J. Kubelka, J. Hofrichter, and W. A. Eaton, The protein folding 'speed limit, Current opinion in structural biology, vol.14, issue.1, pp.76-88, 2004.

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts et al., Molecular Biology of the Cell, 1994.

J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Funnels, pathways, and the energy landscape of protein folding: A synthesis, Proteins: Structure, Function, and Bioinformatics, vol.21, issue.3, pp.167-195, 1995.

K. Mssz, S. B. Smith, H. L. Granzier, and C. Bustamante, Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers, Science, vol.276, issue.5315, pp.1112-1116, 1997.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Reversible Unfolgind of Individual Titin Immunoglobulin Domains by AFM, Science, vol.276, pp.1109-1112, 1997.

A. Del-rio, R. Perez-jimenez, R. Liu, P. Roca-cusachs, J. M. Fernandez et al., Stretching Single Talin Rod Molecules Activates Vinculin Binding, Science, vol.323, issue.5914, pp.638-641, 2009.

C. P. Johnson, H. Tang, C. Carag, D. W. Speicher, and D. E. Discher, Forced Unfolding of Proteins Within Cells, Science, vol.317, issue.5838, pp.663-666, 2007.

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, issue.6968, pp.884-890, 2003.

I. Schwaiger, A. Kardinal, M. Schleicher, A. A. Noegel, and M. Rief, A mechanical unfolding intermediate in an actin-crosslinking protein, Nat Struct Mol Biol, vol.11, issue.1, pp.81-85, 2004.

P. E. Marszalek, H. Lu, H. Li, M. Carrion-vazquez, . Oberhauser-af et al., Mechanical unfolding intermediates in titin modules, Nature, vol.402, pp.100-103, 1999.

A. F. Oberhauser, P. K. Hansma, M. Carrion-vazquez, and J. M. Fernandez, Stepwise unfolding of titin under force-clamp atomic force microscopy, Proceedings of the National Academy of Sciences of the United States of America, vol.98, issue.2, pp.468-472, 2001.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub et al., Unfolding Pathways of Individual Bacteriorhodopsins, Science, vol.288, issue.5463, pp.143-146, 2000.

M. T. Woodside and S. M. Block, Reconstructing folding energy landscapes by single-molecule force spectroscopy, Annual review of biophysics, vol.43, p.19, 2014.

K. Neupane, D. A. Foster, D. R. Dee, H. Yu, F. Wang et al., Direct observation of transition paths during the folding of proteins and nucleic acids, Science, vol.352, issue.6282, pp.239-242, 2016.

M. L. Hughes and L. Dougan, The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding, Rep Prog Phys, vol.79, issue.7, p.76601, 2016.

T. Ando, N. Kodera, Y. Naito, T. Kinoshita, F. Ky et al., A High-speed Atomic Force Microscope for Studying Biological Macromolecules in Action, ChemPhysChem, vol.4, issue.11, pp.1196-1202, 2003.

M. B. Viani, T. E. Schaffer, A. Chand, M. Rief, H. E. Gaub et al., Small cantilevers for force spectroscopy of single molecules, J Appl Phys, vol.86, pp.2258-2262, 1999.

F. Rico, L. Gonzalez, I. Casuso, M. Puig-vidal, and S. Scheuring, High-Speed Force Spectroscopy Molecular Dynamics Simulations, Science, vol.342, pp.741-743, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01309044

H. Yu, M. G. Siewny, D. T. Edwards, A. W. Sanders, and T. T. Perkins, Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins, Science, vol.355, issue.6328, pp.945-950, 2017.

A. Rigato, A. Miyagi, S. Scheuring, and F. Rico, High-frequency microrheology reveals cytoskeleton dynamics in living cells, Nature Physics, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01764684

D. T. Edwards, J. K. Faulk, A. W. Sanders, M. S. Bull, R. Walder et al., Optimizing 1-mus-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope, Nano Lett, vol.15, issue.10, pp.7091-7098, 2015.

F. Rico, L. Gonzalez, I. Casuso, M. Puig-vidal, and S. Scheuring, High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations, Science, vol.342, issue.6159, pp.741-743, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01309044

H. Yu, M. Siewny, D. T. Edwards, A. W. Sanders, and T. T. Perkins, Hidden dynamics in the 27 unfolding of individual bacteriorhodopsin proteins, Science, vol.355, issue.6328, pp.945-950, 2017.

R. Kassies, K. O. Van-der-werf, M. L. Bennink, and C. Otto, Removing interference and optical feedback artifacts in atomic force microscopy measurements by application of high frequency laser current modulation, Rev Sci Instrum, vol.75, issue.3, pp.689-693, 2004.

M. Carrion-vazquez, A. F. Oberhauser, S. B. Fowler, P. E. Marszalek, S. E. Broedel et al., Mechanical and chemical unfolding of a single protein: A comparison, Proceedings of the National Academy of Sciences, vol.96, issue.7, pp.3694-3699, 1999.

T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito et al., A high-speed atomic force microscope for studying biological macromolecules, Proceedings of the National Academy of Sciences, vol.98, issue.22, pp.12468-12472, 2001.

B. Zakeri, J. O. Fierer, E. Celik, E. C. Chittock, U. Schwarz-linek et al., Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin, Proc Natl Acad Sci U S A, vol.109, issue.12, 2012.

M. Otten, W. Ott, M. A. Jobst, L. F. Milles, T. Verdorfer et al., From genes to protein mechanics on a chip, Nat Methods, vol.11, issue.11, 2014.
DOI : 10.1038/nmeth.3099

URL : http://europepmc.org/articles/pmc4216144?pdf=render

C. Schoeler, K. H. Malinowska, R. C. Bernardi, L. F. Milles, M. A. Jobst et al.,

E. A. Bayer and K. Schulten, Ultrastable cellulosome-adhesion complex tightens under load, Nature Communications, vol.5, 2014.

D. A. Pippig, F. Baumann, M. Strackharn, D. Aschenbrenner, and H. E. Gaub, Protein-DNA chimeras for nano assembly, ACS Nano, vol.8, issue.7, pp.6551-6555, 2014.
DOI : 10.1021/nn501644w

I. Popa, R. Berkovich, J. Alegre-cebollada, C. L. Badilla, J. A. Rivas-pardo et al., Nanomechanics of HaloTag tethers, J Am Chem Soc, vol.135, issue.34, pp.12762-12771, 2013.

M. Otten, W. Ott, M. A. Jobst, L. F. Milles, T. Verdorfer et al., From genes to protein mechanics on a chip. Nat Meth advance online publication, 2014.

J. L. Zimmermann, T. Nicolaus, G. Neuert, and K. Blank, Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments, Nat Protoc, vol.5, issue.6, pp.975-985, 2010.

J. Yin, A. J. Lin, D. E. Golan, and C. T. Walsh, Site-specific protein labeling by Sfp phosphopantetheinyl transferase, Nat Protoc, vol.1, issue.1, pp.280-285, 2006.

E. Durner, W. Ott, M. A. Nash, and H. E. Gaub, Post-Translational Sortase-Mediated Attachment of High-Strength Force Spectroscopy Handles, ACS Omega, vol.2, issue.6, pp.3064-3069, 2017.

X. Zhang, F. Rico, A. J. Xu, and V. T. Moy, Atomic Force Microscopy of Protein-Protein Interactions, pp.555-570, 2009.

J. L. Hutter and J. Bechhoefer, Calibration of atomic-force microscope tips, Rev Sci Instrum, vol.64, issue.7, pp.1868-1873, 1993.

H. J. Butt and M. Jaschke, Calculation of thermal noise in atomic force microscopy, Nanotechnology, vol.6, pp.1-7, 1995.

J. E. Sader, J. Chon, and P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers, Review of Scientific Instruments, vol.70, issue.10, pp.3967-3969, 1999.

J. E. Sader, I. Larson, P. Mulvaney, and L. White, Method for the calibration of atomic force microscope cantilevers, Rev Sci Instrum, vol.66, issue.7, pp.3789-3798, 1995.

M. J. Higgins, R. Proksch, J. E. Sader, M. Polcik, M. Endoo et al., , 2006.

, Noninvasive determination of optical lever sensitivity in atomic force microscopy, Review of Scientific Instruments, vol.77, issue.1, pp.1-5

H. Schillers, C. Rianna, J. Schäpe, T. Luque, H. Doschke et al., , 2017.

, Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples. Scientific Reports, vol.7, issue.1, p.5117

J. E. Sader, R. Borgani, C. T. Gibson, D. B. Haviland, J. Michael et al., A virtual instrument to standardise the calibration of atomic force microscope cantilevers, 2016.

H. Janovjak, J. Struckmeier, and D. J. Müller, Hydrodynamic effects in fast AFM single-molecule force measurements, European Biophysics Journal, vol.34, issue.1, pp.91-96, 2005.

J. Alcaraz, L. Buscemi, M. Puig-de-morales, J. Colchero, A. Baro et al., Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever, Langmuir, vol.18, issue.3, pp.716-721, 2002.

C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Entropic elasticity of lambda-phage DNA, 1994.

, Science, vol.265, pp.1599-1600, 1994.

C. Ortiz and G. Hadziioannou, Entropic elasticity of single polymer chains of poly(methacrylic acid) measured by atomic force microscopy, Macromol, vol.32, pp.780-787, 1999.

L. Livadaru, R. R. Netz, and H. J. Kreuzer, Stretching response of discrete semiflexible polymers, Macromolecules, vol.36, issue.10, pp.3732-3744, 2003.

G. Bell, Models for the specific adhesion of cells to cells, Science, vol.200, issue.4342, pp.618-627, 1978.

E. Evans and K. Ritchie, Dynamic Strength of Molecular Adhesion Bonds, Biophys J, vol.72, pp.1541-1555, 1997.

O. K. Dudko, G. Hummer, and A. Szabo, Intrinsic rates and activation free energies from singlemolecule pulling experiments, Physical Review Letters, vol.96, issue.10, 2006.

R. W. Friddle, D. Noy-a, and J. J. Yoreo, Interpreting the widespread nonlinear force spectra of intermolecular bonds, Proceedings of the National Academy of Sciences, vol.109, issue.34, pp.13573-13578, 2012.

E. Evans and K. Ritchie, Strength of a weak bond connecting flexible polymer chains, Biophys J, vol.76, issue.5, pp.77399-77405, 1999.

A. Maitra and G. Arya, Model accounting for the effects of pulling-device stiffness in the analyses of single-molecule force measurements, Phys Rev Lett, vol.104, issue.10, p.108301, 2010.

J. T. Bullerjahn, S. Sturm, and K. Kroy, Theory of rapid force spectroscopy, Nat Commun, vol.5, 2014.

G. Hummer and A. Szabo, Kinetics from nonequilibrium single-molecule pulling experiments, 2003.

, Biophys J, vol.85, issue.1, pp.5-15

, Power spectral density (PSD) of the thermal fluctuations of a cantilever (AC10DS) in air with the respective fit to cantilever's first mode. The spring constant determined using the Sader method was 0.11 N/m, the fitted resonance frequency and Q-factor were 1487 kHz and 35, respectively. (b) PSD of the thermal fluctuations of the same cantilever (AC10DS) in liquid with the respective fit to cantilever's first mode. The invOLS value was 76