S. Pandita, Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions, Composites Part A: Applied Science and Manufacturing, vol.32, issue.10, pp.1533-1539, 2001.
DOI : 10.1016/S1359-835X(01)00053-7

S. John, Longitudinal and transverse damage taxonomy in woven composite components, Composites Part B: Engineering, vol.32, issue.8, pp.659-668, 2001.
DOI : 10.1016/S1359-8368(01)00047-6

T. Osada, Initial fracture behavior of satin woven fabric composites, Composite Structures, vol.61, issue.4, pp.333-339, 2003.
DOI : 10.1016/S0263-8223(03)00058-8

S. Daggumati, Local damage in a 5-harness satin weave composite under static tension: Part I ??? Experimental analysis, Composites Science and Technology, vol.70, issue.13, pp.1926-1933, 2010.
DOI : 10.1016/j.compscitech.2010.07.003

URL : https://hal.archives-ouvertes.fr/hal-00681634

B. Vieille, Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting-composites: A comparative study, Composite Structures, vol.110, pp.207-218, 2014.
DOI : 10.1016/j.compstruct.2013.12.008

URL : https://hal.archives-ouvertes.fr/hal-00941315

Z. Soumahoro, Etude du couplage thermomécanique dans la propagation dynamique de fissure, 2005.

T. Lisle, Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermography, Composites Part A: Applied Science and Manufacturing, vol.53, pp.75-87, 2013.
DOI : 10.1016/j.compositesa.2013.06.004

URL : https://hal.archives-ouvertes.fr/hal-00858882

T. Lisle, Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermography, Composites Science and Technology, vol.112, pp.22-33, 2015.
DOI : 10.1016/j.compscitech.2015.03.005

L. Freund and J. Hutchinson, High strain-rate crack growth in rate-dependent plastic solids, Journal of the Mechanics and Physics of Solids, vol.33, issue.2, pp.169-191, 1985.
DOI : 10.1016/0022-5096(85)90029-8

G. Taylor and H. Quinney, The Latent Energy Remaining in a Metal after Cold Working, Royal society A: mathematical, physical and engineering sciences, 1934.
DOI : 10.1098/rspa.1934.0004

URL : http://rspa.royalsocietypublishing.org/content/royprsa/143/849/307.full.pdf

D. Rittel, On the conversion of plastic work to heat during high strain rate deformation of glassy polymers, Mechanics of Materials, vol.31, issue.2, pp.131-139, 1999.
DOI : 10.1016/S0167-6636(98)00063-5

Z. Li and J. Lambros, Strain rate effects on the thermomechanical behavior of polymers, International Journal of Solids and Structures, vol.38, issue.20, pp.3549-3562, 2001.
DOI : 10.1016/S0020-7683(00)00223-7

O. Benevolenski, Mode I fracture resistance of glass fiber mat-reinforced polypropylene composites at various degree of consolidation, Composites Part A: Applied Science and Manufacturing, vol.34, issue.3, pp.267-273, 2003.
DOI : 10.1016/S1359-835X(02)00045-3

T. Rouault, Reversible Rail Shear Apparatus Applied to the Study of Woven Laminate Shear Behavior, Experimental Mechanics, vol.580, issue.2, pp.1-12, 2013.
DOI : 10.1016/j.commatsci.2012.04.010

M. Bizeul, Contribution a ` l'e ´tude de la propagation de coupure en fatigue dans les revêtements composites tissés minces, 2009.

M. Bizeul, Fatigue crack growth in thin notched woven glass composites under tensile loading. Part I: Experimental, Composites Science and Technology, vol.71, issue.3, pp.289-296, 2011.
DOI : 10.1016/j.compscitech.2010.11.019

M. Bizeul, Fatigue crack growth in thin notched woven glass composites under tensile loading. Part II: Modelling, Composites Science and Technology, vol.71, issue.3, pp.297-305, 2011.
DOI : 10.1016/j.compscitech.2010.11.017

F. Gao, Damage accumulation in woven-fabric CFRP laminates under tensile loading: Part 1. Observations of damage accumulation, Composites Science and Technology, vol.59, issue.1, pp.123-136, 1999.
DOI : 10.1016/S0266-3538(97)00231-5

Y. Kergomard, Intralaminar and interlaminar damage in quasi-unidirectional stratified composite structures: Experimental analysis, Composites Science and Technology, vol.70, issue.10, pp.1504-1512, 2010.
DOI : 10.1016/j.compscitech.2010.05.006

URL : https://hal.archives-ouvertes.fr/hal-00509907

N. Alif and L. Carlsson, Failure Mechanisms of Woven Carbon and Glass Composites, pp.471-493, 1997.
DOI : 10.1520/STP19943S

, Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate, D3518/D3518M-13, 2001.

L. Lessard, O. Eilers, and M. Shokrieh, Modification of the Three-Rail Shear Test for Composite Materials Under Static and Fatigue Loading, pp.217-233, 1997.
DOI : 10.1520/STP18278S

D. Greef, N. Gorbatikh, L. Lomov, S. Verpoest, and I. , Damage development in woven carbon fibre/epoxy composites modified with carbon nanotubes under tension in the bias direction, Compos A, issue.11, pp.421635-1644, 2011.

G. Couégnat, Approche multiéchelle du comportement mécanique de matériaux composites a ` renfort tissé. Université Sciences et Technologies, 2008.

M. Karahan, Investigation of damage initiation and propagation in 2 ?? 2 twill woven carbon/epoxy multi-layer composites, Textile Research Journal, vol.13, issue.4, pp.412-428, 2011.
DOI : 10.1016/S1359-835X(00)00110-X

C. Lemaignan, La Rupture des matériaux, EDP sciences, 2003.

B. Fiedler, Failure behavior of an epoxy matrix under different kinds of static loading, Composites Science and Technology, vol.61, issue.11, pp.1615-1624, 2001.
DOI : 10.1016/S0266-3538(01)00057-4

T. Emery, A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis, Composites Science and Technology, vol.68, issue.3-4, pp.3-4743, 2008.
DOI : 10.1016/j.compscitech.2007.09.002

URL : https://hal.archives-ouvertes.fr/hal-00550275

A. Trojanowski, C. Ruiz, and J. Harding, Thermomechanical Properties of Polymers at High Rates of Strain, Le Journal de Physique IV, vol.07, issue.C3, pp.447-452, 1997.
DOI : 10.1051/jp4:1997377

URL : https://hal.archives-ouvertes.fr/jpa-00255534