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AN ENTROPIC INTERPOLATION PROOF OF THE HWI
INEQUALITY

IVAN GENTIL, CHRISTIAN LEONARD, LUIGIA RIPANI, AND LUCA TAMANINI

ABSTRACT. The HWI inequality is an "interpolation" inequality between the Entropy H,
the Fisher information I and the Wasserstein distance W. We present a pathwise proof
of the HWI inequality which is obtained through a zero noise limit of the Schrédinger
problem. Our approach consists in making rigorous the Otto-Villani heuristics in [23]
taking advantage of the entropic interpolations, which are regular both in space and
time, rather than the displacement ones.
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INTRODUCTION

In a seminal paper [23|, Otto and Villani obtained a powerful functional inequality
relating the relative entropy H (- | m) with respect to some reference measure m € Py(X),
the quadratic transport cost W3 (-, m) and the Fisher information (- |m). This so-called
HWI inequality roughly states that: H < W+/T — kW?/2, where the real parameter & is
a curvature lower bound associated to m, see (1.2), (1.4) and Theorem 1.6 below for the
exact statement and its well-known consequences in terms of Talagrand and logarithmic
Sobolev inequalities.

The first part of Otto and Villani’s article is dedicated to a heuristic proof based
on Otto calculus, see [22, 25|, where one formally equips the set of probability measures
with the Riemannian-like distance W5 and where McCann displacement interpolations are
interpreted as geodesics. Since these interpolations suffer from a lack of regularity, the first
and second order time derivatives along them are only formal. Consequently, although
heuristics led to the right conjecture, the authors presented an alternative rigorous proof
based on a significantly different approach.

In the present article, a new proof of the HWI inequality is proposed. The main idea
is to replace the ‘irregular’ McCann interpolation (y;) between two probability measures
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o and pq by a family of ‘smooth’ curves of measures (u), called ‘entropic interpolations’
(see Definition 2.4 below), where ¢ > 0 is a small fluctuation parameter such that g
converges to p; narrowly as € | 0. Otto and Villani’s heuristics apply rigorously to (u5),
so that it remains to let € tend down to zero to obtain the desired result.

The paper is structured as follows. Section 1 is dedicated to the statement of the HWI
inequality. Basic material about entropic interpolations which is needed for the proof is
gathered at Section 2. Finally the proof of the inequality is done at Section 3; its core is
Lemma 3.11 which is the analogue of Otto and Villani’s heuristic approach. In Section 4
we propose some comments about possible extensions and simplifications of our approach.

1. STATEMENT OF THE HWI INEQUALITY

Before stating the HWI inequality at Proposition 1.5 and Theorem 1.6 below, we need
to make clear the framework we shall work within and introduce the quantities H, W and

1.

Setting 1. Let (X, d, m) be:
(a) either (R™,|-|,m), where | - | is the Euclidean distance and the reference measure m
is defined as

m:=e VL" (1.1)

with £" the n-dimensional Lebesgue measure and V : R" — [0, 00) satisfying the
following hypotheses: it belongs to C°°(R™), is such that m is a probability measure
and

Hess(V') > kld (1.2)

for some k € R;

(b) or (M,d,, m), where M is a smooth, connected and complete Riemannian manifold
without boundary and with metric tensor g, d, is the induced distance and m is given
by

m:= e Vol (1.3)

with Vol the volume measure on M and V : M — [0,00) satisfying the following
hypotheses: it belongs to C*°(R"), is such that m is a probability measure and, for
some x € R and N > n = dim(M), the Bakry-Emery Ricci tensor Ricy, y satisfies the
lower bound

Hess(e »=") v
g

1 -
6_ N—nV

Ricy ny := Ric, — (N —n)

Inequality (1.2) (resp. (1.3)) corresponds to the so-called Bakry-Emery CD(k, o) curvature-
dimension condition (resp. CD(k, N)), cf. |4, Sec. C.6].

Relative entropy. For any two probability measures p and r on a measurable space Z
the relative entropy of p with respect to r is defined by

H(pl|r) ::/Zlog (%)dpe [0, o0,

where it is understood that this quantity is infinite when p is not absolutely continuous
with respect to . In our case, Z will be X, X x X or C([0,1], X).
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Quadratic transport cost. By P(&X’) we shall denote the space of Borel probability
measures on X and by Ps(&') the subclass of those with finite second moment, namely
all p € P(X) such that [, d*(-,2)du < oo for some (and thus all) z € X'. With this said,
the squared Wasserstein distance between p, v € Py(X) is defined as
Wlnv) min [ d(e.g) w(dady)
XxX

™

where the infimum runs through all the couplings 7 € P(X x X') of pu and v, that is
m(dz x X) = p(dz) and 7(X x dy) = v(dy).

Fisher information. The Fisher information of p € P(X’) with respect to m is defined
by

Vpl?

fplmy =4 [ (wypPam= [ B2

X {p>0} P

and 400 otherwise. Up to identify p with its density, the Fisher information is lower
semicontinuous with respect to the weak topology of L'(m) (see for instance [2]).

dm if u=pm, \/p € W?X)

With this premise, the statement of the HWI inequality is

Proposition 1.5 (HWI inequality). Let (X,d,m) be as in Setting 1. Then for any
o, 1 € Po(X) such that H(po | m) < oo,

H(pa | m) — H(po [m) < Wapo, pa) v/ (pa | m) — gWQQ(NOaM)-

In this case it is said that the reference measure m satisfies the HWI inequality. Let
us note that even if the parameter N, in the Setting 1-(b), doesn’t appear in the HWI
inequality, it is useful to obtain estimates like inequality (2.14) below.

As already shown by Otto and Villani in [23|, different choices of py and pq in Propo-
sition 1.5 entail three important consequences collected here below.

Theorem 1.6. Let (X,d,m) be as in Setting 1 with the further assumption that m €
P2(X). Then the following inequalities are satisfied:

(a) HWI inequality:

H(v|m) < Wylv,m)y/T(v[m) = SWirm), Vv € Py(X);
(b) Talagrand inequality:
SWivm) < H(v|m), Vv e Py(X);
(c) Logarithmic Sobolev inequality: assume that k > 0, then
H(v|m) < i](” Im),  VvePX).

Proof. First of all, since m € Py(X), it follows that Wy (v, m) is finite for all v € Py(X).

(a) The HWI inequality is obtained by choosing po = m, pu; = v.

(b) The Talagrand inequality is obtained by choosing ug = v, 13 = m.

(¢) When x > 0, the logarithmic Sobolev inequality with v € Py(X) follows by using the
trivial inequality zy — kz?/2 < y*/(2k), for z,y > 0, in the right-hand side of the
HWT inequality (a). To extend this result to the case where v € P(X), a standard
approximation argument (carried out for instance in Lemma 3.1 below) is sufficient.
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0

Remarks 1.7.

(a) When £ > 0, any v € P(X) such that H(rv|m) < oo stands in Py(X). This follows
from the variational representation of the relative entropy as

H(V\m):sup{/fdu—log/efdm:/efdm<oo,/fd1/<oo},
f x X X X

where [~ := max{—f,0} (see for instance [17] for a proof). If we choose f = ad?(-,z)
for some z € X and 0 < a < &, then [, e/ dm < oo holds: in Setting 1-(a) this
is due to (1.2) whereas in Setting 1-(b) to (1.4) and the Bishop-Gromov inequality.
Therefore

d?(-,z)dv < a’1<H(1/|m) + log/

24 () dm) ,
M

X
whence the claim. In particular, m € Py(X).

(b) Talagrand inequality (b) is irrelevant when x < 0. When x > 0, in view of previous
remark it extends to all v € P(X') provided that one sets Ws(rv, m) = oo when v does
not belong to Py(X).

(c) It follows from the logarithmic Sobolev inequality that when (1.2) or (1.4) holds with
some £ > 0, any v € P(X) such that H(v|m) = oo satisfies I(v | m) = oo. Similarly,
it follows from the HWI inequality that when (1.2) or (1.4) is only supposed to hold
with k real, as soon as v € Py(X), then H(v | m) = oo implies that /(v |m) = occ.

2. ENTROPIC INTERPOLATIONS

In this section we propose a short and self-contained presentation of entropic interpo-
lations. The purpose is twofold: to provide the reader with those notions and results
that will be frequently used later on and discuss their physical interpretation via Nelson’s
dynamical view of diffusion processes. For sake of simplicity, the latter will be carried out
in the more familiar Euclidean setting.

Notations. Let X = (X;)o<i<1, X3 : Q@ — & with Q := C([0,1], X) be the canonical
process, defined by
Xi(w) :== wy, YweQ,Vv0 <t<1.

For any path measure Q € P(Q2) and each 0 <t < 1, we denote by Q, := (X;)xQ € P(X)
the t-th marginal of Q, that is the law of the position X; at time ¢ of the random path X
under Q. Moreover, for any 0 < s,t < 1, we shall denote by Q,; the joint law of X, and
X; under Q, namely Qg = (X5, X3)»Q.

As reference path measure R € P(£2) we consider the law of the Markov diffusion
process with generator

1
L:=3(A-VV.V)

with initial law Ry = m, where the potential V' appears at (1.1), (1.3), A is the Laplace-
Beltrami operator on X and V the Levi-Civita connection associated to the metric g
(in Setting 1-(a) they are nothing but the standard Laplacian and gradient). It is well-
known that R is a reversible Markov measure with reversing measure m. In particular
it is stationary, that is Ry = m for all 0 < ¢t < 1. For any € > 0 we denote by X°
the time-rescaled process defined by X; := X, 0 < ¢ < 1, and by R® := (X°)4R the
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corresponding path measure. The parameter € is meant to tend to zero so that R® is a
slowed down version of R, whose generator is

g(A—vv.w

For any € > 0, as a time rescaling of R, R® is also m-reversible, so that in particular
R; = m for all ¢.

The 1-parameter semigroup associated to L will be denoted by (7;) and, in a completely
analogous way, (7,7) the one associated to LF; notice that 7;F = T for all ¢ > 0. Within
Setting 1 it is well-known (see for instance [15]) that there exists a unique heat kernel
r(z,y) associated to L which is a smooth function on (0,00) x X x X. Therefore, the
semigroup (7;) can be represented by

Tif(x) = Er[f(X0) | X, = 2] = /X F (), y) m(dy) (2.1)

for all f € L>(m). Let us also recall that, in conjunction with (1.2) or (1.4), (7;) enjoys
the Bakry-Emery contraction estimate

IVTf? < e T(IVfI?) VfelxX), t>0. (2.2)

For its proof as well as for all the regularizing properties of 7 that will be used throughout
the paper, we address the reader to [4, Thm 3.2.3|.
Finally, recall that the operators

U(f,9) == L(fg) = fLg —gLf, T(f,f) =T(f), Talf):=LI(f) = 20(f, L), (23)

defined for all f,g € C°(X), are naturally associated to L. As it is not difficult to see,
the drift V' in m does not affect ', since I'(f, g) = (V f, Vg). It is worth mentioning that,
with respect to the standard definition provided in [4, Sec. 1.16], here T" and T’y are not
divided by 2, as the factor 1/2 already appears in L, which thus corresponds to an SDE
driven by a standard Brownian motion.

LfF=¢cl =

The Schrédinger problem. Let pug,p; € P(X) be two probability measures: the
Schrodinger problem associated with R®) g, 11 is defined by

EH(P | RE) — min,; Pe P(Q) : Py = 1o, P, = M1 (S£>
and its value is called ‘entropic cost’. As a strictly convex minimization problem, it admits

at most one solution.

Definition 2.4 (R°-entropic interpolation). The solution P* of (S.), if it exists, is called
the Re-entropic bridge between 1o and pi. The RE-entropic interpolation (u5) between pg
and (1 1s defined as the time marginal flow of the solution P<, namely

p=P,  0<t<l1

The name ‘entropic interpolation’ stems from the connection with displacement inter-
polation. Indeed, it is known from [20] that

1
lim inf (So) = SW5 (ko, ). (2.5)

This limit is a consequence of a more general result asserting that (S.) converges to the
quadratic Monge-Kantorovich problem as € | 0 in the sense of I'-convergence, see [16].
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As shown in [18], if P is the solution of (S.), then there exist two non-negative measurable
functions f¢,¢° : X — [0, 00) such that P* = f¢(X()g¢°(X;) R® and defining

fi=T°1, g =T>_.9, 0<t<1 (2.6)

we obtain P§(dx) = pf(dx) = pf(x) m(dz) with pf(z) := ff(x)g;(x). By computing the
endpoint marginals of P we obtain the following two conditions

d d
po = dinf = /9% prLi= diml =y (2.7)
usually known as ‘Schrédinger system’: indeed, if we interprete them as a nonlinear sys-
tem where the unknowns are f€ and ¢°, then the (unique up to an obvious multiplicative
rescaling) solution completely determines P® (see for instance [18]). As far as the conver-
gence of entropic interpolations towards displacement ones is investigated, the following

functions

i = elog [ i = elogg;
are of special interest. We also set ¢ := elog f© in supp(po) and ¥ := elog ¢° in supp(p1).
They are called Schrodinger potentials, in connection with Kantorovich ones.

Existence and regularity results. Let us now derive a criterion, in terms of the end-
point marginals py and uq, for the existence of regular functions f¢, g° with well-defined
Fisher information solving the Schréodinger system (2.7). As noticed in [12], [13] the reg-
ularity (smoothness and integrability) of ug (resp. p1) is inherited by f€ (resp. ¢°). In
the next result we extend this property: if I(u|m) is finite, then so is I(f*m|m) and
analogously with puq, ¢°.

Proposition 2.8. Let (X,d,m) be as in Setting 1, ¢ > 0 and consider two probability
measures jig = pom, 1 = pym € P(X) with compact supports. Then the following hold:

(a) The Schrodinger problem (S.) admits a solution with finite entropy if and only if
H(po|m), H(uy|m) < co. This solution is unique and the R®-entropic interpolation
between pg and py exists.

(b) Suppose in addition that po, p1 € L*°(m).

(i) Then f¢,g° € L*>(m).
(i1) For any 0 <t <1 the functions ff,g;, pi as well as f; and g§ belong to C>*°(X)N
L>(m).
(i4i) For any k € NU {oo}, if po € C¥(X) (resp. p1), then the function f¢ (resp. g¢)
also belongs to C*(X).

(c¢) In addition to item (b), suppose that I(po|m) is finite (resp. I(py|m)). Then so is

I(f*m |m) resp. I(g"m|m)).

Proof. For (a) and (b-i) see [13, Proposition 2.1|. As regards (b-ii), the fact that f° €
L>*(m), rp € C*°(X x X) and (2.1) imply ff € C®°(X) for all 0 < ¢t < 1, while the
maximum principle ensures that ff € L>(m); the statements for ¢ and p; = ffg; follow
by the same reason.

(b-iii). Notice that the first equation in the Schréodinger system (2.7) can be rewritten as

e PO
I =7
Since T°¢ is positivity improving, 7 ¢° is smooth and p, € C*(X') with compact support,
the conclusion follows. A similar argument holds for ¢°.



7

(c). Observe that the Schrodinger system (2.7) and g§ > 0 (as T°¢ is positivity improv-
ing) force f° to have the same support as py. Thus f¢ has compact support and, as a
consequence, g5 > ¢ > 0 in supp(f°) for some c. This remark and the chain rule allow us
to say that

st Vs2 V:—:Z VEZ V 2
A/ P/ P o .
f / f 96 Po

v 2
<L§LHWW+W@%

(Vf5,Vys)

so that it remains to prove the integrability of the right-hand side. The first term is
integrable by assumption, the third one by the regularization properties of 7¢, while for
the second one notice that I(yy|m) < oo and py € L>®(m) imply |Vp,| € L?(m); plugging
this information into

|V < g5V < Vol + £ Vg5l

we get the desired conclusion. O
For this reason we formulate the following

Assumptions 2.9 (Hypotheses on g, p1). The endpoint marginals pg, 1 € Po(X) are
such that g, pn have compact supports, H(po|m), H(py | m), I(po|m), I(p |m) < oo and
their densities po, p1 belong to C*(X).

A dynamical viewpoint. As concerns the evolution of entropic interpolations and
Schréodinger potentials, let us first notice that under Assumptions 2.9, by the very defini-
tion (2.6), item (b-iii) of Proposition 2.8 and the fact that r,(z,y) € C*((0,00) x X?) we
deduce that f; and ¢f are smooth on [0,1] x & and solve

O f; =eLf; — Owg; = eLyg; (2.10)

in the classical sense. Moreover, if we look at (ff),(g5) as curves parametrized by ¢
with values in WH2(X, m), they belong to the set AC([0, 1], W'?(X, m)) of all absolutely
continuous functions from [0, 1] to W'?(X, m). As a consequence the PDEs above hold
also when 9, ff, 0,95 are seen as strong WW'2-limits.

Relying on that, it follows that the Schréodinger potentials f, ¥ are smooth on (0, 1] x
X and [0,1) x X and solve forward and backward Hamilton-Jacobi-Bellman equations
respectively, i.e.

(3 1 3 & 3 1 13 3
Ay = §|v90t|2 + eLy; oy = _§’v¢t ? — Ly, (2.11)
while for (pf) the continuity equation

Oipf + divi (VI pf) = 0 (2.12)

is satisfied in (0,1) x &X', where 95 := (¢ — ¢§)/2 and div,, denotes the divergence with
respect to m, i.e. the opposite of the adjoint of the differential in W'2(X, m). This
last PDE is strongly linked to the dynamical representation of the entropic cost inf (S.),
namely

) c Vﬁa 2 82 1
cinf (5 = 5 (ol m)+ G 1) + [ i £ [ riimyar, 213
0

2 [0,1]xX 2
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shown in [5, 9] for Setting 1-(a) and in [14] for rather general metric measure spaces
including Setting 1-(b). By the very definition of ¥ and since elogpf = i + 95, this

implies

Vg|? \WIHE

/ Vel gy t/ VU e < oo, (2.14)
o1xx 2 o1xx 2

Remark 2.15. The regularity of Schrodinger potentials comes from the one of f;, gy, the
fact that ff, gi are everywhere positive and the logarithm is smooth on (0, 00). However,
Schrodinger potentials are not integrable in general, as f;, g; can be arbitrarily close to
0. Thus we cannot study their behaviour as curves with values into some LP(m) space.
This also explains why the regularity of ¢§ (resp. ¢f) does not extend up to ¢t = 0 (resp.
t=1).

A physical interpretation. In the Euclidean framework of Setting 1-(a) it is possible
to make a bridge between what is presented so far and Nelson’s formalism [21], thus
providing a physical motivation for some results stated above and a further perspective
on some objects.

Following [21] we define the forward and backward velocities of the Markov measure P
for any z € R" and 0 <t < 1, 0 < t < 1 respectively by

Xin — X Xien — X
VP (x) = lim Ep (L|Xt:x) ©P(x) = lim Ep ($|Xt:a:)

when these limits are meaningful. The current velocity is defined, for any 0 <t < 1 and
r € R, by

Xion— Xio
N t+h t—h _
v (@)= lim Ee ( o 1K ”C)
and the osmotic velocity by

Xipn —2X + X
vfs’P(l‘) — ;}E(% Ep ( t+h 2ht + Xip X, = x) ‘

We immediately see that

{ 7P — Ucu,P _|_vos,P, and { cuP (7P / ’

<FP — _Ucu,P + Uos,P’ os,P __ (7P ))/
For R®, it is easily seen that

€
15 € € €
UCUvR — 0, 7R — %R = /UOS7R = —§VV

whereas for P*
€ e 5 cu,P® €
{ ZE v¢£+2vv, and { ”i,sp = Vi — EVV,
= Vy; —5VV, Uy = 5Vlogpj.

This allows to rewrite the continuity equation (2.12) as

Opp; + div(v™" pf) = 0
where now div denotes the divergence with respect to £" if in Setting 1-(a) or Vol if in
Setting 1-(b). This is perfectly coherent with (2.12) since divy(w) = div(w) — sVV - w
for any vector field w. Furthermore, (2.13) becomes

cinf (5.) = 5 (o | m) + Hiu | w) + 5

[0,1]x X

cu,P® os,P® €
(1o 12+ o2 ) s



3. PROOF OF PROPOSITION 1.5

We need to state some preliminary lemmas before completing the proof of Proposi-
tion 1.5 at page 14. Throughout the whole section we shall assume to work within
(X,d, m) as in Setting 1.

Auxiliary lemmas. Let us start with an approximation result.

Lemma 3.1. Let p € Po(X) with H(pu|m) < oco. Then:

(a) there exists a sequence (fi,) C Pao(X) with p, = pom and p, € CX(X) such that
Wo(pin, v) = Wap, v) for all v € Po(X) and H(p, |m) — H(u|m) as n — oo;

(b) if in addition I(pn|m) < oo, then there exists a sequence (p,) C Po(X) with p), =
Py, pn € C°(X) such that Wa(ul,v) — Wau,v) for all v € Py(X), H(ul, |m) —
H(p|m) and I(p, |m) — I(p|m) as n — oo.

Proof. Let us write u = pm and, as a first step, let us prove that both in (a) and (b) it
is possible to find a sequence of measures with smooth densities converging to p in the
desired sense. This can be proved by defining for € > 0

pe == p.m  with p. :==Tcp,

which clearly have smooth densities by the regularizing properties of (7). The conver-
gence of Wy (pue, v), H(pe |m) and I(p. | m) to Wa(u,v), H(p|m) and I(u|m) respectively
as € | 0 is now a well-known fact in the theory of gradient flows (see for instance Theorem
2.4.15 and Remark 2.4.16 in [1] in conjunction with the fact that the squared slope of the
entropy is the Fisher information, as proved in [2]).

Thus, it is not restrictive to suppose that p has smooth density. Under this new
assumption, let us prove that we can find a sequence of measures with compact supports
and smooth densities converging to u in the desired sense. To this aim define

M 1= Qppp, M with p, 1= x2p,
where «,, is the renormalization constant and Yy, is a smooth cut-off function with support
in By,41(z) (the ball of radius n+1 centered in z), for some € X, x,,(z) = 1 and Lipschitz
constant controlled by C/n, where C' > 1 does not depend on n (see e.g. [3] for a proof
of the existence of such cut-off functions). By dominated convergence it is not difficult to
see that Wa(p, ,) — 0 and thus Wa(pn, v) — Wa(p, v) for all v € Py(X) as n — oo; for
the same reason H(p, |m) — H(u|m). If we also assume that I(u|m) < oo, then

[Voul* <2y 2| Vopl? [Vpl?
Pn p p
Since the right-hand side is integrable and x,, — 1 as n — 0o, by dominated convergence
we get I(uy, |m) — I(p|m).
Combining the two steps and using a diagonal argument, the conclusion follows. 0

2

8_

+ 8p|Vxn|* < 22— 5
n

The following conservation result was pointed out in [6] and [24] in the case X is
compact with different approaches; see also [8]. Following [24], we extend the statement
to the present framework.

Lemma 3.2. Under Assumptions 2.9, for any € > 0 the function

2
3
0.3t [ [95F = I ) = Q)
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18 real-valued and constant. Thus we shall denote it by Q).

Proof. As a first step, for all 0 <t < 1 by algebraic manipulation we have

2
19 5 5
AN Z!ngpﬂ%i = —(V;, Vii)p; = =XV f;, V)

so that
Q; = —e? / (Vfi,Vg;)dm.
X

By Proposition 2.8 (b-iii) we know that f¢ ¢° are smooth with compact support, hence
IV fe|,IVg?| € L>®°(m) and by the regularization properties of 7¢ the same holds for
IV f£], Vg5 |: this implies that Q € R for all 0 < ¢ < 1. As concerns the constancy of Q%,
it is sufficient to prove that the right-hand side above is constant in ¢. To this aim, I'(ff, ¢7)
is smooth both in time and space, as so are f7,gf; moreover |V ff],|Vgs| € L>®(m) by
what just said. Therefore, by dominated convergence and (2.10) we obtain

d

G [V an = [ (V0. V50) + (947, V0 ) dm
X X

—c | (VL Vo)~ (V12,9 14D o

From integration by parts formula it is straightforward to see that the right-hand side
vanishes, whence the conclusion. 0

Motivated by (2.13), let us investigate separately the convergence of current and osmotic
velocities as € | 0.

Lemma 3.3. Under Assumptions 2.9, for any € > 0 we have

. e £ : ) 3 1
lim VO dtdps = Wiuo, ), Tim [ VIR dtdps = W2 (o, ) (34)
8\1,0 [O,I}X-X el0 [O,I]XX 2
and
1 1
lim 52/ I(p; |m)dt =0, lim 52/ tI(pg |m)dt = 0. (3.5)
el 0 el0 0

Proof. Let us first notice that combining (2.13) and (2.5) we get

) 52 1
i ([ Vo 5 [ 10 m)de) = W, )
0 N Jjo1xx 4 Jo

Since the continuity equation (2.12) is satisfied by x5, the Benamou-Brenier formula holds
for any € > 0, that is

/[O T a2 W ),
1]%

and together with the above limit, this leads us to the first identities both in (3.4)
and (3.5). From them we immediately deduce that

15{)1 Q° = W5 (o, p11) (3.6)

and from the first one in (3.5)

1 1
Oglimgz/ tI(pf]m)dtSlimsQ/ I(p; |m)dt =0,
z—:iO 0 E\LO 0
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whence also the second identity in (3.5). Finally observe that

lim £|V0%)? dtdy = lim ( /
0 Jio1)xx 0 N J0,1)xx

2 1
{1995 drdu — / (4 [ m) di
0

1

1
. ] 1
—tim [ 1Qet = W3y, ) [ et = S )

O

As already noticed at Remark 2.15, although it is smooth on the open interval (0, 1),
the density p; might be arbitrarily close to zero. Consequently, the Schrodinger potentials
might not be integrable enough, and the Fisher information (x5 |m) might behave badly
around t = 0 and ¢ = 1. Next lemma provides related regularity and growth controls. Its
proof is strongly inspired by [12, 13, 14, 19]; we thus address the reader to these articles
for more details.

Lemma 3.7. Under Assumptions 2.9, let 6 > 0 and set, for all 0 < t < 1, pi"s =
(ff +6)(g5 +9) as well as

1

5( - QD?(S)-

Then all the functions so defined belong to C'OO([O 1] x X) ﬂ le(X m) and, as curves
pammetmzed by t wzth values in WH(X,m), to AC(|0,1], WH*(X,m)). The time deriva-

tives of oy’ ,@/}t ,pt are given by

o’ = elog(ff +0) P i=clog(gy +0) 0=

5 £ £ 1 £ £
Oppy" = _|V90 ‘2 + 5L90t76 oy 0= §|th’§|2 + 5[1%’6

(3.8)
AP + divn (V95 pi°) = 0

where 6tgof’5, 8twf’5, 8tp§’5 have to be understood both in the classical sense and as strong
W2 limits.

Furthermore, defining u(z) := zlog z, the functiont — [, u(p?) dm belongs to C2([0, 1])
and for every t € [0, 1] it holds

d
e ®)dm = / Vpi?, Vi) dm (3.9a)
d2 ,0 €,0 €,0 ,0
a2 [ ule”) dm :/ Lo (977) + ZF2(1OgPt’ ))Pt’ dm. (3.9b)
x

Proof. As already explained in Section 2, under Assumptions 2.9 f7, g; € C*°([0,1],X) N
WE2(X m) and (f7), (¢f) € AC([0,1], W'?(X,m)). Therefore the regularity and integra-
bility properties of ¢, 15 95°, p° are a straightforward consequence of the chain rule
and of the fact that the logarithm is smooth with bounded derivatives on [§, 00). Also the
PDEs solved by goi"s, (A ’5, pi"s are easily deduced, when interpreted in the classical sense,
as they follow from (2.11) and (2.12). In order to deduce the same identities with 9,45,
O, 8,5 seen as strong W'2-limits, notice that by the maximum principle

elogd < ¢ <elog([|flle(m +0),  VE>0
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whence (¢5°) € L®((0,00), L>°(m)). Moreover, the smoothness of the logarithm, the
chain and Leibniz rules entail that

|V i |Aff |V f£]?
5 5 s

Vi’ <e Api?| < e
whence (Vi |2), (Apf®) € L2((0,1), W'2(X, m)); analogous estimates hold for V|V |2
and VAgoi"s. These bounds together with the fact that the PDEs in (3.8) hold in the clas-
sical sense imply, by a dominated convergence argument, that (3.8) are satisfied also as
strong YW2-limits.

Relying on that, (3.9a) and (3.9b) follow by the computations carried out in [19].
Indeed, the validity of (3.8) as strong W"%limits on [0, 1] ensures that ¢ — u(p$’) and
t > (Vpi°, V) belong to AC([0,1], L*(m)) and thus we can pass the time derivatives
under the integral sign, i.e.

d
at Jy

d

u@%mz/@mﬁmW -—(WﬁN@MM:/WWﬁN@%m

(3.10)
Then the Hamilton-Jacobi-Bellman equations for the Schrodinger potentials and the con-
tinuity equation for the entropic interpolation together with elogp; = ¢f + 97, here

replaced by elog p5° = £ 4 ¢5°, are the only tools needed to deduce (3.9a) and (3.9b).
Finally, the fact that:

- (p7), (97°) € AC([0, 1], WH2(X, m));
- (97°) € AC([0, 1, WH2(X,m)), ([V9;°12), (ADS?), (|V log pi°2), (Alog p;®) belong to
L=((0,1), WH(X,m)) and 97°,log p* € C([0,1] x X);

imply the continuity on [0, 1] of the right-hand sides of (3.9a) and (3.9b) respectively. [

With this results at disposal we can prove our main lemma: a rigorous ‘entropic’
analogue of Otto-Villani’s heuristic argument.

Lemma 3.11. Under Assumptions 2.9, for any € > 0 it holds

HmumyJﬂmhwg/XWﬁvmmm—m/ {9 dpsdt
X [0,1]x X

5 (3.12)
€
— K— t|V log ps|? dpsdt.
[0,1]xX
Proof. The proof of the lemma is based on the standard calculus identity
1
MD:M®+WU—/tW@M, (3.13)
0

valid for any C*-regular function h, applied to t — [, u(p®) dm defined as in Lemma 3.7.

Plugging (3.9a) and (3.9b) into (3.13) and using the well-known inequalities

To(07°) > K|V’ Ty (log pi°) > K|V log p; |2,
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consequence of the lower Ricci bounds (1.2) and (1.4) rewritten in the form of the Bochner-
Lichnerowicz-Weitzenbock formula, we obtain

/ %) dm — / ) dm < / (VO5°, Vo) dm — & / VOS2 dpsddt
X [0,1]xx
82 £,012 £,0
— kK t|V log p°|” dpy *dt,
4 [0,1]xX

(3.14)

where 1 = p%m. It is now sufficient to pass to the limit as § | 0. By dominated
convergence (recall that f€,g° € L>(m)) it is easy to see that the left-hand side converges
to H(py|m) — H(pp|m). In order to apply the dominated convergence theorem also to
the first term on the right-hand side, notice that

1 1
Vpi' =Vpi +0Vfi +6Vg"  and VI = oV — Ve

Thus, to control (V5°, Vo) let us first observe that

Vg lIVol _ [V l[Vo]

o +el VeIV £

[(V7?, V)| <e

2
ngl‘ gg|

and remark that the right-hand side is integrable by Proposition 2.8-(c); secondly

VIVl VI
f f

and in this case the right-hand side is integrable as ¢° has compact support and f; is
bounded away from 0 therein; finally,

(Ve V)| < e +e|Ve ||V ]

< e|Vg[|Vfil

ol ui v pl<es LI

as g°+0 > ¢ and the same strategy applies to all the remaining terms that we obtain devel-
oping (V2 Vp5°). Therefore, the first term on the right-hand side of (3.14) converges
to the first term on the right-hand side of (3.12). As regards the other two summands,
by the very definition of ¥5° and since

€,0 £,0 €,0
elogp,” ="+,

the conclusion will follow if we are able to prove that

lim V)2 dpsddt = / VS| dpsdt, (3.15a)
0 Ji0,1)xx 0,1]xX
lim IV |2 dpsdt = / IVs|? dpsde. (3.15h)
0 Ji0,1)xx [0,1]x X



14 IVAN GENTIL, CHRISTIAN LEONARD, LUIGIA RIPANI, AND LUCA TAMANINI

To this aim, notice that pi* = pf + 6f + dg; + 6%, whence using cither f&+ 6 > f¢ or
f£+ 9 > 6 it is easy to infer that

o VP LIV

VSOE#sts_g—p <e V QpE’
VT = gt = g 7 I
. ik
ST = 02 s 7 < VS
t
2 2
5|VQ0?5|29t€:652 | ft| € < |Vft| |v 12 6

c gi <€’
(fro2™ =" ff
52|v¢5|2 52 2 ‘ ft‘2 €2|Vf2|2.
' (ff +0)? '
All the right-hand sides above are integrable on [0,1] x X (either by (2.14) or by the
Bakry-Emery contraction estimate (2.2) together with f¢ € C2°(X)), thus by dominated

convergence (3.15a) follows. An analogous argument holds for (3.15b), whence the con-
clusion. 0

Completion of the proof of Proposition 1.5. We are now ready to complete the
proof of the HWT inequality.

Proof of Proposition 1.5. First of all, by Proposition 2.8 and Lemma 3.1, it is sufficient
to prove the result for any pg, 1 satisfying Assumptions 2.9. This allows us to invoke
Lemma 3.11. Secondly, observe that by the Cauchy-Schwarz inequality

/ (V95, Vpy) dim = / (Y95, V log pr)dpur < / V9% 2d s /T [ ),
X X X

so that if we plug this information into (3.12) we obtain

HWHW—HWWWSQ/WWWMVAMm—H V[ dpicdt

[0,1]xXx

5
o t|V log pi|* dpdt.
[0,1]xX

Let us now pass to the limit as € | 0: by Lemma 3.2, at ¢t = 1 we have

2
3
@ = [ VO dus — 1 )
X

so that (3.6) together with I(u; |m) < oo yields

1im/ V5P dpn = W5 (o, )
el Jy

By Lemma 3.3 we can pass to the limit as ¢ | 0 also in the remaining terms on the
right-hand side, thus concluding. 0

Let us mention that another approach to prove the HWI inequality via the Schrédinger
problem is pointed out in a recent work [7] where an entropic counterpart of the HWI
inequality is formally obtained by differentiating the convexity estimate of the entropy
along the entropic interpolations introduced in [6, Thm. 1.4].
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4. FINAL REMARKS AND COMMENTS

Lagrangian and Hamiltonian interpretation. From a heuristic point of view, the
expression of the constant quantity )° can be deduced by standard arguments in La-
grangian and Hamiltonian formalism. Indeed, motivated by (2.13) let us consider the
action functional

L s 2
o (v,v) = (— + —|Vlog 1] )Vt dtdm (4.1)
0,1xx 2 8

associated to the Lagrangian

I Ul 2 4
f(u,v)-/)(( 5 v+ S o )dm

By means of Legendre’s transform, the corresponding Hamiltonian is given by

H(v,p) = /X (W — 8—2M> dm

2v 8 v

and, at least formally, 5 is constant along the critical points of 7. Since ug and u; are
prescribed, the Euler-Lagrange equation for (4.1) reads as

Oy + div (rvy) =0

| |2 g2 2
Oyvy -+ = —§(2Alog v+ |V log vy )

and, as it is not difficult to see (e.g. following the computations carried out in [13] which
fit to Setting 1), these PDEs are satisfied along (p$,95). Finally, as in the Hamiltonian p
represents a momentum density, it is natural to set p; := v4v;. From these considerations,
the guess on the existence of the conserved quantity of Lemma 3.2 and on its expression
follows.

This point of view is particularly investigated in the recent paper [8|, to which we refer
for more details.

The compact case. As already mentioned in Remark 2.15, in general Schrédinger po-
tentials fail to be smooth in ¢ =0 or t = 1 and are not even integrable for any 0 <t < 1,
because f;, g; can be arbitrarily close to 0. This problem can be overcome if f¢,¢g* > ¢ > 0
for some constant c: then f7, g; > ¢ as well by the maximum principle and ¢f, 1y > elogc
from their very definition. However, even if we assume g, p1 to have densities bounded
away from 0 (thus forcing m to belong to Py(X'), a condition which does not follow from
our Setting 1, unless k > 0, cf. Remark 1.7-(a)), it is not known yet whether this implies
an analogous lower bound on f° and ¢°. This is the motivation behind the definitions
provided in Lemma 3.7.

On the contrary, if X' is assumed to be compact, then it is not restrictive to assume
o, 1 > em for some ¢ > 0: indeed any p € P(X') can be approximated by

= QP with p, := max{p, 1/n}

(where a, is the renormalization constant) in W, entropy and Fisher information in the
sense of Lemma 3.1. Secondly, r. is bounded from above since r. € C*(X). These two
facts imply that f€,¢° > ¢ > 0, as shown in [12|. As a consequence the proof of the
HWT inequality is easier and the parallelism with the heuristic proof of Otto-Villani [23]
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is stronger, since no ‘d-argument’ in Lemma 3.7 and Lemma 3.11 is needed; in particular,
Lemma 3.7 is already known to hold by [12] and thus no proof is required.

RCD spaces. All the results presented in this paper, with particular mention of the key
Lemma 3.11 and Proposition 1.5, are also true in a more general framework than the one
of Setting 1-(b), namely in RCD*(K, N) spaces (introduced in [11]). If X" is assumed to
be compact, then this has been shown by the last author in his PhD thesis [24]. When X
is not compact, the most important steps in our entropic approach still hold. Namely:

- all the regularity and integrability results concerning Schrodinger potentials and entropic
interpolations mentioned in Section 2 as well as the dynamic representation of the
entropic cost;

- the regularizing and contraction properties of (7;);

- the existence of ‘good’ cut-off functions;

- the Benamou-Brenier formula and the Bochner-Lichnerowicz-Weitzenbock inequality.

The reader is addressed to [13, 14] for the first point and to [10] for all the others.

Acknowledgements. This research was supported by the French ANR-17-CE40-0030
EFT project and the LABEX MILYON ANR-10-LABX-0070.

REFERENCES

[1] L. AMBROSIO, N. GIGLI, AND G. SAVARE, Gradient flows in metric spaces and in the space of
probability measures, Lectures in Mathematics ETH Ziirich, Birkhduser Verlag, Basel, second ed.,
2008.

[2] ——, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds
from below, Invent. Math., 195 (2014), pp. 289-391.

[3] D. AzAGRA, J. FERRERA, F. LOPEZ-MESAS, AND Y. RANGEL, Smooth approxzimation of Lipschitz
functions on Riemannian manifolds, J. Math. Anal. Appl., 326 (2007), pp. 1370-1378.

[4] D. BAKRY, I. GENTIL, AND M. LEDOUX, Analysis and geometry of Markov diffusion operators,
vol. 348 of Grundlehren der Mathematischen Wissenschaften, Springer, Cham, 2014.

[5] Y. CHEN, T. GEORGIOU, AND M. PAVON, On the relation between optimal transport and
Schrddinger bridges: A stochastic control viewpoint, Journal of Optimization Theory and Appli-
cations, 169 (2016), pp. 671-691.

[6] G. CONFORTI, A second order equation for Schridinger bridges with applications to the hot gas
experiment and entropic transportation cost. To appear in Probab. Theory Relat. Fields, (2018).

[7] G. Conrorri AND L. RIPANI, Around the entropic Talagrand inequality. Preprint,
arXiv:1809.02062 (2018).

[8] I. GENTIL, C. LEONARD, AND L. RIPANI, Dynamical aspects of generalized Schridinger problem
via Otto calculus - A heuristic point of view. Preprint, arXiv:1806.01553 (2018).

[9] ——, About the analogy between optimal transport and minimal entropy, Ann. Fac. Toulouse, 26
(2017), pp. 569-600.

[10] N. GicL1, Nonsmooth differential geometry - an approach tailored for spaces with Ricci curvature
bounded from below. Mem. Am. Math. Soc. 1196, iii-vi, 166 p. 2018.

[11] ——, On the differential structure of metric measure spaces and applications, Mem. Amer. Math.
Soc., 236 (2015), pp. vi+91.

[12] N. GicLI AND L. TAMANINI, Second order differentiation formula on compact RCD* (K, N) spaces.
Preprint, arXiv:1701.03932, (2017).

[13] ——, Second order differentiation formula on RCD*(K,N) spaces. To appear in J. Eur. Math.
Soc. (2018).
[14] ——, Benamou-Brenier and duality formulas for the entropic cost on RCD*(K,N) spaces. To

appear in Probab. Theory Relat. Fields (2018).
[15] A. GRIGORYAN, Heat kernel and analysis on manifolds, vol. 47, American Mathematical Soc., 2009.



17

[16] C. LEONARD, From the Schridinger problem to the Monge-Kantorovich problem, J. Funct. Anal.,
262 (2012), pp. 1879-1920.

[17] ——, Some properties of path measures, Séminaire de Probabilités XLVI, (2014), pp. 207-230.

[18] ——, A survey of the Schrédinger problem and some of its connections with optimal transport,
Discrete Contin. Dyn. Syst., 34 (2014), pp. 1533-1574.

[19] ——, On the convezity of the entropy along entropic interpolations, in Measure Theory in Non-

Smooth Spaces, N. Gigli, ed., Partial Differential Equations and Measure Theory, De Gruyter Open,
2017.

[20] T. MIKAMI, Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes,
Probab. Theory Relat. Fields 129 (2004), pp. 245-260.

[21] E. NELSON, Dynamical theories of Brownian motion, Princeton University Press, Princeton, N.J.,
1967.

[22] F. OTTO, The geometry of dissipative evolution equations: the porous medium equation, Comm.
Partial Differential Equations, 26 (2001), pp. 101-174.

[23] F. OTTO AND C. VILLANI, Generalization of an inequality by Talagrand and links with the logarith-
mic Sobolev inequality, J. Funct. Anal., 173 (2000), pp. 361-400.

[24] L. TAMANINI, Analysis and geometry of RCD spaces via the Schrédinger problem, PhD thesis,
Université Paris Nanterre and SISSA, 2017.

[25] C. VILLANI, Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wis-
senschaften, Springer-Verlag, Berlin, 2009.

IvaN GENTIL. UNIV LyON, UNIVERSITE CLAUDE BERNARD Lyon 1, CNRS UMR 5208, INSTITUT
CAMILLE JORDAN, F-69622 VILLEURBANNE, FRANCE
E-mail address: gentil@math.univ-lyonl.fr

CHRISTIAN LEONARD. MODAL-X. UNIVERSITE PARIS NANTERRE. F-92001 NANTERRE, FRANCE
E-mail address: leonard@parisnanterre.fr

LuiGiA RipanI. UNi1v LyoN, UNIVERSITE CLAUDE BERNARD LyoN 1, CNRS UMR 5208, INSTITUT
CAMILLE JORDAN, F-69622 VILLEURBANNE, FRANCE
E-mail address: ripani@math.univ-lyonl.fr

LucA TAMANINI. INSTITUT FUR ANGEWANDTE MATHEMATIK. UNIVERSITAT BONN. BONN, GER-
MANY
E-mail address: tamanini@iam.uni-bonn.de



	Introduction
	1. Statement of the HWI inequality
	2. Entropic interpolations
	3. Proof of Proposition 1.5
	4. Final remarks and comments
	References

