Modelling of the production kinetics of the main fermentative aromas in winemaking fermentation

Jean-Roch Mouret, Vincent Farines, Jean-Marie Sablayrolles, Ioan-Cristian Trelea

To cite this version:
Jean-Roch Mouret, Vincent Farines, Jean-Marie Sablayrolles, Ioan-Cristian Trelea. Modelling of the production kinetics of the main fermentative aromas in winemaking fermentation. 2. Euro Mediterranean Symposium for Fruit and Vegetable Processing, Apr 2016, Avignon, France. 2016. hal-01837787

HAL Id: hal-01837787
https://hal.archives-ouvertes.fr/hal-01837787
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modeling of the production kinetics of the fermentative aromas in winemaking conditions
Introduction

Alcoholic fermentation in winemaking

- Objective: better control of this major step of the winemaking process to act on the wine characteristics

- Possibility to on-line monitor and control the main reaction (bioconversion of sugar into ethanol and CO₂) by using current devices based on the measurement of density, CO₂ production…

- Dynamic models available to predict the main reaction … but no consideration of fermentative aromas

→ Needs for new approaches:

 Online monitoring of higher alcohols and esters

 Dynamic modeling of the synthesis of these volatile compounds
Online monitoring of fermentative aromas

- Heated transfer lines
- Valve selector

Cold trap - GC

- 16 carbon compounds analysed
- Maximum analysis frequency: 1h (with 1 tank)

(Morakul et al., 2011, 2013)
(Mouret et al., 2012, 2014)
Online monitoring of fermentative aromas

Compounds measured online (once hourly):

- **Higher alcohols**: propanol, isobutanol, isoamyl alcohol, phenyl ethanol
- **Acetate esters**: ethyl acetate, isoamyl acetate, isobutyl acetate, phenyl ethyl acetate
- **Ethyl esters**: ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl dodecanoate
- **H₂S**
Experimental plan
Impact of T° and initial nitrogen content

- Focus on 5 volatile compounds, in synthetic medium:
 - 2 higher alcohols: propanol, isobutanol, isoamyl alcohol
 - 1 acetate ester: isoamyl acetate
 - 2 ethyl esters: ethyl hexanoate, ethyl octanoate
Yields of production from sugar

(Yield = f(T°, initial nitrogen))

(Mouret et al., 2014)

- 2 successive production phases from sugar for the 5 aromas
 - Transition when nitrogen = 0 for higher alcohols and acetate ester
 - Transition at fixed consumed sugar C° for ethyl esters
Modeling of the production yields

\[Isoamyleacl = Y_{Isoamylealc\ 1} \times S_{conso\ 1} + Y_{Isoamylealc\ 2}(N0, T) \times S_{conso\ 2} \]

\[Y_1 = \exp(p_1 + p_2 N_0 + p_3 T + p_4 N_0^2 + p_5 T^2 + p_6 N_0 T) \]

\[Y_2 = \exp(p_7 + p_8 N_0 + p_9 T + p_{10} N_0^2 + p_{11} T^2 + p_{12} N_0 T) \]

(Mouret et al., 2015)
Modeling of the kinetic of the main reaction of the fermentation: MOMAF

- MOMAF (MOdeling of the Main reaction of Alcoholic Fermentation)
- Input values
 - Initial sugar and nitrogen content
 - T° profile (including anisotherm)
- Prediction of
 - Sugar and nitrogen consumption
 - Biomass, ethanol and CO₂ production
 - CO₂ production rate
 - Fermentation duration

(Malherbe et al., 2004)
Modeling of the kinetics of production of fermentative aromas

✓ To predict the kinetics of production of volatile compounds, modeling of the production yields from sugar must be coupled to the MOMAF model

\[Isoamyleacl = Y_{Isoamylealc\ 1} \times S_{conso\ 1} + Y_{Isoamylealc\ 2}(N0, T) \times S_{conso\ 2} \]

✓ To use the production yields, the key point is to determine the consumed sugar C° corresponding to the transition between the 2 phases of linear production: ‘S_transition’

✓ S_transition is
 - constant in all conditions for ethyl esters
 - dependent on the initial nitrogen C° for the higher alcohols and the acetate ester
 - Independent of T° for all compounds
Modeling of the kinetics of production of fermentative aromas

MODAPEC (MODeling of Aroma Production in Enological Conditions)

Deviation less than 7% between experimental and calculated values for both the fermentations used to build the model and those used for validation
Conclusions and perspectives

✓ Main results:

- Identification of two linear production phases from sugar for the 5 studied fermentative aromas
- Possibility to simulate, for the first time, the production kinetics of these fermentative aromas from the 2 main factors affecting the fermentation process: nitrogen content and T°

✓ Next steps:

- Modeling of the production kinetics of other aromas
- Effects of other parameters: lipids, O₂ and nitrogen addition
- Genericity of the results: natural must, other strains?
- Development of innovative strategies aiming to maximize or minimize the synthesis of fermentative aromas, by controlling fermentation parameters
Thank you for your attention

Many thanks to:
- UMR SPO – INRA Montpellier
- INRA Pech Rouge
- UMR GMPA – AgroParisTech, INRA Grignon

Financial support:
- European CAFE project from the 7th PCRD (KBBE – 212754)
- BIOFLAVOUR COST Action FA0907

It’s not so simple !!!!