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Abstract

The work presented deals with the evaluation of F-
PGAs resurgence for hardware and software accelera-
tion. We focus our attention on the tools developed by
FPGAs manufacturers, in particular the Intel FPGA S-
DK for OpenCL, that promises a new level of hardware
abstraction from the developer’s perspective, allowing a
software-like programming of FPGAs. Our first contribu-
tion is to propose an accurate memory benchmark, and
we follow with an evaluation of different custom OpenCL
implementations of one use case : the computed tomogra-
phy. With some clues on memory fetching and coalescing,
we then further tune designs to improve performance. Fi-
nally, a comparison is made with GPU implementations,
and a preliminary conclusion is drawn on FPGAs future
in the semi-conductor realm. This presentation include
but is not limited to results presented in [3].

1 Introduction

With the end of Moore’s Law, the semi-conductor in-
dustry seeks a reliable way to pursue the performance im-
provements of the last decades, and architecture-algorithm
adequation is a solution for this new landscape.

With this in mind, FPGA Manufacturers like Xilinx
and Intel are pushing for an FPGA resurgence, offering
software suites (called SDAccel and Intel FPGA SDK
for OpenCL, respectively) and FPGAs card focused on a
software-like FPGA programming model. The considered
use case is the back-projection algorithm used in iterative
reconstruction [1]. After the raise of GPGPU, architec-
tures designed on FPGA were put aside by the tomogra-
phy reconstruction community but nowadays, new archi-
tectures and improved HLS tools may very well make F-
PGA competitive again as a forgotten accelerator for 3D

tomography reconstruction.

2 3D Tomography algorithm

Computed Tomography relies on the analysis of a
known radiation stream through the considered object to
recover said physical characteristic by reversing the matter
transport equation [4]. An X-ray source (Fig.1) revolves
around the ϕ axis at z = constant. Radiation emitted
from it is attenuated depending on the object local density,
and a two-dimensional sensor array records intensity val-
ues, for each elementary ϕ angle. Those values are stored
in a 3D matrix along (u,v,ϕ) in what is called a sinogram.
From this sinogram, the 3D volume is reconstructed using
among other processing the back-projection operator.

Figure 1. 3D Computed Tomography Projec-
tion.

3 Programming FPGAs with OpenCL

OpenCL is an abstract programming model. The host
program is written in standard C, and handle communica-
tion between the host processor and devices function, also



called kernels. Each kernel is transformed by the Altera
Offline Compiler in a sequence of logic blocks, creating
elementary pipelines that are then aggregated to form a
kernel pipeline.

The OpenCL model has four memory categories :
global, constant, local, and private. Manual memory han-
dling is essential for effectively improving software im-
plementations efficiency. In order to characterize FP-
GA memory structure in OpenCL, we propose a custom
benchmark to calculate memory latency for the four mem-
ory types which results are shown in Table 1.

Table 1. Measured memory latency on an Al-
tera Cyclone V.

Memory type Kernel Frequency
(MHz)

Latency
(cycles)

Global 137.36 164
Constant 150.4 45
Local 137.11 12
Private 161.31 1

4 OpenCL 3D Back-projection implemen-
tations

There are two OpenCL kernel categories : data paral-
lelism (NDRange) and task parallelism(single work-item -
SWI) . Data parallelism is the simultaneous execution on
multiple cores of the same function across the elements
of a dataset whereas task parallelism is the simultaneous
execution on multiple cores of many different functions
across the same or different datasets.

A first optimization is to improve streaming through-
put for SWI kernels. By default, when a kernel needs to
access an array, it allocates memory resources for efficient
reads and writes. When an array access pattern matches
with a streaming pattern, implementation can be modified
to integrate a Shift-Register Pattern and compilers will
implement it as a cascade of flip flops, sharing the same
clock. Because the main challenge of the back-projection
algorithm was to efficiently access the sinogram array, a
second optimization consist in designing a custom pre-
fetching algorithm suited for data parallelism, with local
memory sharing.

5 Results and discussion

5.1 OpenCL optimization for FPGA
In Table 2, the CPU-like version is the sequential al-

gorithm with no optimization, and the GPU-like version
is the SIMD algorithm. SRP(SWI) implements a shift-
register pattern, and MF(NDRange) is the memory fetch-
ing kernel.

We achieved to port a CPU-like code on a FPGA, with
an overall speedup of 8.74 between the naive and the best

Table 2. Normalized Execution Time [NET]
(to the logic utilization) of various kernel op-
timizations on the Cyclone V SoC.

Kernel version NET(s)

CPU-like (SWI) 109.2
SRP(SWI) 24.3

GPU-like(NDRange) 17.7
MF(NDRange) 12.5

optimized kernel on a Cyclone V chip.

5.2 GPU versus FPGA, consumption and perfor-
mance

For an adequate comparison to high-end GPUs, we ex-
trapolated the results obtained from the DE1-SoC to an
SX660 Arria 10 FPGA. As shown in Table 3, in terms
of raw performance, FPGAs are merely comparable to G-
PUs. FPGA with VHDL is known for its efficiency and
low energy consumption and here, this characteristic is p-
reserved even with OpenCL. Indeed, its characteristic in
VHDL is to be able to provide a fine-grained architecture
fitted to the chosen algorithm, and to obtain a highly effi-
cient design like in [2].

Table 3. Efficiency (Cycles needed for one
voxel update per core) between GPUs and
FPGAs. ( 2564 voxel computation)

Device NET
(ms)

Energy
(mWh)

Efficiency
(cycles)

Titan X Pascal 12 0.83 12.16
Jetson TX2 253 1.054 19.6
Intel Arria 10 991 0.63 1.02

6 Current and future work

Our first lead is to characterize general algorithms to
choose which suits best the FPGAs, and from there, to
build a comprehensive roadmap on how and what to ac-
celerate on FPGAs with HLS tools.

7 Conclusions and perspectives

Some hardware knowledge is required to fully harness
the power of OpenCL on FPGAs, but our optimized FPGA
HLS design to compete with hand-coded VHDL imple-
mentation in much lesser coding time (2 months in Open-
CL vs more than a year for a 3D-cache memory fetching
algorithm with VHDL [2]). Overall, OpenCL tools do a
fine job constructing an adequate architecture for the algo-
rithm, but eventually the lack of raw power from FPGAs
compared to GPUs can be a strong liability for massively
parallels algorithms.
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