Optimal design of sampling sets for least-squares signal recovery with the Frank-Wolfe algorithm

Abstract : We consider the sensors selection problem in a least-squares setting. The sensors selection is replaced by the relaxed problem of designing a sampling density minimizing the number of samples needed to ensure stability of the recovery, shown to be equivalent to the D-optimal design problem. We propose to use the Frank-Wolfe algorithm to solve this optimization problem, with low space and time computational complexity, linear with respect to the number of possible sensors positions. As the optimal densities are usually sparse, sampling points are drawn from the optimized density using resampling methods. The optimization problem and procedure can be easily modified to account for additional design constraints.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01841900
Contributeur : Gilles Chardon <>
Soumis le : mardi 17 juillet 2018 - 16:14:51
Dernière modification le : dimanche 22 juillet 2018 - 01:08:27
Document(s) archivé(s) le : jeudi 18 octobre 2018 - 15:22:25

Fichier

article_fwkm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01841900, version 1

Citation

Gilles Chardon. Optimal design of sampling sets for least-squares signal recovery with the Frank-Wolfe algorithm. 2018. 〈hal-01841900〉

Partager

Métriques

Consultations de la notice

103

Téléchargements de fichiers

38