J. Bertoin, Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103015

J. Bertoin, L. Gall, and J. , Stochastic flows associated to coalescent processes, Probability Theory and Related Fields, vol.126, pp.261-288, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00103962

P. Billingsley, Probability and Measures, Series in Probability and Mathematical Statistics, 1995.

P. Billingsley, Convergence of Probability Measures, second ed. Wiley Series in Probability and Statistics, 1999.

A. Depperschmidt, A. Greven, and P. Pfaffelhuber, Marked metric measure spaces, Electronic Communications in Probability, vol.16, pp.174-188, 2011.

P. Donnelly and P. Joyce, Consistent ordered sampling distributions: Characterization and convergence, Advances in Applied Probability, vol.23, pp.229-258, 1991.

S. Evans, Probability and Real Trees: École d'Été de Probabilités de Saint-Flour XXXV-2005, Lecture Notes in Mathematics, 1920.

N. Forman, Mass-structure of weighted real trees, 2018.

N. Forman, C. Haulk, and J. Pitman, A representation of exchangeable hierarchies by sampling from random real trees, Probability Theory and Related Fields, vol.172, pp.1-29, 2018.

D. H. Fremlin, Real-valued-measurable cardinals, Set Theory of the Reals, vol.6, pp.151-304, 1993.

A. Gnedin, The representation of composition structures, The Annals of Probability, vol.25, pp.1437-1450, 1997.

A. Greven, P. Pfaffelhuber, and A. Winter, Convergence in distribution of random metric measure spaces: Lambda-coalescent measure trees, Probability Theory and Related Fields, vol.145, pp.285-322, 2009.

A. Greven, P. Pfaffelhuber, and A. Winter, Tree-valued resampling dynamics: Martingale problems and applications, Probability Theory and Related Fields, vol.155, pp.899-838, 2012.

M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol.152, 1999.

S. Gufler, A representation for exchangeable coalescent trees and generalized tree-valued Fleming-Viot processes, Electronic Journal of Probability, vol.23, p.42, 2018.

T. Jech, Set Theory, third ed. Springer Monographs in Mathematics, 2003.

O. Kallenberg, Foundations of Modern Probability, second ed. Probability and its Applications, 2002.

J. G. Kemeny and J. L. Snell, Finite markov chains, 1960.

G. Kersting, J. Schweinsberg, and A. Wakolbinger, The evolving beta coalescent, Electronic Journal of Probability, vol.19, p.27, 2014.

J. Kingman, The representation of partition structures, Journal of the London Mathematical Society, vol.18, pp.374-380, 1978.

J. Kingman, The coalescent. Stochastic Processes and their Applications, vol.13, pp.235-248, 1982.

A. Lambert, Random ultrametric trees and applications, ESAIM: Proceedings and Surveys, vol.60, pp.70-89, 2017.

A. Lambert and E. Schertzer, Recovering the Brownian coalescent point process from the Kingman coalescent by conditional sampling, Bernoulli, vol.25, pp.148-173, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01394651

A. Lambert and G. Uribe-bravo, The comb representation of compact ultrametric spaces. p-Adic Numbers, Ultrametric Analysis and Applications, vol.9, pp.22-38, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01287143

P. Pfaffelhuber and A. Wakolbinger, The process of most recent common ancestors in an evolving coalescent, Stochastic Processes and their Applications, vol.116, pp.1836-1859, 2006.

P. Pfaffelhuber, A. Wakolbinger, and H. Weisshaupt, The tree length of an evolving coalescent, Probability Theory and Related Fields, vol.151, pp.529-557, 2011.

J. Pitman, Coalescents with multiple collisions, The Annals of Probability, vol.27, pp.1870-1902, 1999.

C. Rogers and J. Pitman, Markov Functions. The Annals of Probability, vol.9, pp.573-582, 1981.

S. Sagitov, The general coalescent with asynchronous mergers of ancestral lines, Journal of Applied Probability, vol.36, pp.1116-1125, 1999.

J. Schweinsberg, Coalescents with simultaneous multiple collisions, Electronic Journal of Probability, vol.5, p.50, 2000.

J. Schweinsberg, Dynamics of the evolving Bolthausen-Sznitman coalecent, Electronic Journal of Probability, vol.17, p.50, 2012.

?. For-x-?-x,-{x}, X. , and O. ,

A. , B. ?-h,-then-a-?-b-is-either, and A. ,

, Any ultrametric space encodes a hierarchy that is obtained by "forgetting E. Schertzer Center for Interdisciplinary Research in Biology Collège de France 11