J. Briot, G. Hadjeres, and F. Pachet, Deep Learning Techniques for Music Generation. Computational Synthesis and Creative Systems, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01840918

M. Bretan, G. Weinberg, and L. Heck, A unit selection methodology for music generation using deep neural networks, 2016.

Y. Le-cun and Y. Bengio, Convolutional networks for images, speech, and time-series, The handbook of brain theory and neural networks, pp.255-258, 1998.

D. Cope, The Algorithmic Composer. A-R Editions, 2000.

J. Deltorn, Deep creations: Intellectual property and the automata, Frontiers in Digital Humanities, vol.4, 2017.

K. Doya and E. Uchibe, The Cyber Rodent project: Exploration of adaptive mechanisms for self-preservation and self-reproduction, Adaptive Behavior, vol.13, issue.2, pp.149-160, 2005.

S. Dai, Z. Zhang, and G. G. Xia, Music style transfer issues: A position paper, 2018.

K. Ebcio?, An expert system for harmonizing four-part chorales, Computer Music Journal (CMJ), vol.12, issue.3, pp.43-51, 1988.

A. Elgammal, B. Liu, M. Elhoseiny, and M. Mazzone, CAN: Creative adversarial networks generating "art" by learning about styles and deviating from style norms, 2017.

R. Fiebrink and B. Caramiaux, The machine learning algorithm as creative musical tool, 2016.

J. , D. Fernández, and F. Vico, AI methods in algorithmic composition: A comprehensive survey, Journal of Artificial Intelligence Research (JAIR), issue.48, pp.513-582, 2013.

O. Fabius and J. R. Van-amersfoort, Variational Recurrent Auto-Encoders, 2015.

D. Foote, D. Yang, and M. Rohaninejad, Audio style transfer-Do androids dream of electric beats?, 2016.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

L. A. Gatys, A. S. Ecker, and M. Bethge, A neural algorithm of artistic style, 2015.

I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, 2014.

A. Graves, Generating sequences with recurrent neural networks, 2014.

D. Herremans, C. Chuan, and E. Chew, A functional taxonomy of music generation systems, ACM Computing Surveys (CSUR), vol.50, issue.5, 2017.

G. Hadjeres and F. Nielsen, Interactive music generation with positional constraints using Anticipation-RNN, 2017.

D. Hofstadter, Staring Emmy straight in the eye-and doing my best not to flinch, Virtual Music-Computer Synthesis of Musical Style, pp.33-82, 2001.

G. E. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief nets, Neural Computation, vol.18, issue.7, pp.1527-1554, 2006.

G. Hadjeres, F. Pachet, and F. Nielsen, DeepBach: a steerable model for Bach chorales generation, 2017.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, vol.9, issue.8, pp.1735-1780, 1997.

N. Jaques, S. Gu, R. E. Turner, and D. Eck, Tuning recurrent neural networks with reinforcement learning, 2016.

P. Diederik, M. Kingma, and . Welling, Auto-encoding variational Bayes, 2014.

S. Lattner, M. Grachten, and G. Widmer, Imposing higher-level structure in polyphonic music generation using convolutional restricted Boltzmann machines and constraints, 2016.

D. Makris, M. Kaliakatsos-papakostas, I. Karydis, and K. L. Kermanidis, Combining LSTM and feed forward neural networks for conditional rhythm composition, Engineering Applications of Neural Networks: 18th International Conference, pp.570-582, 2017.

A. Mordvintsev, C. Olah, and M. Tyka, Deep Dream, 2015.

G. Nierhaus, Algorithmic Composition: Paradigms of Automated Music Generation, 2009.

F. Pachet, A. Papadopoulos, and P. Roy, Sampling variations of sequences for structured music generation, Proceedings of the 18th International Society for Music Information Retrieval Conference, pp.167-173, 2017.

F. Pachet, P. Roy, and G. Barbieri, Finite-length markov processes with constraints, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp.635-642, 2011.

A. Papadopoulos, P. Roy, and F. Pachet, Avoiding plagiarism in Markov sequence generation, Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI 2014), pp.2731-2737, 2014.

A. Papadopoulos, P. Roy, and F. Pachet, Assisted lead sheet composition using FlowComposer, Principles and Practice of Constraint Programming: 22nd International Conference, pp.769-785, 2016.

G. Papadopoulos and G. Wiggins, AI methods for algorithmic composition: A survey, a critical view and future prospects, AISB 1999 Symposium on Musical Creativity, pp.110-117, 1999.

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, A hierarchical latent vector model for learning long-term structure in music, 2018.

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, A hierarchical latent vector model for learning long-term structure in music, Proceedings of the 35th International Conference on Machine Learning, 2018.

M. Steedman, A generative grammar for Jazz chord sequences, Music Perception, vol.2, issue.1, pp.52-77, 1984.

F. Sun, DeepHear-Composing and harmonizing music with neural networks

D. Ulyanov and V. Lebedev, Audio texture synthesis and style transfer, 2016.

A. Van-den-oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals et al., WaveNet: A generative model for raw audio, 2016.

A. Hado-van-hasselt, D. Guez, and . Silver, Deep reinforcement learning with double Q-learning, 2015.

L. Yang, S. Chou, and Y. Yang, MidiNet: A convolutional generative adversarial network for symbolic-domain music generation, Proceedings of the 18th International Society for Music Information Retrieval Conference, 2017.