schematic figure of the assumed situation with Ny,
turbulence layers, Ngs GSs and Nigyget targets. The layered
phase grids of Nj,,, turbulence layers are represented by the
circles. The cross symbols show the directional phase grid in a
GS direction ;. The target direction is denoted by B;.

Bi (i = 1,---, Nirget). The directional phase @u; is integrated
on the pupil-plane by ray-tracing the layered contributions ¢
and interpolating at the intercepts. In other words, the phase
values of the propagating wave-fronts (cross symbols in Fig.1)
are interpolated from ¢ using a bi-linear interpolation matrix
Py, x at hy [11], and the final wave-front phase at pupil-plane is
given by an integration over altitudes, i.e.

Nlu]/vr
(Plxj = Pt’éjq’ = Z Plxj,k(l’/ )]
k=1

WES measurements are modeled by a linear WES operator G
and a noise vector # as

Sa;qp = GPyp+1, 2)

where sy, = GP,,@ is denoted as the noiseless measurement
component. The concatenation of measurements from all Ngs
WFSs is denoted by sq 4.

In the remainder of the paper, variables with a hat symbol
represent an estimated quantity, Ly, represents auto- and cross-
covariance matrices of the vectors indicated in subscript, i.e.
L.y = (xy) where (-) stands for ensemble average over time.

A. Minimum Mean Square Error reconstruction

We will address MMSE reconstructors which minimize the
aperture-plane residual wave-front error in a single direction
which is given by the Euclidean norm L, over the telescope
pupil Q) of the difference between the input and the correction
phases

3

%, = H‘p"f ~ %5, ;m) '

where the estimated directional phase $ﬁi = Rg sy with the
reconstructor matrix Rg, minimizing

Rg, = arg rlr%gl <sz3i> . @

for the direction of optimization f; by solving for 90 /dR g =0.
According to the Marechal’s approximation for the Strehl ratio
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i.e. SR > (1 —0?/2)?, minimizing Eq.(3) is equal to maximize
image quality in terms of the Strehl ratio.

The MMSE solution was developed in [12, 13] and others re-
maining general and applicable to multi-conjugate AO (MCAO)
systems, which requires an explicit estimation of the layered
phase ¢ for the multiple DM conjugation:

R = Zgs, (Zsps, + Egy) ®)
-1

= LppPl GT (GPaZggPl GT + Xy ®)

= (P/G'L,, GP, +Z,,) 'PIG'L,,. @)

The reconstructor for the directional phase in Eq.(4) is given
by Rg, = Pg,R. Although the WER is followed by the fitting
process to determine commands sent to DM(s) [11], in this paper
we focus only on the WER process.

For LGSs-based systems the removal of low-order modes
(tip/tilt/focus) needs be taken into account in the reconstructor
because these modes are not measurable by LGSs. We will
address this point later in §2.

B. Sparse reconstructor formulations

It has early been recognized that the formulation of Eq.(7) is
amenable to a sparse representation in an attempt to reduce
the computational burden with iterative implementations [13]
since the number of operations in a matrix-vector multiplication
(MVM) with a sparse matrix is proportional to the number of
non-zero elements in the matrix. The directional phase is esti-
mated iteratively using the formulation of Eq.(7) divided into
the following three steps:

TTy—1
{=PlGTL, lsuy ®)
and a layered phase estimation ¢ with an iterative method

(PyG"E/ GPu+E5)9 = )
thus avoiding inverting explicitly (P GTZ,T,} GP, + Z(;(;) which
would cause both off-line issues to compute and store the matrix
and on-line increased burden since it is a full matrix. Finally,
the phase is ray-traced to the aperture @;i = Pg,, using a low
complexity step, since only 4 elements per phase sample per
layer have non-zero values [11].

Assuming the use of Shack-Hartmann WFS (SH-WFS) with a
subaperture size of d, measurements are the spatial derivatives
of the wave-front averaged on each subaperture. The linear SH-
WES operator G admits a discrete approximation from uniform
3 x 3 stencils [14] given by

—-1/4 0 1/4

stencil(G)x = % —-1/2 0 1/2 (10
-1/4 0 1/4

stencil(G)y, = stencil(G)T (11)

and therefore has only 6 non-zero elements per subaperture. The
noise covariance matrix is generally considered as a diagonal
matrix by assuming a zero-mean additive Gaussian noise. In the
LGSs case, although x- and y-measurements are correlated due
to the spot elongation, only 3 central diagonals have non-zero
values [15]. The inverse covariance matrix of the layered phase

—1 . . .
L,p 1s a dense matrix but it can be approximated as a sparse

matrix with a discrete Laplacian operator L as Z(;q} ~ LTL[13].

C. Spatio-angular tomographic formulation

We now enter the core matter of this paper. We start from the
formulation in Eq.(5) to estimate the directional phase. The di-
rectional phase ¢g, is directly connected with the measurements
S,y through the covariance matrix Zg; s, = Pg,Zgps,, and the
explicit estimation of the layered phase is circumvented, thus al-
lowing us to make the size of the reconstruction matrix compact.
The required covariance matrices are derived theoretically
along with the measurement model. The slope-slope and phase-
slope covariance matrices are computed through numerical
integration [16] or the fast Fourier transform (FFT) [7]. Ap-
proximated measurement models are also proposed for the fast
computation of the covariance matrices [8]. In this paper, we
investigate three measurement models to derive the theoretical
covariance matrices: the accurate FFT model, Hudgin-like model
and Fried model. The details of the models are summarized in
Appendix. The Hudgin-like model and Fried model define a
measurement with two and four discrete phase points, respec-
tively. Although models defining a measurement with more
than 4 points would give better approximations, these models
result in more computations and loose their advantage for a
fast computation. Therefore, we only focus on the Hudgin-like
model and Fried model as fast approximated gradient models
in this paper.
The iterative implementation of Eq.(5) is given by the follow-
ing two steps:
(Zsys, + Zoy) T = Say (12)

and

Pp. = Zoss.0, 13)
where  in Eq.(12) is computed iteratively. As it stands it re-
quires a MVM per iteration which is prohibitive. Therefore, a
fast algorithm for the MVM with these covariance matrices is
necessary. In the rest of §2, we investigate how it can be suitably
mapped into an efficient runtime algorithm.

D. Toeplitz Structure in Covariance Matrices

An efficient implementation for solving Eq.(12) has been pro-
posed by R. Conan [10] for large-scale NGS-based SCAO systems
by exploiting the Toeplitz structure of the covariance matrices.
Here, we show how these structure is kept in a tomographic
setting.

In order to avoid an overly complicated notation, ss 4, 54 and
sy, are simplified into s, s and s;, respectively. In addition, we
only focus on one target direction B, which is a case of LTAO
systems. For multiple target cases such as MOAO systems,
WER for each target direction is performed in parallel. The
number of subapertures and phase points in one SH-WFS are
nxnand (n+1) x (n+1), and the geometric arrangement
of the measurement and the phase points shown in Fig.2 as
n = 4. First, a square aperture without vignetted subapertures
is assumed. The impact of more complicate apertures, such as
circular and annular, on the Toeplitz covariance matrix will be
discussed in 2.F.

Slope-Slope Covariance Matrix

As shown in Fig.3, the slope-slope covariance matrix X is de-
composed into Ngs X Ngs blocks, and the (i, j)-th block can also
be decomposed into 2 X 2 components:

(H)x,v,x- (H)x,,y'
o = ’ |- (14)

®y1rxj (H)%'ryf
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Fig. 2. Schematic figure showing a geometry of measurements
(arrows) and phase points (circles) for SH-WFS as n = 4. The
dashed lines shows the telescope pupil on the WFS detector.
The gray vignetted subapertures and the filled phase points
are not taken into account in the WFR.
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Fig. 3. Schematic figure showing the structure of the slope-
slope covariance Zg; (left) and the phase-slope covariance

Lggs (right).

where @4 = (spsi) (p = x;,yj, 4 = xj,y;) with size n? x n?,

Under the assumption of statistically isotropic and homoge-
neous atmospheric turbulence, a covariance value between two
slopes depends only on the spatial separation between the two
subapertures. Thanks to this fact, @, are a two-level Recur-
sive Block Toeplitz (2RBT) matrix, which has n x n blocks in a
Toeplitz arrangement and each block is a Toeplitz matrix with
size n x n, as shown in Fig.4 as n = 4. A Toeplitz matrix with
size n x n are fully defined with (2n — 1) elements in its first
row and column. Therefore, ®, 4 has (21 — 1) unique blocks
with (2n — 1) unique elements, and hence can be defined only
with (2n — 1)? elements (elements surrounded by the red dashed
line in Fig.4), instead of the full elements of n*. As aresult, the
slope-slope covariance matrix Xgs, containing 4N§s of Op.4, can

be compressed into 4N§s(2n —1)? elements from 4N§Sn4 full
elements. The compression factor, which is a ratio of the number
of unique elements to the total number of elements in the matrix,
of the slope-slope covariance matrix is (2n — 1)?n~* and shown
in Fig.5 (solid line) as function of n. The memory requirements
to store the slope-slope covariance matrix is reduced by 6 x 10~
when n = 80 by the Toeplitz nature of the covariance matrix.

It must be noted that the Toeplitz structure in a covariance
matrix Zyy holds when the spatial sampling of x and y is the
same. The light from a NGS at an infinite altitude propagates
through the atmosphere along parallel rays; the spatial sam-

8 9 10 11 12 13 14 15 16

. |
2
3
4
5
6
7
8
9

PR e
N P O

Fig. 4. Slope-slope covariance matrix @ in a case with 4x4
lenslet array. The elements in the red dashed lines are unique
elements defining the 2RBT matrix.

pling of the slope is equal to the subaperture diameter d over
all altitudes. On the other hand, the light from a LGS at a fi-
nite altitude k¢, propagates spherically along paths creating a
cone and hence the spatial sampling changes with altitude &y by
di = d(hjgs — hy)/hygs, i.e. the so-called cone effect. Therefore,
a slope-slope covariance matrix between a NGS and a LGS or
LGSs at different altitudes (e.g. a sodium LGS and a Rayleigh
LGS) is not a 2RBT matrix. This non-Toeplitz structure can also
be observed on the phase-slope covariance matrix g5 even if
we use only LGSs at the same altitude, because the optimization
is done for a star located at infinity (parallel rays) but the spatial
sampling of ¢ is different from s. This is a key point of this
paper and we will discuss how to overcome this limitation for
LGSs-based systems in the next section. We note that in doing
s0, MCAO systems can also be addressed by out developments.

Compression Factor

Slope-Slope Covariance —
Phase-Slope Covariance (NGS) ----
Phase-Slope Covariance (LGS)

10*
20 40 60 80 100

Number of subaperture along a diameter

Fig. 5. Compression factor (a ratio of the number of unique
elements to the total number of elements in the matrix) for g
(solid line) and Z4,s (dashed line for NGSs case and dotted
line for LGSs case). For the LGSs-based, Ngs = 6 and Nygyer =
10 are assumed.
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Fig. 6. Phase-slope covariance matrix & in a case with 4x4
lenslet array. The geometry of the measurements and the re-
constructed phase is shown in Fig.2. The elements in the red
dashed lines is unique elements defining the 2RBT matrix.

Phase-Slope Covariance Matrix

As shown in Fig.3, the phase-slope covariance matrix Zps has
1 x Ngs blocks and each block is decomposed into two matrices,

gs = |By &) (15)

where &; = (¢s]) with size (n +1)? x n?, following the geo-
metric arrangement shown in Fig.2.

For NGSs-based tomographic AO systems, &, is a 2RBT ma-
trice with (n + 1) x n Toeplitz block in (n + 1) x n Toeplitz
arrangement. The number of unique elements in & is 4n? in
contrast with (1 + 1)?n? full elements, as shown in Fig.6 as
n = 4 As a result, the phase-slope covariance matrix Zps for
NGSs-based systems can be defined with 8Ngsn? unique ele-
ments instead of 2Ngs (1 + 1)?n? full elements. The compression
factor for Zp,s in NGSs-based systems is given by 4(n + 1)72,

and the memory requirements is reduced by 6 x 10~* as n = 80
(Fig.5).

As mentioned in the previous section, & is not Toeplitz ma-
trix for LGSs-based systems due to the spatial sampling variation
by the cone effect, as shown in the top panel of Fig.7. In order
to overcome this issue, we introduce a new phase vector ¢;;,k
for the k-th layer with the same spatial sampling as the LGS
slope i.e. dy = d(hjgs — hy)/higs, as shown in the bottom panel
of Fig.7. The number of the new phase points is defined 1} x n;
to cover all the original phase points. More points are required
at higher altitudes, and the minimum number of nf( is roughly
given by m; = nd/dy = nhjgs/ (higs — hi). The new phase vec-
tor is connected to the original phase vector through a bi-linear

(o}
Phase grid

_Dpk

™ Slope grid
S(Xj ,k:

thayern Ox OX 0% 0% 0

New phase grid

LT P

.

hlnﬁéégn

Fig. 7. Geometric relation of slope sampling (cross), actual
phase sampling (circle) and new phase sampling (square)

interpolation,

Ppi = I,’(q);;,k, (16)
where I}, is a sparse bi-linear interpolation matrix for the new
phase grid and has 412 non-zero elements as well as Pg i (see
2.B).

Now we can define new covariance matrices between the
new phase vector ¢g s and the slope s for the altitude i as
B = <¢”g’ks;>, and this covariance matrices is a 2RBT matrix
with (1}, +n — 1) unique elements. With Eq.(16),

Nlayz’r Nlayer
— — =4
Eq= ; Egk = ; L& 17)

The phase-slope covariance matrix Zogs for LGSs-based AO
systems can be expressed as a multiplication of Nigyer X 2Ngs
2RBT matrices E;,k and Niayer sparse interpolation matrices I,’(.
The number of unique elements is Y4 2Ngs (1, + 1 — 1) in 2RBT
matrices, where }  is an integration over Ny ., altitudes, and
4Nlaye,n2 in the sparse interpolation matrices. The compression
factor of Ly,s in LGSs-based systems is given by [y (1) +n —
12)(n+1)"2n"2+ ZNIWWN(;Sl (n+1)72. If we assume Ngs = 6
and Njgyer = 9, the compression factor is 6 x 103 asn = 80
(Fig.5).

If we extend the new phase grid to cover the range of the
layered phase and remove the bi-linear interpolation by I}, the
layered phase at each altitude can be estimated by the spatio-
angular reconstructor with the 2RBT formulation. This needs
more computation than the directional phase reconstructor, but
can be applicable to MCAO systems.

E. Efficient MVM with 2RBT Matrix

The algorithm to compute efficiently the MVM when the matrix
is 2RBT was originally developed in [17], and later applied to
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WER in [10]. In this section, we briefly summarize this algorithm
and show how to introduce this algorithm into our tomographic
WER.

Let us consider a product of a m? x n? 2RBT matrix T and
a vector x of length n? i.e. Tx = y, where y is a vector of
length m?. The Toeplitz matrix T has m x n blocks in a Toeplitz
arrangement and each block is a m x n Toeplitz matrix, and
therefore, can be replaced by a vector ¢ containing (1 + m — 1)?
unique elements of T. The MVM Tx = y is obtained through
FFT ¢t of t, conveniently denoted by a tilde symbol.

The MVM Tx = y is accomplished by the steps following;:

1. avector x is shuffled into b of length (m +n — 1) according
to the rules:

buij =iy (0=ij=n) (18)
k(i j) = in+j, 19)
p(i,j) = (m+n)(n—1) —i(m+n—1)—j, (20)

where elements of b except for (i, j) are zero. Defining Sy
as a shuffling operator converting x to b, we can rewrite the
step 1 as b = Syx. The size of Sy is (m +n —1)2 x n? and
elements indexed with [y (i, j), k(i, j)] are 1, otherwise 0, and
therefore S; is a sparse matrix with 7 non-zeros elements.

2. the 1-D FFT of b is computed

b = F[b] 21

3. the element-wise vector product (represented by -) of f and
b is computed
c=t-b (22)

4. the inverse 1-D FFT of ¢ is computed
c = f_l [E] (23)
5. cis reshuffled into y according to the rules:

Yi(ij) = Cutij) (0=10j=m), (24)
k(i,j) = im +j, (25)
u(i,j) = (m+mn)(m+n—1)

—({+)(m+n—-1)—(+1). (26)

In the same way as the step 1, the step 5 can be expressed
as y = Syc with a sparse reshuffling S, of size m? x (m +

n — 1)2. The number of non-zeros elements in Sy is m?.

Finally, the computation flow from the step 1 to 5 can be
summarized as follows

y=Tx=SF"[Fb] 27)
b = F[S1x]. (28)

The 2RBT MVM consists of two 1-D FFTs (forward and back-
ward), one element-wise vector product and two shufflings (i.e.
two sparse MVM), and hence the number of operation in the
2RBT MVM is (m +n — 1)?*[4alog(m +n — 1) + 1] + m? + n?
instead of (m + n — 1)* of full MVM, assuming that the number
of operation in the FFT is aN log N with N is the data size, and
that the number of operation in one sparse MVM is equal to the
number of non-zeros elements. The coefficient 2 depends on the
FFT algorithm choice and has a value of ranging between 4 and
5 typically [18].

2RBT MVM for Slope-Slope Covariance Matrix

We now apply the efficient 2RBT MVM algorithm to the tomo-
graphic computation. With respect to (Zss + Zyy )¢ in Eq.(12), we
focus on X5 because in general Ly, is a very sparse matrix due
to the assumption that measurement noise is both temporally
and spatially statistically independent with the computational
cost of Ly, being less of an issue. The product of L is a
concatenation of

Nos
LssC = Z’&gs(@""%@m + wayff?w)] , (29)

Zj (Oyi:xfg"f + eyi/yj gw)

wherei = (1,- -+, Ngs). In Eq.(29) each @40, is a 2RBT MVM.
Defining 0,4 as the unique element vector of @, 4, 5,,,,, as its

FFT and , q = F[S104], we can rewrite Eq.(29) with the 2RBT
MVM formulation as

Zsisg =

_ Ngs 1 e a =
Sy F1 {ZJ ¢ (ex,-,x,- : gx]- +0x,y; - gyf)} 30)
SZf_l {Z]NSS (§yi,xj : zx,- + a!/iryj : Zyj)}

In an actual computation, {, = F[S1{,] is computed first
for all 4 and reused repeatedly in the following steps to avoid
redundant computations. Moreover, thanks to the linearity
of the FFT, the inverse FFT and the reshuffling in the step 4
and 5 of the algorithm can be performed in the end after the
summation for j, as already shown in Eq.(30), to reduce the
number of the FFT. As a result, the MVM of X consists of
2Ngs forward and backward 1-D FFTs with length (21 — 1)?,
4N§s element-wise vector product with length (211 — 1)2, 2N,
shuffling and reshuffling, and the total required number of op-
erations in Egs{ is 4Nge{(2n — 1)2[2alog(2n — 1) + Ngs| + n°}
instead of 4N§Sn4 of the full MVM. The reduction factor in the
number of operations, which is a ratio of the number of oper-
ation for the 2RBT MVM to one for the full MVM, for X4 is
{(2n —1)*[2alog(2n — 1) 4 Ngs] + n?}Ng;'n~*, shown in Fig.8
(solid line), and 8 x 103 as n = 80 and a = 5.

2RBT MVM for Phase-Slope Covariance Matrix

In a NGSs-based case, Ewsg in Eq.(13) can be formulated to the
2RBT MVM in the same way as s,

Neo
Z(])ﬂsg = 52]:7‘l {Z(‘:X] : gx]‘ + gy,- : gyj)} ’ €1Y)
]
where ; is a unique elements vector of &, and Z, q = F[S104).
This formulation contains 2Ngs forward FFTs and 1 backward
FFT with length 4n2, 2Ngs element-wise vector product with
length 4n?, 2Ngs shuffling and 1 reshuffling, and the total re-
quired number of operations is 2Ngs [4n? (2alog2n + 1) + n?] +
8n?log2n + (n + 1)? instead of 2Ngs (1 + 1)*n? of the full MVM.
The reduce factor is shown by the dashed line in Fig.8 and
4x1072asn=80anda = 5.

In LGSs-based AO systems, the number of phase points on
the new grid n,’( is different depending on altitudes and, there-
fore the shuffling and reshuffling operator S; and S, should
be defined for each altitude like S ; and S, ;. This means that
L 45§ requires to compute 2RBT MVMs separately for each alti-
tude followed by the interpolation. The 2RBT MVM formulation
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Fig. 8. Reduction factor of the number of operations required
for Lss( (solid line) and s (the dashed line for NGSs case
and the dotted line for LGSs case) as function of the number
of subapertures across telescope diameter, assuming Ngs = 6,
Nigyer = 9and 0’ = 1.2n (hjge = 90km and hy;,,, = 16km).
The coefficient for the FFT is assumed a = 5. ’

for g with LGSs is
Nla}/cr 1 N%'5 ~ ~ ~ ~
Tpsl = Y ISoxF 1§ 2 (&x ok Gk 87y Cypk)
k j

(32)

The forward FFT , gk = F[S1,kC4,k] should also be computed
for each altitude because of the different n]’( depending on the
altitudes unlike Z¢s and Zops for a NGSs case, and it causes a
huge computational complexity even more than the complexity
of the full MVM.

In order to avoid this issue, all ”:p,k should be set to the same
value n’, where n’ = n;),N]m/m_ (n at the highest altitude & Nigger )
to cover the all original phase points at all altitudes. This causes
extra phase points for lower altitude layers (see Fig.7) but we can
use the same shuffling and reshuffling operator for all altitudes
and Z, gk = F[8104x] is needed to be computed just once. The
number of non-zero values in I,’( and I,’( S, are the same because
S just shuffle the order of rows of I ,’c, and hence we can pre-
compute I,’c S; offline. Then, the required computations for one
Ly s s in LGSs-based system with the 2RBT formulation are 2Ngs
forward FFTs with length (1’ 4+ n — 1)2, 2N, x Nigyer element-
wise vector products with length (n’ +n —1)?, Niayer backward
FFT with length (n' +n — 1), 2Ngs shuffling and Ny, inter-
polation (including reshuffling). The total number of operation
is 2(n’ +n — 1)*[(2Ngs + Njgyer)alog(n’ +n — 1) + NgsNiayer] +
ZNgSn2 + 4Njgyer (1 + 1)2. The reduce factor is shown by the
dotted line in Fig.8 and 0.1 as n = 80, 2 = 5 and n' = 12n
(assuming hlgs =90km and h Nigger = 16 km).

F. Non-square aperture, mode removal and noise-weighted re-
construction for elongated LGS spots

Non-square aperture

Although the discussion above assumes a square aperture, aper-

tures have generally more complicated shapes such as circular

and annular thus vignetting a portion of subapertures and phase

points (shown in Fig.2). These need to be removed from the to-
mographic WFR.

The number of valid subapertures and phase points at the
aperture-plane are denoted by nys and 7,4, respectively. To take
into account the effect of the non-square aperture in our 2RBT
formulation, we introduce a sparse aperture masking matrix
W; ; with size 2nys x n? for i-th WFS measurements. Only 214
elements in W, ; are 1 and otherwise 0 to extract valid mea-
surements (in x and y directions) from vectors. With W ;, we
redefine the vignetted noisy measurement as

S = We,i(Sa; +17). (33)

The noisy measurements sy, 5 contains only 71,5 valid measure-
ments, wheres s,; and # are defined with a full square aperture.
Denoting Ws as the diagonal block matrix of all W ; and W,
as an aperture matrix for phase points, we can write the spatio-
angular reconstruction in Eq.(12) and Eq.(13) as

W (Zs,,‘s,x + 21111) tw = Sua;n (34)

g, = WoLZgps, lw, (35)

where { is replaced by yw = Ws(.

Although this formulation requires additional computations
involving Ws and Wy, the vignetted measurements are totally
removed from the tomographic WFR whilst keeping the Toeplitz
structure of the covariance matrices. For Eq.(34), Zss is replaced
by WsZssCw, and the required number of additional operations
is 2Ngsnps, which is less than 1% of that in a 2RBT MVM of
XssCw. For Eq.(35), Z%S( is replaced by W¢Z¢ﬁs§w, and only
1y additional operations are needed for the non-square aper-
ture. Therefore, this aperture operation doesn’t affect the total
computational complexity.

Mode removal

When using LGSs, tip, tilt and focus modes are not measur-
able and are supplemented by low-order NGS(s) measurements.
Under a split tomography control approach [11], these modes
should be removed from the measurement and consequently
from the reconstruction.

Let us introduce Zj ; as a tip/tilt/focus modal matrix for i-th
WES. Each column of Z ; contains a vectorized mode defined
with the non-vignetted valid subapertures. The size of Z, ; are
25 % 3. The tip/tilt/focus projection matrix is given by Zs, Z{,
[13], where T means pseudo inverse. Then, the mode removal
matrix M ; for i-th WES measurement is

M,; =1-2Z,Z}, (36)

where [ is the identity matrix of appropriate size. The block di-
agonal matrix containing all M ; is denoted Mg and the removal
matrix in phase space is denoted by My with size 1, X 3.

The mode removal is actually performed in the same way
as the aperture masking by replacing W, Wy and fw in
Eq.(34) and Eq.(35) with MsWs, MpWyp and {yw = Mslw.
In MsWsZssCw, the additional computations due to the mode
removal are Ngs of two MVMs with Zs; and Z;ri in Mg ;. The
modal matrices and its pseudo inverse are not sparse yet very
low-rank, and therefore the mode removal should not affect
the total computational complexity. The required number of
additional operation due to the mode removal are 6Ngstys for
the slope-slope covariance MVM and 31 for the phase slope
covariance MVM.
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Noise-weighted reconstruction for elongated LGS spots

The elongation of LGS spots on SH-WEFES causes additional dif-
ferential noise depending on the subaperture positions with
respect to the laser launch telescope and a cross-correlation term
between x- and y-slope in every subaperture. This should be
taken into account in the noise covariance matrix. The latter is
a diagonal matrix in the NGS case and turns into a 2x2 block
diagonal matrix in the LGS case, which is still a sparse matrix.
This difference in the noise covariance doesn’t affect the Topelitz
nature of the other covariance matrices.

G. lterative algorithm

We have used standard iterative algorithms for the class of prob-
lems we are dealing with [19, 20]. We tested in particular the
Conjugate Gradient (CG), minimum residual method (MINRES)
and bi-conjugate gradient stabilized method (BICGSTAB). All
these methods were run without pre-conditioning, although
suitable formulations could be thought of provided the structure
of the operations involved [21, 22].

3. PERFORMANCE COMPARISON ON A 8M TELE-
SCOPE AO SYSTEM

As a first comparative illustrative case, we compare the per-
formance of the Toeplitz-based reconstructor to a sparse-based
reconstructor using both Monte Carlo simulations obtained with
the Object-Oriented Matlab AO simulator (OOMAO) [23] to the
results from the analytic expression for the statistical wave-front
error (WFE)

‘72:<H¢ﬂ_$ﬁH2 > 37)
P L2(0)
=T T T
= lrace (24)54)‘3 - Rﬂzsk(pﬁ - Z(PﬁS“Rﬁ + RﬁZSaSaRﬂ)
+ Trace (RZ,MRT> (38)
2 2
= Uﬁ,tomo + Uﬁ,noise (39)
where Ug/ tomo 18 the tomographic WFE depending on an asterism

of GSs and the turbulence model assumed in the reconstructor

and crg noise 1S the noise propagation through the reconstructor.

Here, we assume a tomographic system with parameters
given in Table 1; the projection onto DM, being a common step

Telescope Aperture Diameter: D = 8 m
Central Obstruction: 30%

Zenith angle: z = 0 degree

Guide stars 3 NGSs or LGSs at 90 km
Asterism radius: 10-50 arcsec
WES 3 Shack-Hartmanns

16 x 16 subapertures/WFS

Atmosphere | Fried parameter: rg = 0.15m
Outer scale: £y =25m
Altitudes: [0, 5, 101 km
C%, fraction [0.5 0.25 0.25]
Control Open-loop

no temporal-delay

Table 1. Parameters for analytical computation and simulation
used in Section 3.

to all methods, is not taken into account at this time. Three guide
stars are placed on a triangle with varying radius (separation
from the center), and the WFE is evaluated only for the on-axis
direction, B = (0,0). For a LGSs-case, the low-order modes
removal is taken into account.

For the Toeplitz-based methods we investigate the impact
of the gradient model: we compare an accurate, non-sparse
model whose definition is more conveniently done in the spatial-
frequency domain (therefore the FFT model) to sparse discrete
approximations further developed in Appendix A. The gradi-
ent model in the analytic expression (i.e. Zsg, Zsp and Lgs in
Eq.(38)) is assumed to be the FFT model which is the most accu-
rate; only in the reconstructor this model is subject to change.

The left panel of Fig.9 shows ¢? for a NGSs-based tomo-
graphic system as function of the asterism radius. The lines
in Fig.9 presents analytic WFE from Eq.(37) and the points
show the WFE from the numerical simulation. First, the an-
alytic lines match well the simulation results, indicating that the
FFT-gradient model is accurate enough for a reference slope in
a NGS-based case. As for the gradient models of the Toeplitz-
based method, the actual FFT model gives the best performance
for all GS asterisms as expected. The Fried model gives worse
performance than the Hudgin-like model, even though a slope
is defined with more points in the Fried model than the one
in the Hudgin-like model. This is because the Fried model is
affected by unseen modes such as waffle (see Appendix). In
fact, we need to boost a regularization for the Fried model (i.e.
assuming larger X, in Eq.(12) even without noise) compared to
other models to optimize its performance. The sparse method
is slightly worse than the Toeplitz with the FFT model due to
the sparse approximation of the regularization term quq} ~LTL
and the limited spatial sampling of the layered phase assumed
in the reconstructor, which is set to d/2 in this case.

In the analytic WFE, the noise propagation term o;,,;s.
slightly increases with the asterism radius but its contribution
to the total WFE is much smaller than the tomographic WFE
(aélt omo =30nm and 50 nm at asterism radius of 5 and 55 arcsec,
respectively), and there is no clear difference in the noise propa-
gation between the reconstructors. Therefore, the total WFE ¢ in
Fig.9 is dominated by the tomographic WFE 0.

The right panel of Fig.9 shows the quadratic WFE difference
from the Toeplitz method with the FFT gradient model to pro-
vide more detail on the performance comparison. The quadratic
difference in WFE of the Hudgin and Fried gradient models
with respect to the FFT model are almost constant with asterism
radius, which are around 35nm and 70 nm, respectively.

In addition to the sparse reconstructor with the approximated
regularization LT L, the sparse one with the non-approximated
regularization Z;;’ (of Fig.9) are plotted in Fig.9 (the triangles
and the dot-dashed line in the right panel) to distinguish the im-
pact of the sparse-approximated regularization and the limited
spatial sampling of the layered phase in the sparse reconstructor.
The performance of the sparse reconstructor with LT L worsens
with asterism radius compared to the Toeplitz method with the
FFT model, whereas the non-approximated sparse reconstructor
are degraded by 25 nm constantly over the asterism. This indi-
cates that the sparse regularization term that under-regularizes
curvature-free modes [24] has impact on the tomography per-
formance especially for larger asterisms. On the other hand, the
impact of the limited sampling is constant over altitude. If we in-
crease the spatial sampling for the sparse reconstructor to reduce
the impact of the limited sampling, the performance of the sparse
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reconstructor converges to one of the FFT model. However, in
this case, the computational advantages of the sparse reconstruc-
tor are dimmed because more calculations are required.

The result for LGSs-based tomography case is shown in
Fig.10. Since the non-approximated X s for a LGSs-based case
cannot be computed with the FFT gradient model due to the
non-uniformity of the spatial sampling of the measurement over
altitudes caused by the cone effect, the result from the simu-
lation is plotted for the LGSs case. Although the Hudgin and
Fried gradient model are constantly worse than the FFT gradient
model as with the NGSs-based case in Fig.9, the WFE with the
sparse-based reconstructor with the actual regularization term
is better than one of the Toeplitz method with the FFT model.
We interpret this as a result of the additional interpolation in
the Toeplitz method, P} in Eq.(32), to keep the Toeplitz struc-
ture in Ly for a LGSs-based case. For asterisms larger than
~ 20 arcsec, a larger effect on performance of the approximated
regularization term in the sparse reconstructor is observed with
the Toeplitz-based reconstructor outperforming the sparse re-
constructor under these conditions.

Next, we discuss the robustness of the reconstructor with

respect to turbulence conditions. The tomographic error 02,
in Eq.(39) can be expressed as the linear combination of the

tomographic error caused at different altitudes

Ué,tomo = Z C% (hk ) E‘%,tamo (hk)/ (40)
k

where €2, (hy) is a normalized tomographic WFE computed
with C2(h) = 1, referred to as vertical error distribution
(VED)[25]. The VED corresponds to the estimation capability of
the reconstructor as a function of altitude.

Fig.11 shows the VED with different gradient models and
reconstructors. The reconstructors assume the turbulence model
in Table 1 and the tomographic WER is done with three NGSs.
There are three hollows at 0, 5 and 10 km on the VEDs which in-
dicate that the reconstructors, except for the Fried model, reduce
aberrations effectively at the altitudes assumed in the reconstruc-
tors. At the ground, the Toeplitz method with the FFT model
is better than any other reconstructors, and this is the reason
why the FFT model gives the best performance in Fig.9. The
performances of the Fried model at altitudes larger than 2 km
are poorer than any others because of the unseen waffle mode.

The Toeplitz reconstructor with the Hudgin-like model has
the flattest VED profile between the corrected hollows, which
means it is the most robust to turbulence layers height variability.
Unlike the Fried model, the Hudgin-like model is not affected
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by the high-spatial frequency waffle mode. In the other words,
the Hudgin-like model can intrinsically filter out the problem-
atic modes. We interpret this such as the filtering feature of the
Hudgin-like model also works for the unexpected turbulence
layers and results in the good robustness of the Hudgin-like
model. Conversely, if we boost the regulalization term in the re-
constructor, the robustness curve becomes flatter, i.e. the ;o (1)
increases at the reconstructed altitudes (0, 5, 10 km in this case)
but decreases in-between.

The sparse methods are almost as sensitive to the turbulence
altitudes as the Toeplitz reconstructor, with further robustness
limitations stemming from the coarse spatial sampling of the
phase and the regularization.

4. PERFORMANCE FOR HARMONI ON THE ELT

We now turn our attention to the case of HARMON!I, a visible
and near-infrared (VIS/NIR) integral field spectrograph (IFS),
providing the ELT 37 m diameter telescope’s core spectroscopic
capability. It is designed to be assisted by a LTAO system with 6
LGSs and the deformable M4 mirror on ELT.

Table 2 shows the set up of the HARMONI LTAO system sim-
ulations. We assume that the WESs are noise-free and there is
no LGS spot-elongation on the WES detector. Optimization with
respect to the LGS spot elongation for the HARMONI LTAO
system will be discussed in the different paper [26]. We assume
the DM has actuators with the Fried geometry, which is different
from the actual M4 configuration. Two turbulence profiles used
for the assessment are shown in Fig.12. The Fried parameter
is 0.1275m at z = 45 degrees and the outer scale is 25m. The
anisoplanatic angles 6 for 35 and 9 layers profiles are 2.5 arcsec
and 2.81 arcsec, respectively, and 1 are 8.21 msec and 8.23 msec,
respectively. The LTAO system is controlled with a split to-
mographic approach. The tip, tilt and focus are controlled in
closed-loop with an on-axis NGS observed by a 2x2 WFSs in
H-band. We focus only on the high-order correction here. The
low-order modes removal in Section 2.F is taken into account in
the reconstruction.

A. LTAO Performance with different algorithm and iterative
solvers

The convergence property of different iterative solvers is now

investigated. The FFT gradient model is used for the Toeplitz
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Fig. 11. Normalized tomographic WFE as a function of alti-
tude (VED).
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Fig. 12. Atmosphere profiles used in the simulation of the
HARMONI LTAO system.

method. Fig.13 shows the convergence curve of the residual
WEFE with different cold-started algorithms (i.e. we start from
the uncorrected wave-front measurement, not a, hopefully close,
previous guess) and open-loop measurements. While the con-
vergence rate of the Toepliz method is independent from the
number of reconstructed layers, the sparse method needs a larger
number of iterations when the number of estimated layers in-
creases. For the Toeplitz method, the MINRES algorithm is
slightly more stable than the BICGSTAB. The CG algorithm
doesn’t converge with the Toeptliz method, which is not plot-
ted in Fig.13. For the sparse algorithm, the CG solver shows
the fastest convergence in three solvers followed by BICGSTAB
and MINRES solvers. In the 35 layers case, the sparse method
never achieves the residual WFE given by the Toeplitz method
because of the poor convergence of some low-order modes like
astigmatisms. In the remainder of this paper, MINRES and CG
are used for the Toeplitz and sparse methods, respectively.

Fig.14 and Table 3 show the LTAO performance for a given
number of solver iterations evaluated from a long exposure
simulation (1000 frames corresponding to 2 s) using warm start
(i.e. iterative solvers start from the previous guess) and pseudo
open loop control (POLC). For both of the 9 and 35 layers cases,
the WEFE curves of the Toeplitz algorithm is almost flat beyond
roughly 25 solver iterations, with only a slight performance im-
provement, less than 1 nm, from 25 iterations to 50 iterations. On
the other hand, the sparse algorithm shows certain performance
improvement even with more than 25 iterations. Previous work
reported that 30 CG iterations is enough for POLC split tomogra-
phy with the sparse tomographic algorithm for a 30 m telescope
case [11]. Although TMT’s system complexity is different from
our LTAO case, the required number of solver iterations is con-
sistent with each other. The relative performance gains by the
Toeplitz method compared with the sparse method are 30 nm
and 54nm with 50 solver iterations for 9 and 35 layers case,
respectively, in quadratic WFE.
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Telescope Aperture Diameter: D = 2R = 37 m.
Central Obstruction: 30%.
Zenith angle: z = 45 degree.
Guide star
High-order 6 LGSs at hjgs =90km/z.
Hexagonal asterism with a radius of R/hg;.
assumed as point sources.
Low-order 1 tip/tilt/focus sensing on-axis NGS.
WES
High-order 6 Shack-Hartmann WFSs.
74 x 74 subapertures/WFS.
subaperture diameter: 4 = 0.5m.
working at 589 nm.
assumed as noiseless.
Low-order 1 Shack-Hartmann WESs.

2 x 2 subapertures/WEFS.
working at H-band.
assumed as noiseless.

DM 75 x 75 Fried geometry DM.
Conjugation height: 0 km

Atmosphere | Fried parameter: ry = cos®/>(z)0.157 m.
Outer scale: Ly = 25m.
Number of layers: Nigyer =9,35.
Altitude and C%; fraction shown in.
Control Split control.
High-order | Pseudo open-loop (POL).
POL gain: 0.5
Frame rate: 500Hz.
Low-order Closed-loop.

CL gain: 0.5
Frame rate: 500Hz.

Table 2. Parameters for numerical simulation used in Section
4.

B. Number of operations for reconstruction

The performance shown above in turn is counter-balanced by
the actual number of operations (measured in terms of multiply-
and-accumulate (MAC) operations) of the sparse-based methods.
Fig.15 shows such a metric for the two cases explored above with
9 and 35 estimated layers.

For the computation of the total number of operations, we
assume that the number of operations required for one FFT is
5N log N and that the number of operations for one MVM with
a sparse matrix is equal to the number of non-zero elements
in the sparse matrix. A MVM for the fitting step is taken into
account, where the size of the fitting matrix is (number of valid
DM actuators) x (number of reconstructed phase points).

A8 Nigyer =9 the computational complexity of the Toeplitz
method is larger than one of the sparse method as Njgye, = 9.
On the other hand, the difference between the Toeplitz method
and the sparse method is much smaller than one as Nj;e, = 9.
This indicate that the Toeplitz method is less dependent on the
number of reconstructed layers than the sparse method.

As a comparison, we also plot the number of operation for
a simplest tomographic reconstruction with a direct MVM, in
which case the reconstruction is done by one MVM using a
full matrix consisting of the fitting matrix and a pre-computed

reconstruction matrix (e.g. computing Eq.(5)). It should be
noted that the direct MVM reconstruction needs generally a
huge off-line computation to invert a large covariance matrix
Ls,s, With a computational complexity of (ZNgsn)3 . From a pure
computational burden point of view, only 4 solver iterations
are allowed for the Toeplitz method to compete with the direct
MVM reconstruction in term of the number of operations, which
is not enough to maximize LTAO performance according to
Fig.14. This however needs to be assessed on actual hardware
which exploits locality and memory re-use.

# of solver WF WEFE
iterations (9 layers) (35 layers)
[nm] [nm]
Toeplitz 25 164.34 174.49
Toeplitz 50 163.39 174.01
Sparse 25 169.68 190.74
Sparse 50 166.17 182.32

Table 3. Simulation results comparison for the two classes of
iterative methods.
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doesn’t converge with CG. The iterative solvers are derived with cold start i.e. solver iteration starts from a zero initial vector.
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Fig. 14. Convergence of iterative solvers in pseudo open-loop reconstructions for 9 (left panel) and 35 layers (right panel). The
MINRES and CG solver are used for the Toeplitz and sparse methods, respectively. The gradient model for the Toeplitz method is

the FFT model.
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Fig. 15. Number of operations in giga MAC as a function of
the number of solver iterations. As a comparison, the number
of operations for the direct MVM reconstruction is plotted
(dash-dotted lines).

5. REAL TIME READINESS

MMSE-based iterative reconstructor are rarely used in real-
time applications. The main obstacle to these algorithms more
widespread use is their iterative nature. A real-time AO system
would require the estimation of the wave-front to be done in
typically less than 2 ms. Because an iterative method takes sev-
eral iterations to converge, meeting the latency requirement of a
real-time system with an iterative algorithm is easier said than
done. Another difficulty is that the parallelization of iterative
algorithms is not as straightforward as a the parallelization of a
simple MVM based reconstructor.

For a NGS-based SCAO system, the real-time performance
is evaluated by R. Conan [10] using parallelization with GPU
(NVIDIA Tesla M2090) and CUDA. The Toeplitz method can
achieve a WFE of 82nm with 16 MINRES solver iterations for
a SCAO system with a SH-WFS having 84 x84 subapertures
and D = 42m. It takes 3.75 ms for one WER. If the number of
MINRES solver iterations is set such the runtime is less than
2 ms, the achieved WFE becomes slightly worse to 92 nm with 8
solver iterations.

The Toeplitz method is then applied to a LTAO system on a
25m diameter telescope with 6 LGSs evenly located 30 arcsec
off-axis and 6 60x60 SH-WFS. At cold start, where MINRES
iteration starts with a zero initial guess, the system converges
with 141 iterations in 71 ms to a WFE RMS of 115nm. At warm
start [27], the number of iterations is reduced to 70 in 36 ms.
Here the iterative solver uses as initial guess the wave-front
2 ms before. If the the iterative solver uses as initial guess the
wave-front 1 ms before, then the algorithm converge in 25ms
with 46 iterations.

In this section, it has been shown that the Toeplitz method
is real time ready for some SCAO systems but need further
improvements to be usable for LTAO systems.

6. CONCLUSION

We have provided an efficient implementation of an exact tomo-
graphic reconstruction method (with respect to a MMSE cost
functional) that exploits the Toeplitz nature of the spatio-angular
reconstructor formulation. This work expands that of Conan [10]
to the multi-wave-front, tomographic case using natural and

laser guide stars.

Salient features of spatio-angular reconstructors for NGS
LTAO/MOAO/GLAO systems are the independence from the
number of estimated layers and the fast convergence rate us-
ing the MINRES algorithm. When using LGSs however, extra
calculations are needed involving interpolation at pre-defined
layer heights to keep the Toeplitz structure of the matrices. This
makes the method usable also in MCAO with the caveat that the
calculations depend explicitly on number of estimated layers.

Regarding specifically LTAO systems on the European ELT,
performance with the Toeplitz algorithm is enhanced by ~ 60 nm
rms with improved robustness to altitude variations (Fig. 11)
with respect to sparse-based tomography. However, the addi-
tional interpolation steps needed in the adaptation to the LGS
case to conserve the Toeplitz structure involving both planar and
spherical wave-propagation (§E) leads to a number of operations
after convergence that can be of the order of or greater than that
we would realize with a direct MVM reconstruction. Albeit, the
covariance matrices can be evaluated very rapidly with a mini-
mal memory footprint. The implementation provided avoids the
inversion of any large matrices which is particularly appealing
for physical-optics Monte Carlo simulations.

An optimized implementation on a multi-GPU architecture
shows that the Toeplitz method can exploit very efficiently fea-
tures of this architecture but the number of iterations required
for suitable performance is beyond what a real-time system
can accommodate to keep up with the time-varying turbulence.
At this stage, accelerating the convergence by preconditioning
the system of linear equations remains a challenge: we hope
interested readers can develop the necessary means to further
accelerate the algorithm’s convergence rates.

Although not discussed in this paper another possible appli-
cation of the Toeplitz method is to compute the reconstructor
Ry, offline by solving Zs,s, Ry s = Zggs, one column at a time
using the 2RBT MVM. It needs to be investigated whether this
method meets the offline update rate requirements (e.g. 10s or
50).This matrix inversion with the Toeplitz method can also be
applied to the analytic evaluation (solving Eq.(38)) for large-scale
systems.
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A. THEORETICAL DERIVATION OF COVARIANCE MA-
TRIX

A. FFT slope model

In this Appendix, we explain theoretical models for SH-WFS
gradient measurement. SH-WFSs with n x n subapertures pro-
vide phase gradients averaged over a subaperture centred at r;
ie.

A o u—r;
Sx(rl) = W g(u)l_[ (T) du, (41)

where I'1(x) is a rectangular function whichis 1 for |x| < 1/2and
0 otherwise, d is a subaperture diameter and A is an observing
wavelength.

A covariance of two slopes with a separation r = 7; — r; on
the pupil is given by

Tsos, (1) = (sx(ri)sx(ry))
-(sa) J] (2w
IT (u;ri> I1 (v;ri) dudv.

By considering the inverse Fourier transform of X (rj — 1), we
get the slope-slope covariance for a single layer at altitude 7
with

42)

Zos k(1) =F { N2 f frg(f)H(£)
x exp[—2imthy(fxéax + fyday)]} (1),

where f = (fx, fy) is a spatial frequency, ®y(f) is a phase power
spectral density and

H(f) = sinc(dfy)sinc(dfy). 44)

The phase power spectral density ®¢(f) of the von-Karman
power spectrum is given with the Fried parameter ry and the
outer scale Ly as

43)

1 —11/6
@y (f) = 0.029r,°/3 (|f2 + £2> : 45)
0

The last exponential term in Eq.(43) represents the shift of
the pupil projected at i due to the angular separation da =
(dax,duy) of two guide stars in the Fourier domain. A covari-
ance value induced by the multiple layers is a sum of the single
layer covariances. The rest of the slope-slope covariances, X s «
and Xy s = I s,k are obtained by replacing fxfx into fy fy
and fx f, in Eq.(43), respectively.

With the same way, the phase-slope covariance for a single
layer is given by

Zps k(1) = (p(ri)sx(rj))
= F{~irfxPy(f)H(f)
x exp[—=2irthy(fxdax + fyday)]} (r),

and Xy,  is obtained by replacing the first fx into f, in Eq.(46).

Since there is no discrete assumption, the FFT model provides
an accurate covariance value. However, in actual computation,
the FFT covariance model is computed by the FFT, and its actual
accuracy depends on the sampling of the FFT. In order to get
better performance, this model needs more sampling in the FFT,
i.e. requires more computations, which will be relatively heavy
computation especially for future ELTs cases.

(46)

o )

Sy(’l“i)/\

Sz (15)
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Fig. 16. Hudgin-like slope model

B. Hudgin-like model

Although the FFT slope model provides an accurate covariance
value, its computation is relatively heavy especially for future
ELTs cases. In order to reduce the computational burden to
compute the covariance matrices, two discrete-approximated
slope model have been proposed.

One of the approximated slope models is developed in [8],
referred to as Hudgin-like slope model in this paper. As shown
in Fig.16, a slope approximated as a phase difference between
two points on the edges of the subaperture as

A

sx(ri) = ﬁ(q)A —¢c) @
A

sy(ri) = ﬁ((PB —¢p),

and
_ dx _ dy
4’A—‘P(”i+7>r4’8—¢(”i+7>,

d
¢C:<P<fi—%),¢D:¢(fi—7y>,

where dy = (d,0) and d, = (0, d).
Considering the definition of the phase structure function

48)

Dy(r) = ([p(x) — p(x +1)]?) (49)
and the equality of 2(A —a)(B—b) = —(A—B)? + (A —b)?> +

(a — B)? — (a — b)?, we have a slope-slope covariance of the
Hudgin-like slope model for a single layer at i as

1/ A\?
Zs,s, k(1) = 5 (ﬁ) X 50)

[—ZD(P(Ak) + D¢(Ak +dy) + D¢(Ak — dx)},

where A = r + I da,

1/ A0\?
stsy,k(r) = z“sysx,k(r) = 7 <%)

Ay dy de dy
X D¢(Ak+?x+7)7D¢(Ak77x+7) (51)

d d d d
~Dyoe+ 5~ P - Dyl - 5 - )|

and X, ; i(r) is got by replacing dy into d;, in Eq.(50).
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The phase-slope covariance is given by as
1/ A0\
A by ===
Zps k(1) = ssek(7) = 5 (47Td (56)
(52)
dy dy X [74D¢(Ak) +2F —2F + F +F4]
[ (- 3) o (37 e
o ' Zaysk(1) = 5 (M) (57)
and X (r) is got by replacing dy into dy in Eq.(52). % [~4Dy(Ag) — 2F +2F, + Fs + Fy]
The structure function is given for the von-Karman turbu- )
1/ A
lence [16] by T, k(1) = 5 (ﬁ) (F3— Fy), (58)
5/3
Dy (r) =0.17253 (%) where
0
275/6 o 5/6 21y (53) F = D¢(Ak + dx) + D¢(Ak — dx)
1- (D) g , _ B
-t (5) o) F2 = Dy(Byc+dy) + Do(Ax — dy) (59)
F = D¢(Ak +dy + dy) + D(P(Ak —dy — dy)
where K is a modified Bessel function of the second kind. Fy = Dy(Ag + dx — dy) + Dy (Ag — dx + dy).
The Hudgin-like covariance model can be computed effi- The ph. | . iven b
ciently compared to the FFT covariance model, but a slope is ¢ phase-siope covariances are given by
model by only two discrete points and it is reported that the auto- A
covariance value of the Hudgin-like model is slightly smaller Zps k(1) = 8d (=F+Fs+ F7 — Fs), (60)
than a value of the FFT model [8]. This difference would affect A
the WER performance. Zgps, k(1) = 8d (-F—F+F+F), (61)
C. Fried model and Ay dy
Another approximated slope model is defining a slope with F5 =Dy (Ak + 2 + 7)
4 phase points on the corners of the subaperture as shown in dy dy
Fig.17, and this is will-known Fried slope model, Fs =Dy (Ak Y + 7)
i d (62)
() = @9 — gt 9u) F7—D¢(Ak—7"—7y)
x\"1) —
2md 2 (5) i d
N A (Pt Py — P — ¢a) Fo=Dy (A +Z -2
(i) = 774 2 2 2
This model also provides the faster covariance computation
and than the FFT model. Compared to the Hudgin-like model, the
P &
Fried model needs more computation than the Hudgin-like
ba = (r- + ﬂ + ‘iy ) Py = (1,, _ @ + @) model, but would give more realistic value because a slope
2 2 )7 ) 2 )7 is defined by four points instead of two points. However, one
(55) yookp p

_ dy _dy N R P
=i T3 e (v 3-3)

With the similar computation to the Hudgin-like slope model,
we have slope-slope covariance values of the Fried slope model

Cbb. ¢a

(bc ® .¢d

Fig. 17. Fried slope model

concern about the Fried model is that the Fried slope model
suffers from an unseen mode with high spatial frequency, so-
called waffle error or checker board error [28, 29]. This error can be
constrained by regularization, but has an impact on WFR.
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