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Abstract—This work proposes two learning architectures based 

on memristive nanodevices. First, we present an unsupervised 

architecture that is capable of discerning characteristic features 

in unlabeled inputs. The memristive nanodevices are used as 

synapses and learn thanks to simple voltage pulses which 

implement a simplified “Spike Timing Dependent Plasticity” 

rule. With system simulation, the efficiency of this scheme is 

evidenced in terms of recognition rate on the textbook case of 

character recognition. Simulations also show its extreme 

robustness to device variations. Second, we present a supervised 

architecture that can learn if the classification of every input is 

given. Simulations prove its efficiency. A good robustness to 

device variation is seen, but not to the level of the unsupervised 

approach. Finally, we show that both approaches can be 

combined, with variation robustness higher than in the 

supervised case. This opens important prospects, like the 

possibility to first train the system in an unsupervised way with 

unlabeled data, while still benefiting of the simplicity to program 

a supervised system. 

Keywords: memristive devices, unsupervised learning, 

supervised learning, learning architecture, device variations, 
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I.  INTRODUCTION  

In recent years, the implementation of neuroinspired 
systems that exploit nanoelectronics has become extremely 
popular and has led to the emergence of major projects [1], [2]. 
Indeed, different nanoscale devices (like “memristive” devices 
[3–5]) could implement functions analogous to the biological 
synapses (the connections between neurons in the brain). Since 
the lack of a compact synapse has largely hindered the 
development of neuroinspired electronic systems until now [6], 
this raises the hope of a groundbreaking, smarter and efficient 
electronics. This is all the more expected, since neuroinspired 
approaches may not suffer from the variation issue of most 
nanoscale technologies [4], [7], [8]. 

In all this research, for using nanodevices as synapses, two 
competitive paradigms have emerged: the ones based on the 
unsupervised and supervised approaches, respectively. 
Currently, the prevalent approach consists in the imitation of a 
learning rule found in Biological synapses, Spike Timing 

Dependent Plasticity (STDP) [9], either faithfully [10], [5], 
[11], [12] or under a simplified form [13], [14]. These 
approaches work under the unsupervised learning paradigm: 
some data used for training are presented to the network, which 
learns naturally to identify correlations or specific features 
among them, without any need for a supervisor. Because of the 
biological inspiration, this raises the hope of providing brain-
type intelligence and efficiency to electronic system. However, 
how to actually unleash this potential and program such 
networks is still an open question, although some simulations 
have already suggested impressive real life applications [15].  

On the other hand, schemes imitating the classical 
supervised neural networks have been proposed [16–19]. Such 
networks offer the benefit of being straightforward and natural 
to program. Their capabilities are also well understood thanks 
to several decades of research in the neural network field [20]. 
However, they are not as flexible and adapted to process 
natural and unexpected data as bioinspired unsupervised 
networks could be. They indeed require well identified (or 
labeled) data for training.  

These considerations suggest how it may be useful to 
combine both approaches to benefit from the best of both 
worlds. In this work, we exploit our special purpose simulator 
(“Xnet”) [13], [15], to propose and validate an architecture 
based on nanoscale synapses that use both supervised and 
unsupervised paradigms and possess the advantages of both 
approaches. 

A serious issue hindering the development of 
nanoelectronics is the device variation (or device mismatch) 
issue, which affects all memristive nanodevices particularly. 
Though progress towards technological maturity will improve 
the situation, it is expected to be intrinsic to ultra-small sizes 
that make the devices particularly sensitive to any variation in 
the fabrication process. This raises a challenge to the design of 
circuits and systems able to exploit their new functionalities. In 
this work, special attention is given to this issue, and we 
evaluate the robustness of our proposed strategies to device 
variations in detail. 

The article is organized as follows. First, we introduce the 
unsupervised scheme. Then we assess its performance on a 
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textbook case (character recognition) and its robustness to 
variation. A similar work is then performed on the supervised 
scheme. Finally, the combination of both schemes into a single 
system is studied. 

II. UNSUPERVISED LEARNING SCHEME 

In an unsupervised learning scheme, training data is 
presented to the system that must learn to establish correlations 
and to “interpret” the data, without any information on what is 
being presented. To demonstrate such functionality, we build 
on the simplified STDP scheme introduced in [13] that can be 
implemented with simple voltage pulses. For implementation, 
it requires bipolar memristive nanodevices with intermediate 
resistive states like in [5], which are used as synapses. As a 
replacement, it may also exploit phase change memories 
associated in “2-PCM” circuits as evidenced experimentally in 
[14] (which has the advantage of good technological maturity). 
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CMOS output neurons

(integrate & fire neurons)

nanodevice

 

Figure 1.   General architecture for the unsupervised case 
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Figure 2.   Illustration of the three stimulus coding schemes (a), (b), (c). 

Stimulus spikes timing for ten input neurons with the same pixel value in the 
three schemes. All three coding schemes give identital performance in terms 

of recognition rate. (b) is used for simulations presented in the paper. 
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Figure 3.  Our simplified STDP rule compared with the standard biological 

STDP rule. 

A. Basic Principle 

In this architecture, CMOS input and output “neurons” are 
connected by the memristive nanodevices (that act as 
“synapses”). Their conductance plays the role of a synaptic 
“weight”. It is natural to lay out the nanodevices in the classical 
crossbar as illustrated on Figure 1 (CMOS silicon neurons and 
their associated synaptic driving circuitry are the dots, the 
squares being the nanodevices). The synapses indeed act as 
adaptive resistors. With the crossbar layout, if several synapses 
are active at the same time (i.e. receiving voltage spikes), the 
output receives directly the sum of the currents flowing 
through the synapses. In a more futuristic design, the system 
could also be laid out in a CMOL architecture where 
nanodevices crossbar is fabricated on top of the CMOS 
neurons and driving circuits [16]. 

This kind of connectivity corresponds to a “feed-forward” 
architecture in the neural networks community. Of particular 
interest, in the case of our network, it avoids the “sneak path” 
issue because both programming and reading are performed in 
parallel. This issue usually limits the competitiveness of 
crossbars [21] and requires complex counter-measures like 
complementary resistive switches [22]. 

The input neurons present the input (or stimuli in neural 
terms) as asynchronous voltage spikes using several possible 
coding schemes described in Figure 2 (spiking rate is 
proportional to stimulus intensity). All stimuli encoding 
schemes lead to identical performance of the final system in 
terms of recognition rate. These stimuli may originate for 
example directly from a spiking retina [23] or cochlea [24] 
commonly designed in the neuromorphic community that 
naturally present data as asynchronous spikes, similarly to 
biological retina or cochlea.  

As a result of learning, the output neurons will become 
selective to the different stimuli classes that are presented in a 
fully unsupervised manner: the output neurons will develop 
selectivity to specific features contained in the input patterns. 

The CMOS output neurons are Leaky Integrate and Fire 
type [13]. They may be implemented with CMOS analog 
“neuromorphic” circuits [6], or digital circuitry [25]. 
Additionally, the system features “lateral inhibition” and 
“homeostatis”, which were described in [13]. 



B. Simplified STDP Rule 

The learning rule of the memristive nanodevices needs to 
be fully local, so that it can be implementable in the crossbar 
architecture. It consists in a “simplified Spike Timing 
Dependent Plasticity” rule, illustrated in Figure 3, and which 
works as follows. When an output neuron spikes: 

 If input neurons spiked within a given time window 
preceding the output’s spike, the conductance of the 
synapses connecting these input neurons and the output 

neuron are increased by a step G+ 

 In any other case, the conductance of the synapses 
connecting the input neurons to the output neuron are 

decreased by a step G- 

As seen in Figure 3, this constitutes an extreme 
simplification of the biological STDP rule, which is believed to 
be a foundation of learning by the brain [9].  

Voltage applied on the device…
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Figure 4.   Pulses for simplified STDP (voltage pulses as a function of time). 

When an input neuron spikes, it applies an input pulse to the nanodevices to 

which it is connected. When an output neuron spikes it applies an output pulse 
to the nanodevices to which it is connected. When the voltage applied on the 

device (difference between the voltages applied at the two ends) reaches  a 

memristive device threshold (VT+ or VT-), its conductance is increased by a 

quantity G+, or decreased by G-, respectively 

 

Figure 4 shows a set of simple voltage pulses which may 
implement this learning rule. They have the advantage of 
extreme simplicity. When an input neuron spikes, it applies a 
long voltage pulse that is sufficient to drive current into the 
memristive devices, but not enough to change their 
conductance. When an output neuron spikes, it applies a 
specific waveform. If an input neuron connected to the output 
neuron is not active, this waveform causes the conductance of 
the memristive device connecting the two neurons to decrease. 
If the input is still active, the difference of the two voltages 

applied on the memristive device causes its conductance to 
increase. 

The disadvantage of the pulses of Figure 4 is the long input 
pulse which can be power hungry with some device 
technology. Figure 5 shows an alternative to these pulses, 
which is demanding lower power [14] for the cost of limited 
added complexity. The input neuron does not apply a voltage 
pulse during whole time it is active, but only at the beginning 
to drive current into the output neuron, and when a signal is 
sent back to it when one of the output neuron becomes active. 

…if Output spikes while Input is still active

VT+

Voltage

Time
Input Neuron active

 

Figure 5.   Low power variationof the pulses of Figure 4. 

For device modeling, we use the model introduced and 
experimentally verified in [26] for memristive devices used as 
analog memories. An increase in the conductance is modeled 
by the equation: 
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Similarly, a decrease is modeled by: 
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Gmin and Gmax are the minimum and maximum 

conductances of the nanodevices. + and _ characterize the 

conductance step induced by each voltage pulse. + and - are 
fitting parameters. The choice of all these parameters is 
inspired by the experimental measurements of [5] and is listed 
in Table I. 

C. Results 

 

Figure 6.   Conductances learned in a simulation with 10 output neurons. Red 

is maximum cinductance (Gmax), blue is minimum conductance (Gmin). 

 



For demonstration of the concept, in this paper we use the 
widely studied case of handwritten digits recognition. The 
MNIST database is used, which consists in 60,000 
handwritten digits of 28x28 pixels by 250 writers [27]. 
Although this may not be the final application for our system, 
this constitutes the most studied problem in machine learning 
and is a mandatory step to evaluate our approach. In this 
paper, all simulations are system-level and are based on a C++ 
special purpose code (“Xnet”) [13], [15]. The code is event-
based for simulation performance and runs on conventional 
CPUs. It simulates the equations of the network, using the 
voltage pulses shown in Figures 4 or 5. 
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Figure 7.   (a) Recognition rate during learning for simulations with different 

numbers of output neurons (from bottom to top: 10, 50, 100, 300). The 

recognition rates are running averages on 10,000 iterations. (b) Recognition 
rate on the test dataset as a function of the numer of output neurons 

In order to achieve learning, we present the full MNIST 
training database (60,000 digits) three times to the circuit. 
Each input neuron is connected with one pixel of the image. It 
emits spikes with a jittered rate that is proportional to the pixel 
intensity (Figure 2(b)). The initial phase is random. No kind of 
preprocessing on the digits is used and the set is not 
augmented with distortions. The network is then tested on the 
MNIST test database (10,000 digits), which consists in digits 
that have not been presented during training. 

Figure 6 plots the conductances learned by the system in a 
configuration with only 10 output neurons. It is remarkable 
that without any supervision and using only our local custom 
STDP rule, the system has identified 9 (out of 10) different 
numbers, the real features of the input. Moreover it has 

learned the distinctive features of the digits (and not just the 
most likely handwriting): it has learnt the loop of the digit 
two, the bottom of the six, or the horizontal parts of three and 
eight. 

To evaluate the performance of the system, we can define a 
recognition rate. For that purpose, we associate output neurons 
with the digit for which they spike the most frequently a 
posteriori. In hardware this association could be performed 
with complex digital circuitry, and constitutes a difficulty. A 
satisfactory approach is presented in section IV of this paper, 
with the association of a supervised neural network.  

A running average of the recognition rate during learning is 
shown in Figure 7(a). Whichever the number of output 
neurons, the network learns rapidly during the first 10,000 
digit presentation and then keeps improving its performance 
gradually. The final performance is given as the mean 
recognition rate on the test database. It is actually higher than 
the performance on the training set seen in Figure 7(a), and is 
plotted in Figure 7(b). With ten output neurons the recognition 
rate reaches 60 %. For better performance, more output 
neurons are needed. With 50 output neurons the recognition 
rate reaches 81% and with 300 output neurons 93.5 %. A 
traditional artificial neural network with back-propagation 
with 300 hidden neurons (that has the same number of 
adjustable parameters) reaches 95 % [27], which compares to 
our rate of 93.5 %. In the literature, the best algorithm has a 
largely superior 99.7 % recognition rate, but has 12 million 
adjustable parameters (vs. 235,200 here) and uses a largely 
augmented training set [28]. Though our numbers are more 
modest, the interest here is that the network is fully 
unsupervised with extremely simple local learning rules. 

The two variations of voltages pulses (Figures 4 and 5) gave 
identical performance in terms of recognition rate. All the 
results presented in the paper use the pulses of Figure 4. 

Important, thanks to the unsupervised nature of learning, the 
complicated “labeling” step does not need to be performed 
right away. Lots of unknown data may be presented for 
training, and the labeling can be performed from a limited 
subset of well identified data. This is a strong advantage: for 
many problems involving natural data. Often, we have a lot of 
data, but that were not classified, and the system can here 
perform this analysis by itself. 

D. Extreme robustness to device variations 

One of the most important features of the unsupervised 

learning scheme is its extreme robustness to device variation. 

For every memristive devices, we considered variations in the 

parameters 
, 

 of equations (1) and (2), the minimum 

conductance Gmin, and the maximum conductance Gmax. To 

this purpose, we performed Monte Carlo simulations of our 

system, with all the parameters of all devices computed from a 

Gaussian probability law. Every simulation was repeated five 

times, and the average recognition rate is given. Figure 8 plots 

the degradation of the recognition rate, when device variation 

is increased. We see that the network is immune to variations 

up to 25% of the mean value of all these parameters, which 

constitutes an extremely high level of variation for an electron 



device (but typical for research nanodevices [7], [8]). With 

50% of variation, there is a small decrease of the recognition 

rate. With a dramatic variability of 100% on the synaptic 

parameters, the recognition rate decreases significantly, but 

interestingly the functionality of the network is not challenged. 

We should note that with a variability of 50%, 4% of the 

nanodevices cannot be programmed in at least one direction 

(i.e. they have an  value of 0). The latter figure becomes 30% 

when parameter variability is 100%. This shows the overall 

tolerance to defects. 

Figure 8 was computed for a system with 50 outputs. The 

results were similar for a system with 300 outputs (which 

appeared slightly more robust). 

This degree of robustness to device variation is exceptional 

in electronic system and constitutes one of the strongest points 

of the approach. It takes root in the unsupervised nature of 

learning: output neurons learn features for which they are 

naturally “fit”. The variability is thus not a problem but a germ 

for learning. The extreme simplicity of the voltages pulses is 

also fundamental to ensure the robustness. 
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Figure 8.   Robustness to devcie variation for the three schemes 

(unsupervised, supervised, combined). Degradation of the system’s 

recognition rate as a function of device variability. The variable parameters 

are 
, 

 , Gmin, Gmax. 

III. SUPERVISED LEARNING SCHEME 

A. Basic Principle 

Using the same kind of nanodevices, a similar scheme may 
be developed to implement supervised learning, while retaining 
some variation insensitivity.  

It is comparable to the unsupervised scheme and also uses 
the general architecture of Figure 1, but there is no voltage 
applied on the nanodevices when an output neuron spikes. The 
system works as follow. The input neurons present a digit 
during a given time, using one of the coding scheme of 
Figure 2. After this time period, input and output neurons apply 
a programming pulse on the nanodevices as illustrated on 
Figure 9. The input neurons apply a pulse only if they spiked 
during the period. The output neurons apply a voltage pulse 
depending on their situation, which can only program the 

nanodevices in conjunction with a waveform on the input 
neuron end.  

If the output neuron was expected to spike (it corresponds 
to the digit actually presented), the connections to the input 
neurons that spiked should be strengthened. The output neuron 
applies a negative spike that will strengthen the positive part 
of pre-synaptic pulses, and increase the conductances of 
nanodevices that present such pulses. If the output neuron was 
not expected to spike, inversely it should apply a positive 
pulse to weaken the synapses connected to input neurons that 
spiked. If the output neuron actually spiked (i.e. made a 
mistake) a pulse is applied to significantly reduce the 
conductances. If it did not spike (and thus was right) – which 
is the most typical situation – the pulse is lowered in order to 
only weakly weaken the conductances (and not cause the 
conductances to decrease too rapidly). 

B. Results 

A first test is to apply the scheme directly to the MNIST 
database. The parameters of the simulation are listed in Table I. 
The network performance on the testing set is 87.5%. The 
perceptron, a standard supervised neural network with similar 
complexity, has a performance of 88% [27].  

If the input neuron spiked it applies….

If the output neuron was supposed to spike…

- but spiked

- and did not spike

If the output neuron was not supposed to spike…

Vinput

Time

Time

Voutput

Time

Voutput

Time

Voutput
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Figure 9.   Voltage pulses used for supervised learning (voltage pulses as a 

function of time). 

Thanks to the pass/fail approach a good variation to 
variability is achieved, although it is not as good as in the 
unsupervised scheme of section 3. With 10% variability on 

, 


 , Gmin, Gmax performance (averaged on 5 runs) is reduced to 

86.2%. With 25% variability it is reduced to 83.2%, and with 
50% variability to 75.7%. This constitites impressive 



robustness, but is actually not to the level of the unsupervised 
approach, as shown in Figure 8.  

This scheme is not as robust as the previous one, because 
the system cannot decide which output neuron will learn which 
feature (this is imposed by the supervisor). Some memristive 
devices (connecting important pixels of the input to an output 
neuron) can thus play an important role. For relative standard 
variation of the characteristics above 50%, some devices 
become effectively nonfunctional, and in particular some of 
these important devices, causing a substantial decrease of the 
recognition rate.  

If we compare with the unsupervised approach, the 
supervised one has the clear advantage of requiring less 
neurons and synapses, and to be simple to use. By contrast, it 
does not have its level of robustness to device variation. More 
important, it requires having every data used for training 
labeled since the system does not learn the distinguishable 
features itself as in unsupervised scheme, but based on the 
expected output. 

IV. COMBINATION 

We have proposed two schemes for designing learning-
capable architectures with nanodevices. They are in fact 
compatible. To illustrate this we propose a two-crossbar 
architecture, illustrated in Figure 10. Every output of the 
unsupervised crossbar is fed as an input spike to the supervised 
crossbar. 

CMOS 

input 

neurons

nanodevice

CMOS output 

neurons

(integrate & 

fire)

CMOS neurons 

(integrate & fire)

Unsupervised 

Crossbar

Supervised 

Crossbar

 

Figure 10.   Architecture combining unsupervised and supervised crossbar 

The role of the supervised layer is to label neurons trained 
by the unsupervised first layer of section II. It associates 
spikes on the output of the first layer with the actual digits 
presented. As illustrated on Figure 11, this works very well in 
practice. Until iteration 60,000 the supervised layer’s 
performance remains low, and then it matches the 
performance of the unsupervised layer, as calculated in section 
II. It can even become slightly become higher because the 
supervised layer is more adaptable than the majority rule used 
in section II. 

Of particular interest, the problem solved by the supervised 
crossbar is simpler than by that of section III. This makes it 
less sensitive to device variations, as seen in Figure 8. Even 

with variations of 
, 

, Gmin, Gmax of 25% the supervised 

layer performance is matching perfectly the unsupervised 
layer very well. Starting with variations of 50%, the 
degradation of the recognition rate is slightly worse, but still 
better than in purely supervised problem of section III. 

Globally, the supervision does not intrinsically improve the 
recognition rate, but provides a practical and flexible approach 
for the labeling operation. This opens up many opportunities. 
One ideal way to exploit the system is to first train the 
unlabeled layer on natural data, and then to perform a 
“labeling” on a small training set by activating the supervised 
layer. This works very well in the case of our MNIST dataset 
and identical recognition rate is obtained as with training the 
supervised layer with all the data when the supervised layer is 
trained with as little as 2,000 digits. This could be a useful 
way to process all kinds of natural data. We may collect tons 
of video, auditory and olfactory data and feed it to our 
adaptable electronic system. It would learn distinguishable 
features thanks to the unsupervised layer. Then a quick 
training with well identified data of the supervised layer can 
provide the system’s functionality. 
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Figure 11.   Two layer learning. Learning rate of the second (labeling) layer 

trained by variability compatible supervision (red) compared with learning of 
the first layer (black), as computed in the previous section. Variability of 10% 

on all parameters (initial conductances, 
, 

 ,Gmin, Gmax) 

TABLE I.  PARAMETERS USED IN THE SIMULATIONS 

Unsupervised 

Crossbar 

With conductances in normalized units (Gmax=1): 


 = 10-2, 

 = 5.10-3, 
minw  = 10-4, 

maxw  = 1, 

+ = 3.0, - = 3.0, the input pulses are 25 ms long, the 

output pulses 0.5 ms (as inspired by [5]). Neurons 

parameters are taken from [13].  
When a variability of X%, is applied on a parameter, 

it means that the standard deviation of the parameter 

is X% of its mean value. 
Device variability is always applied to Gmax, Gmin, 

 , 


 

Supervised 
Crossbar 

Same as unsupervised. For the weak conductance 

reduction 
 = 5.10-4 



V. CONCLUSION AND PERSPECTIVES 

We have presented two different learning approaches to 
exploit memristive nanodevices as synapses in neuroinspired 
systems. The STDP-based unsupervised approach can learn 
based on unlabeled data and has extreme tolerance to device 
variation (relative standard deviation of 50% may be tolerated 
on all significant device parameters). The supervised approach 
is simple to program but needs labeled data, and is not as 
tolerant. Both approaches can be combined, which opens the 
way of first training the system on a large dataset, and then of 
training the supervised layer on a small labeled subset to 
identify what has been learnt. In this situation, an excellent 
robustness to device variation is achieved. 

Such works highlight the credibility of the new computing 
paradigm associating neuroinspired systems and 
nanoelectronics, to provider “smarter” electronics, especially 
for embedded applications where the ability to process natural 
data efficiently and in real time can be particularly useful. 
Future works will focus on experimental demonstration beyond 
single device that we have already achieved [14] and new 
applications like video [15], auditory or olfactory data 
processing or the inference in complex databases. More 
complex networks, with several unsupervised layers will also 
be considered. 
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