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Abstract: Oxidative stress is a major cause of drug-induced hepatic diseases and several studies
have demonstrated that diet supplementation with plants rich in antioxidant compounds provides
a variety of health benefits in these circumstances. Genista quadriflora Munby (Gq) and Teucrium
polium geyrii Maire (Tp) are known to possess antioxidant and numerous biological properties and
these endemic plants are often used for dietary or medicinal applications. Herein, we evaluated
the beneficial effect of rich-polyphenol fractions of Gq and Tp to prevent Acetaminophen-induced
liver injury and investigated the mechanisms involved in this protective action. Rats were orally
administered polyphenolic extracts from Gq or Tp (300 mg/kg) or N-acetylcysteine (NAC: 200 mg/kg)
once daily for ten days prior to the single oral administration of Acetaminophen (APAP: 1 g/kg).
The results show that preventive administration of polyphenolic extracts from Gq or Tp exerts
a hepatoprotective influence during APAP treatment by improving transaminases leakage and
liver histology and stimulating antioxidant defenses. Besides, suppression of liver CYP2E1, GSTpi
and TNF-α mRNA levels, with enhancement of mitochondrial bioenergetics may contribute to the
observed hepatoprotection induced by Gq and Tp extracts. The effect of Tp extract is significantly
higher (1.5–2 fold) than that of Gq extract and NAC regarding the enhancement of mitochondrial
functionality. Overall, this study brings the first evidence that pretreatment with these natural extracts
display in vivo protective activity against APAP hepatotoxicity through improving mitochondrial
bioenergetics, oxidant status, phase I and II enzymes expression and inflammatory processes probably
by virtue of their high total polyphenols content.

Keywords: acetaminophen; hepatotoxicity; Genista quadriflora Munby; Teucrium polium geyrii Maire;
polyphenols; mitochondria; oxidative stress
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1. Introduction

Human beings are exposed on a daily basis to toxic chemicals and pathogens, which cause serious
health problems. Acetaminophen or paracetamol (N-acetyl-p-aminophenol; APAP) is one of the
most extensively used analgesic and antipyretic agent worldwide. It is considered as a safe drug
at normal therapeutic doses; however, its overdoses are known to produce acute hepatic necrosis,
which may be fatal [1]. Development of liver injury by APAP is attributed to the formation of a
reactive metabolic, N-acetyl-p-benzoquinoneimine (NAPQI), through oxidative metabolism mediated
mainly by cytochrome P450 [2]. Generally, this product is detoxified through reaction with reduced
glutathione (GSH); however, following a hepatotoxic dose of APAP, liver GSH levels are depleted
and NAPQI covalently binds primarily to proteins cystein groups as 3-(cysteine-S-y) acetaminophen
adducts [2]. Available data suggest that occurrence of mitochondrial dysfunctions may be an important
mechanism involved in APAP-induced hepatotoxicity. Mitochondrial effects of APAP overdose have
been recognized in rodents since the 1980s, when inhibition of mitochondrial respiration and depletion
of ATP were first described [3,4]. More recent studies have shown the development of oxidative and
nitrosative stress within mitochondria [5–7], and ultimately mitochondrial membrane depolarization
and onset of the mitochondrial permeability transition [5,8,9].

Modulation of cellular thiols pool has been used as potential therapeutic strategies against APAP
hepatotoxicity. When given with a loading dose of 140 mg/kg followed by 17 subsequent doses of
70 mg/kg every four hours, N-acetylcysteine (NAC) is regarded as a substance of choice for preventing
alterations induced by APAP overdose in clinical practice [10]. As a precursor for hepatic GSH
synthesis [1], it protects against cell injury by scavenging reactive oxygen and peroxinitrite inside
mitochondria [7]. However, when used at higher doses, NAC can also produce adverse gastrointestinal
events [11]. Therefore, NAC is safety under clinical treatment doses.

In the absence of reliable liver protective drugs in allopathic medical practices, searching for a
novel and effective safe drug to prevent liver disorders remains an area of interest. Clinical research
in this century has confirmed the efficiency of several plants in the treatment of liver diseases [12].
Natural products derived from plants such as polyphenols have received considerable attention in
recent years due to diverse pharmacological properties, including antioxidant ability to counteract
oxidative stress as observed in APAP-induced hepatic injury [13,14]. Antioxidants are considered
as compounds acting by one or more of the following mechanisms: chemical reducing activity, free
radical-scavenging, potential complexing of pro-oxidant metals and quenching of singlet oxygen [15].
Furthermore, they are able to increase endogenous antioxidant defenses and to modulate the cellular
redox state [14,16].

The genus Genista L. (Fabaceae) occurs as 23 different species in Algerian flora, 11 of which are
endemic. Genista quadriflora Munby (Gq) is distributed in Morocco (Rif and Middle Atlas) and North
West of Algeria, in the Oran region [17,18]. Many of the plants belonging to the Genista genus are known
to possess antioxidant and many other biological properties, ulceroprotective [19], anti-diabetic [20],
estrogenic [21] and antiproliferative [22]. Phytochemical studies indicated that species of this plant
contained various pharmaceutical active ingredients with antioxidant activity, among them flavonoids
are predominant [19,20,22,23]. Quinolizidine alkaloids are also present in some species [24].

The genus Teucrium L. (Lamiaceae) displays an important natural diversity with more than
300 species mostly found in the Mediterranean region. In Algeria flora, this genus includes seven
species and among them Teucrium polium geyrii Maire (Tp) named Takmazzut by the Touaregs [17,25].
Ethnobotanically, it is often used for preparation of tea and tonic and also as a spice plant [26–28]. In
addition, it is traditionally considered as a nutriment for gastrointestinal function improvement in
agreement with in vitro and in vivo demonstrated properties such as antispasmodic, antidiarrheal or
ulcer protective activities [26,29–31]. Furthermore, numerous studies have proved antioxidant [32],
anticancer [33] and hepatoprotective [34] activities of Teucrium polium. The benefit of Teucrium species is
considered to be linked to the presence active compounds such as essential oils [35] and flavonoids [36]
with biological and pharmacological activities.
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Nevertheless, no reliable reports devoted to the knowledge of the mode of action of Gq and
Tp against liver injury in vivo have been published, as far as we are aware. Keeping in mind
plants literature and the possibility that free radicals and reactive oxygen species scavenging by
natural antioxidants may protect tissues such as liver, the present study is planned to verify whether
a pretreatment with polyphenolic extracts from Gq and Tp possesses protective effects against
APAP-induced liver injury in rats and to explore action pathways involved in cytoprotection. The
pretreatment procedure has been chosen from bibliographic data indicating that NAC pretreatment
exerts a more efficient influence than NAC co or post treatments.

2. Materials and Methods

2.1. General Experimental Procedures

All reagents and chemicals applied in the study were of analytical grade.

2.2. Plant Material Collect and Extracts Preparation

Genista quadriflora Munby (Gq) and Teucrium polium geyrii Maire (Tp) were collected from their
natural environnement and identified by Dr. Djamel Sarri (Département de la Biologie, Université
de M’Sila, Algérie) and Dr. Ben Abdelhakim (Agence Nationale de Préservation de l’Environnement,
Béchar, Algérie), respectively. Voucher specimens are stored at the Herbarium of the VARENBIOMOL
research unit, University of Constantine 1.

Genista quadriflora Munby (Gq): The plant material is constituted of the aerial parts of Gq, collected
from M’Sila in 2008. Aerial parts were dried (1130 g), and macerated with MeOH-H2O (80:20, v/v) for
24 h three times. The crude extract was concentrated at room temperature and diluted with 500 mL H2O.
The remaining aqueous solution was extracted successively with petroleum ether, CHCl3, EtOAc and
n-BuOH. The organic layers were dried with Na2SO4 giving after removal of solvents under reduced
pressure, petroleum ether (0.3 g), CHCl3 (3 g), EtOAc (6 g) and n-BuOH (60 g) extracts, respectively.

Teucrium polium geyrii Maire (Tp): The plant material is constituted of the aerial parts of Tp,
collected from the Mougheul region—Northeast of Bechar in 2007. The aerial parts were dried (494 g),
and macerated with MeOH-H2O (70:30, v/v) for 24 h three times. The crude extract was concentrated
at room temperature and diluted with 220 mL H2O. The remaining aqueous solution was extracted
successively with petroleum ether, CHCl3, EtOAc and n-BuOH. The organic layers give after removal
of solvents under reduced pressure, petroleum ether (0.3 g), CHCl3 (5.9 g), EtOAc (3 g) and n-BuOH
(38.1 g) extracts, respectively.

Only the butanolic fractions of Gq and Tp were used to screen their biological effect in the present
study. Indeed, n-Butanol allows a better extraction of polyphenols and concentrates polyphenolic
compounds such as flavonoids, phenolic acids, tannins and anthocyanins [37].

2.3. Determination of Total Polyphenol Content

The total polyphenol content (TPC) of the Gq and Tp extracts was determined by
spectrophotometry, using Folin-Ciocalteu reagent and gallic acid as standard (Sigma-Aldrich, St
louis, MO, USA) as previously described [38]. Briefly, an aliquot of 100 µL of test extract was mixed
with 250 µL of 1N Folin-Ciocalteau reagent for 2 min and 1250 µL of 20% Na2CO3 were then added.
After 2 h of incubation at room temperature, the absorbance of reaction was measured at 760 nm
using a spectrophotometer UV-120-02 (Shimadzu, Kyoto, Japan). The TPC of Gq and Tp extracts was
expressed as Gallic acid equivalent concentration (mg GAE/g extract).

2.4. TLC-Fingerprint Analysis

The method was adapted from Sarr et al. [37]. Gq and Tp extracts were dissolved in the migration
solvent of ethyl acetate/ethanol/formic acid/water (100:11:11:26). Twenty microliters of samples
(0.35 mg/mL) were applied to the thin-layer chromatography (TLC) plate silica gel 60 F254 (Merck,
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Darmstadt, Germany). At the end of the migration, TLC plates were dried and phytochemical
compounds were observed under natural light or under UV light in 366 nm after revelation by the
Neu-reagent ((1% of diphenylboryloxyethylamine in methanol (from Sigma Chemicals Co., St. Louis,
MO, USA)). Interpretation of the various chromatograms was made on the basis of those presented
in Plant Drug Analysis [39]. Fluorescence was interpreted in the following way: blue, Phenolic
Acids; yellow-orange, Flavonols; yellow-green, Flavones. For every specific spot of color with Rf, an
assignment was made with a type of compound, using the method described by Markham [40].

2.5. Animals

Male Wistar rats (Charles River, L’Arbresle, France) weighing 142 ˘ 8 g were used in this study.
Rats were allowed to acclimate for one-week prior use and were housed in a controlled-temperature
room with a 12-h light-dark cycle with unlimited access to standard food and water. Animal
experiment was performed according to European directives (86/609/CEE) and approved by the
Ethical Committee of Region Languedoc Roussillon, France (Ethical approval no: CE-LR-11008). Rats
were randomized into five groups of six animals. Control rats and APAP intoxicated rats were orally
administered with 5 mL/kg of 0.9% NaCl solution daily for ten days. NAC+APAP rats were orally
treated with 200 mg/kg of N-acetylcystein (Sigma Co. St Louis, MO, USA) daily for ten days, according
to Naglaa et al. [41]. Gq+APAP rats and Tp+APAP rats were orally treated with 300 mg/kg daily of Gq
and Tp extracts respectively prepared in milli Q distil water for ten days on the basis of preliminary
experiments demonstrating the efficiency of these doses. Comparison between low (300 mg/kg),
medium (750 mg/kg) and high (1500 mg/kg) dose of extracts to protect against APAP toxicity was
made. The dose of 300 mg/kg was chosen as the lower dose of extracts giving the best protection
against APAP liver toxicity in our preliminary tests.

On the 11th day, apart those included in the control group, all rats received a single oral dose of
acetaminophen (APAP; 1 g/kg). APAP was prepared from Doliprane tablets containing 500 mg of
paracetamol (Sanofi-Aventis, France) as described by Nithianantham et al. [42]. In agreement with
El-Shenawya et al. [43], 1 g/kg bodyweight APAP was given to induce hepatotoxicity in rats. Animals
were anesthetized with sodium pentobarbital (50 mg/kg, ip) 24 h after APAP exposure. Blood was
collected from abdominal vein into heparinized tube and allowed to clot. Plasma was separated by
centrifugation at 1000 g for 10 min at 4 ˝C and frozen until analysis. Livers were removed immediately,
weighed and washed with a cold sucrose buffer (0.25 mM sucrose, 10 mM Tris, 5 mM EDTA, pH 7.5).
Samples were used for histological study, for isolation of mitochondria or snap frozen in liquid nitrogen
and stored at –80 ˝C for further analysis.

2.6. Biochemical Analysis

Plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were determined
using biochemical micro-assays and COBA-MIRA+ automatic analyzer (Platform Anexplo/Genotoul,
Toulouse, France).

2.7. Histological Analysis

Liver samples were fixed in 10% formalin for 24 h and embedded in paraffin. Microtome
sections of 5 µm thickness were prepared and stained with haematoxylin-eosin prepared according
to the standard procedure of RHEM (Réseau d’Histologie Expérimentale de Montpellier, France).
Histopathological liver sections were observed using an Exacta+Optech microscope (GmbH, München,
Germany) fitted with a digital camera (Canon DS126181, Tokyo, Japan).

2.8. Oxidative Stress Markers

Frozen liver tissues were homogenized in ice cold phosphate buffer 50 mM, pH 7.0 using
Ultra Turax homogenizer and processed for the measurement of TBARs levels as an index of
lipid peroxidation [44]. A part of the homogenate was treated with 10% metaphosphoric acid
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for the estimation of reduced glutathione using the method of Griffith (1980) [45]. The remaining
homogenate was centrifuged at 3000 rpm for 10 min and the obtained supernatant subsequently
used for superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx)
and glutathione transferase (GST) activity measurements. SOD, GPx, GRx and GST activities were
measured according to Marklund and Marklund (1974), Flohé and Günzler (1984), Carlberg and
Mannervik (1985) and Habig et al. (1974), respectively [46–49].

2.9. Mitochondria Isolation

Liver mitochondria were isolated as previously described by Frezza et al. [50]. Briefly, a sample
of about 2 g of liver was homogenized on ice in a ratio 1 g wet tissue for 10 volumes of sucrose
buffer (0.25 mM sucrose, 10 mM Tris Base, 5 mM EDTA, pH 7.5) using a motor-driven/Teflon Potter
Elvehjem homogenizer. The homogenate was centrifuged at 900 g for 10 min at 4 ˝C. The resulting
supernatant fraction was centrifuged at 10,000 g for 10 min at 4 ˝C. The pellet was suspended in
sucrose buffer and centrifuged at 10,000 g for 10 min at 4 ˝C. The final mitochondrial pellet was
suspended in a minute volume of respiratory medium (MIRO5 medium: 0.5 mM EGTA, 3 mM MgCl2,
60 mM K-Lactobianate,20 mM Taurine,10 mM HK2PO4, 20 mM HEPES, 110 mM sucrose and 1 g/L
BSA, pH 7.4), and kept on ice until assayed. Unused mitochondria were frozen and stored at –80 ˝C
until needed.

2.10. Mitochondrial Respiration

Mitochondrial oxygen consumption was measured using the high resolution Oxygraph-2K
(OROBOROS instruments, Innsbruk, Australia). In two sealed thermostated chambers (37 ˝C) with
continuous stirring at a constant temperature of 37 ˝C, freshly isolated mitochondria (200 µg protein)
were incubated in 2 mL of the respiratory medium MIRO5 (0.5 mM EGTA, 3 mM MgCl2¨ 6H2O, 65 mM
KCl, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, and 1 g/L BSA, pH 7.1). State 4
respiration (resting) was initiated by adding 5 mM glutamate and 2.5 mM malate. Subsequent addition
of 0.5 mM ADP generated glutamate and malate supported state 3 (ADP stimulated respiration).
Data acquisition and analysis was performed using Oxygraph-2K-DataLab software version 4.3.2.7
(OROBOROS instruments, Innsbruk, Austria). Respiratory control ratio (RCR) was determined as the
ratio between oxygen consumption in state 3 and state 4 [51].

2.11. Mitochondrial Respiratory Complexes and Citrate Synthase Activities

The maximal enzymatic activity of mitochondrial respiratory chain complexes (CI, CII, CII+III,
CIV) and citrate synthase (CS) were measured in isolated liver mitochondria. CI (NADH-ubiquinone
oxidoreductase) activity was measured spectrophotometrically by following 2, 6-dichloroindophenol
(DCIP) reduction by NADH at 600 nm according to Janssen et al. [52]. C II (succinate ubiquinone
oxidoreductase) activity was determined spectrophotometrically by following the reduction of DCIP
by succinate at 600 nm [53]. CII+III (succinate cytochrome C reductase) activity was measured
spectrophotometrically by following the rate of reduction of cytochrome C at 550 nm as described
by Rustin et al. [53]. CIV (cytochrome c oxidase) activity was measured spectrophotometrically by
following the oxidation of reduced cytochrome c at 550 nm as described by Wharton and Tzagoloff [54].
CS activity was determined as the rate of color change of 5, 5-dithiobis-2-nitrobenzoic acid (DNB) at
450 nm according to Srere [55].

2.12. Western Blot Analysis

Livers were homogenized using a Polytron homogenizer in a Tris-NP40 buffer (50 mM Tris,
pH 8.0, 150 mM NaCl, 1% Nonidet P-40) supplemented with a protease inhibitor cocktail (Roche
Diagnostics). The homogenates were incubated on ice for 10 min and centrifuged at 10,000 g for 10 min
to remove tissue debris. Fifty µg of proteins were run on SDS-PAGE mini-gels at the appropriate
concentration of acrylamide and transferred onto a polyvinylidene difluoride membrane. Membranes
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were blocked (1 h at room temperature) with a 5% skim milk in 1ˆTBST (Tris-buffered saline Tween-20:
20 mM Tris-HCl, pH 7.6, 137 mM NaCl, and 0.2% Tween-20) solution and probed with an antibody
raised against CYP2E1 (1:1000 dilution, rabbit polyclonal ab84598, (R, H), Abcam, Cambridge, UK) or
ß-actin (1:200 dilution, rabbit polyclonal sc-81178 (H, M, R, Hm) Santa Cruz Biotechnology INC, Dallas,
TX, USA) overnight at 4 ˝C. After washing with TBST, blots were incubated at room temperature
(1 h) with the appropriate secondary antibody coupled to horseradish peroxidase and washed again.
Antibody-bound protein was revealed using the ECL reagent (Thermo Scientific). Films were scanned
and analyzed using Image J software. All blots were corrected for loading using ß- actin expression.

2.13. Analysis of mRNA Levels by Real-Time PCR

Total RNA was isolated from liver tissue using the Trizol reagent (Invitrogen Life Technologies)
as recommended by the manufacturer. mRNA gene expression was determined by Real-time
Quantitative Polymerase Chain Reaction (qPCR). One microgram total RNA was reverse-transcribed
using SuperScript™ First-strand synthesis system, with 50 units of Superscript™ II reverse
transcriptase, random hexamers and Oligo (dT) primers (Invitrogen Life Technologies) according
to the manufacturer’s instructions. Reverse transcription was performed simultaneously for all
samples. Real-time PCR analyses were performed in a Mini Opticon detection system (BioRad,
Hercules, CA, USA) with 8 µL of IQTM SYBR Green Supermix (Biorad, Hercules, CA, USA), 200 nM
of both Forward and Reverse primers of target genes (CYP2E1, GSTpi and TNF-α), 2 µL of cDNA
template and water to a final volume of 16 µL. Gene specific primers for target genes were designed
using Primer Express Software (CYP2E1 forward: 5’-TTCCAACCTACCCCATGAAG-3’; reverse:
5’-GAGGGAGTCCAGAGTTGGAA-3’), (GSTpi forward: 5’-GCCATCTTGAGGCACCTG-3’; reverse:
5’-CACCCCATCATTCACCATATC-3’) and (TNF-α forward: 5’-TGAACTTCGGGGTGATCG-3’;
reverse: 5’-GGGCTTGTCACTCGAGTTTT-3’). Normalization was performed from simultaneous
amplification of a ß-actin gene fragment (forward: 5’-AATCCTGTGGCATCCATGAAAC-3’; reverse:
5’-CGCAGCTCAGTAACAGTCCG-3’). The real time PCR conditions were as follow: after an initial
denaturation step for 3 min at 95 ˝C, 40 cycles of 95 ˝C for 10 s and 60 ˝C for 30 s. Melting point
dissociation curves were performed between 65 ˝C and 95 ˝C (temperature transition of 0.5 ˝C) to
confirm that only a single product was amplified. To ensure quality of the measurements, each PCR
experiment for each gene included a negative control (sample replaced by RNase free water). Results
were expressed using the comparative cycle threshold (Ct) method (CFX Manager, Biorad). The ∆Ct
values were calculated in every sample for each gene of interest as followed: Ct of gene of interest
minus Ct of reporter gene with ß-actin as the reporter gene.

2.14. Protein Levels

All protein concentrations were determined using a Bradford assay (Bio-Rad, Marnes-la-Coquette, France).

2.15. Statistical Analysis

Experimental results are presented as means ˘SD. A Student’s t test was used to compare the
total polyphenol content between the n-BuOH extracts from Gq and Tp. For the other experiments,
statistical analyses were performed using a one way analysis of variance (ANOVA) followed by a
Fisher’s test using the statistical package GraphPad Prism. For all tests, the statistical significance was
set at p < 0.05.

3. Results

3.1. Total Polyphenols Content (TPC) and TLC -Fingerprint of Gq and Tp Extracts

The Folin–Ciocalteu assay is one of the oldest methods developed to determine the content of
total phenols [38]. The total polyphenol content (TPC) found in n-BuOH extracts was significantly
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lower for Gq (228 ˘ 5 mg GAE/g of extract) than for Tp (251 ˘ 4 mg GAE/g of extract, Student’s t:
p < 0.01).

TLC is one of the numerous methods used to provide a chromatographic plant extract fingerprint.
The reagent of Neu has been used to detect flavonoids. This reagent, indeed, reveals them as colorful
stains in blue, orange, green, red and yellow fluorescence [37]. Twelve spots lights were detected
in Gq extract (Table 1) corresponding to phenolic acids (band N˝5, 10, 11 and 12), flavonoids (band
N˝1, 2, 3, 4, 6, 7 and 8) and not identified compounds (band N˝9). Nine spots lights were detected
in Tp extract (Table 1) corresponding to phenolic acids (band N˝1’, 3’ and 9’), flavonoids (band N˝3’,
4’, 5’ and 6’) and not identified compounds (band N˝2’, 7’ and 8’). These chromatograms indicated
that Gq and Tp extracts contain phenolic acids and flavonoids of interest. Among the flavonoid
subclasses, flavonols, flavones, isoflavones, flavonones, flavonol glycosides are the most widespread
in both extracts. However, flavonoid aglycones and methylated flavones were detected in Gq extract.
Phenolic acids are detected in both extracts. Overall, flavonoids and phenolic acids are predominant
polyphenolic compounds in Gq and Tp extracts, respectively.

Table 1. TLC-fingerprint analysis of Gq and Tp extracts.

Neu-Reagent UV/365 nm

Band N˝ Rf Color Type of Phenol/Possible Flavonoid

Gq

1 0.03 Blue-white Flavonols, flavones, isoflavones, flavonones

2 0.05 Orange Flavonols glycosides

3 0.09 Yellow-green Favonols

4 0.14 Yellow-pale Flavonols, flavones, isoflavones, flavonones

5 0.18 Blue Phenolic acid

6 0.26 Blue Flavonoïd aglycones

7 0.32 Orange Flavonols, flavones, isoflavones, flavonones

8 0.36 Red Methylated flavones

9 0.42 Orange Not identified

10 0.50 Yellow Phenolic acid

11 0.55 Yellow-pale Phenolic acid

12 0.78 Blue
fluorescent Phenolic acid

Tp

11 0.05 Blue-white
fluorescent Phenolic acid

21 0.12 Yellow-green Not identified

31 0.19 Blue-white Phenolic acid, isoflavones, flavonones

41 0.26 Yellow-orange Flavonols

51 0.31 Yellow-green Flavonols, flavones, isoflavones, flavonones

61 0.36 Orange Flavonols-glycosides

71 0.44 Red Not identified

81 0.54 Blue-white Not identified

91 0.98 Blue-white
fluorescent Phenolic acid

TLC-fingerprint analysis conditions: Eluent: ethyl acetate/ethanol/formic acid/water (100:11:11:26); Support:
Merck TLC silica gel 60 F254 and Detection: under UV light in 365 nm after revelation with Neu-reagent (1%).
Rf: Retention factor.
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3.2. Influence of Gq and Tp Extracts on Blood Transaminases Levels

The serum levels of hepatic enzymes AST and ALT, used as biochemical markers for evaluation
of early hepatic injury, were significantly higher (+100%; p < 0.01 and +227%; p < 0.05 respectively)
in APAP-treated animals than untreated animals (Figure 1). The 300-mg/kg daily pretreatment with
Gq or Tp extract significantly prevented the elevation of these marker enzymes (p < 0.05; Figure 1),
observed in APAP-treated group. NAC, a reference drug to prevent hepatic injury, exerted a quite
similar influence.Nutrients 2016, 8, 193  8 of 20 
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Figure 1. Effect of Gq or Tp extract on plasma alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels following APAP toxicity. Results are means ˘ SD (n = 6). One-way
ANOVA followed by Fisher’s test: * p < 0.05 and ** p < 0.01 vs. control group; # p < 0.05 vs. APAP group.

3.3. Influence of Gq and Tp Extracts on Liver Histology

When compared to liver histological microphotographs from control rats (Figure 2A), liver
sections of APAP-treated group exhibited an obvious disarrangement of hepatic cells with intense
centrilobular necrosis, sinusoid dilatation and inflammatory cells infiltration (Figure 2B). Liver sections
of APAP-treated animals receiving either Gq extract or NAC showed reduced disarrangement of
hepatic cells with hepatocytes degeneration only restricted to cells surrounding the centrilobular
vein; many lobules were not affected, indicating a marked hepatotoxicity prevention of Gq extract
or NAC pretreatment (Figure 2C,D). Interestingly, pretreatment with Tp extract fully abrogated the
histopathological abnormalities associated to APAP overdose (Figure 2E).
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3.4. Effect of Gq and Tp Extracts on Liver Oxidative Stress Markers  

Figure 2. Effects of Gq or Tp extract on liver histological changes following APAP toxicity in rats:
(A) Control group; (B) APAP treated group; (C) NAC pretreated group; (D) Gq pretreated group; and
(E) Tp pretreated groups (hematoxylin–eosin, 100X).
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3.4. Effect of Gq and Tp Extracts on Liver Oxidative Stress Markers

The oxidative stress, considered as a major mediator of APAP-induced liver damage, was assessed
by measuring the activity of hepatic antioxidant defense enzymes (SOD, GPx, and GR), GSH and the
level of lipid peroxidation products (TBARs). APAP administration markedly increased TBARs levels
(+64%), reduced GSH levels (´56%) and antioxidant enzymes activities (SOD: ´21%, GPx: ´41%, GR:
´26%; p < 0.001 for all) when compared with the control group (Table 2). Pretreatment with either
Gq or Tp extract induced a significant decrease in TBARs levels (´36% and ´33%, respectively) and
enhanced functional antioxidant markers (SOD, GPx, GR and GSH) after APAP treatment, relatively
to animals without pretreatment (all at p < 0.001; Table 2). The improvement exhibited by Gq and
Tp extracts was similar to that induced by NAC. However, Gq and Tp extracts pretreatments also
significantly increased GR activity by 21% and 14%, respectively, relatively to APAP untreated control
animals (respectively, p < 0.001 and p < 0.05).

Table 2. Effect of Gq and Tp extracts on liver oxidative stress markers following APAP toxicity in rats.

Groups Control APAP NAC+APAP Gq+APAP Tp+APAP

TBARs (nmol/g liver) 53 ˘ 8 87 ˘ 13 *** 48 ˘ 11 ## 56 ˘ 9 ## 58 ˘ 19 #

SOD (U/mg prot) 14 ˘ 2 11 ˘ 1 *** 15 ˘ 1 ## 16 ˘ 2 ## 15 ˘ 1 ##

GPx (mU/mg prot) 4192 ˘ 865 2453 ˘ 487 *** 4289 ˘ 398 ## 5021 ˘ 69 ## 4594 ˘ 448 ##

GR (mU/mg prot) 102 ˘ 9 75 ˘ 12 *** 114 ˘ 10 ## 123 ˘ 4 ***,## 116 ˘ 8 *,##

GSH (nmol/g liver) 1010 ˘ 235 445 ˘ 79 *** 930 ˘ 213 ## 807 ˘ 182 ## 923 ˘ 201 ##

Results are expressed as means ˘ SD (n = 6). One-way ANOVA followed by Fisher’s test: * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. Control group, # p < 0.01, ## p < 0.001 vs. APAP group. Thiobarbituric acid-reactive substances
(TBARS), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduced
glutathione (GSH).

3.5. Effect of Gq and Tp Extracts on Liver Mitochondrial Activity

Several studies have reported that mitochondrial dysfunctions are observed in APAP-induced
liver injury. In this work, we observed that APAP inhibited mitochondrial respiration rate (state
4: ´59%; p < 0.001 and state 3: ´80%; p < 0.01; RCR: ´51%; p < 0.05; Table 3) with concomitant
decreases in Complex I (CI: ´27%; p < 0.01), Complex II (CII: ´26%; p < 0.05) and citrate synthase
(CS: ´19%; p < 0.01) maximal activities (Table 3). Pretreatment with NAC strongly increased state 4
(+84%; p < 0.01) and state 3 (+184%; p < 0.05) mitochondrial respiratory rate measured after APAP
administration in as well as CS activity (+16%; p < 0.05, Table 3). However, NAC pretreatment did not
significantly affect mitochondrial complexes activities in APAP treated animals (Table 3). Interestingly,
in these rats, Tp extract exhibited a pronounced effect on mitochondrial respiratory rate (state 4: +96%
p < 0.01; state 3: +324% p < 0.001; RCR: +116% p < 0.05; Table 3) and prevented the decrease of
all measured mitochondrial respiratory complexes and CS maximal activities occurring after APAP
treatment (relatively to not pretreated animals: CI: +79% p < 0.001; CII: +88% p < 0.001; CIV: +36%
p < 0.01; CS: +48% p < 0.01; Table 3). In contrast, pretreatment with Gq extract exerted only a significant
improvement of mitochondrial respiratory complexes and CS maximal activities (CI: +63% p < 0.001;
CII: +105% p < 0.001; CIV: +46% p < 0.01; CS: +42% p < 0.01; Table 3) without any influence on
respiratory activity. Even more interesting is the observation that, in Tp extract pretreated rats, the
maximal activities of CI, CII and CIV were significantly higher (+31%, +39% and +33%, respectively;
p < 0.01) than in APAP untreated control animals. The same influence of Gq extract pretreatment on
CII (+52%) and CIV (+42%) activities both at p < 0.01 was observed.
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Table 3. Effect of Gq or Tp extracts on oxygen uptake in state 3 and 4, RCR, respiratory complexes
(CI-CV) and citrate synthase (CS) activities in isolated liver mitochondria following APAP toxicity
in rats.

Groups Control APAP NAC + APAP Gq + APAP Tp + APAP

State 4 § 110.0 ˘ 0.8 44.6 ˘ 6.2 *** 81.9 ˘ 3.2 ## 58.7 ˘ 7.1 87.5 ˘ 2.8 ##

State 3 § 687 ˘ 122 136 ˘ 14.9 ** 387 ˘ 67.1## 255 ˘ 63.7 577 ˘ 47.8 ###

RCR @ 6.2 ˘ 1.1 3.0 ˘ 0.6 * 4.7 ˘ 0.7 4.3 ˘ 0.7 6.6 ˘ 0.8 #

CI $ 112 ˘ 25 82 ˘ 10 ** 96 ˘ 15 134 ˘ 28 ### 147 ˘ 17 **,###

CII $ 178 ˘ 43 132 ˘ 30 * 164 ˘ 40 271 ˘ 64 **,### 248 ˘ 23 **,###

CII+III $ 160 ˘ 37 145 ˘ 60 183 ˘ 31 173 ˘ 44 200 ˘ 37
CIV $ 749 ˘ 155 729 ˘ 155 699 ˘ 113 1063 ˘ 184 **,## 994 ˘ 115 **,##

CS $ 324 ˘ 39 262 ˘ 32 ** 304 ˘ 30 # 372 ˘ 65 ## 387 ˘ 91 ##

Results are means ˘ SD (n = 6). One-way ANOVA followed by Fisher’s test: * p < 0.05, ** p <0.01 and
*** p < 0.001 vs Control group, # p < 0.05, ## p < 0.01, ### p < 0.001 vs. APAP group. §: pmol O2/min/mg protein,
@: State4/State3, $: mIU/mg protein.

3.6. Effect of Gq and Tp Extracts on Liver CYP2E1 Protein and mRNA Levels

To determine whether pretreatment with Gq or Tp extract affected APAP metabolism, we check
CYP2E1 levels, as this phase I enzyme catalyzes APAP conversion to hepatotoxic NAPQI. APAP
treatment significantly increased CYP2E1 mRNA (+28%, p < 0.001; Figure 3B) and protein levels (+49%,
p < 0.05; Figure 3A) relatively to untreated animals, confirming the induction of the CYP2E1 isoform
by APAP. Interestingly, this increase in CYP2E1 protein and mRNA levels was markedly decreased
by Tp extract (respectively ´35%, p < 0.001 and ´39%, p < 0.01) or NAC pretreatments (respectively
´16%, p < 0.01 and ´47%, p < 0.001) as shown in Figure 3. Pretreatment with Gq extract also reduced
CYP2E1 protein levels increase after APAP (´15%, p < 0.05; Figure 3B), without influence on mRNA
levels (Figure 3A).

Figure 3. Effect of Gq or Tp extract on liver phase I enzyme following APAP toxicity in rats: (A) CYP2E1
mRNA expression levels; and (B) CYP2E1 protein levels. AU = arbitrary unit. Results are means ˘ SD
(n = 6). One-way ANOVA followed by Fisher’s test: * p < 0.05 and *** p < 0.001 vs. control group;
# p < 0.05, ## p < 0.01 and ### p < 0.001 vs. APAP group.
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3.7. Effect of Gq and Tp Extracts on Liver GST activity and GSTpi mRNA Levels

GST, a phase II enzyme of drug metabolism, catalyzes the conjugation of reactive metabolites with
GSH. We found that in APAP treated rats, GST activity was reduced (´25% p < 0.01; Figure 4A) whereas
GSTpi mRNA levels were found dramatically increased (+7.5 fold p < 0.01; Figure 4B). Pretreatment
with NAC, Gq or Tp extract significantly enhanced GST activity (+50%, +45%, +34%, respectively, all at
p < 0.001; Figure 4A) when compared to the APAP treated group. Interestingly, the three pretreatments
markedly blunted the increase of GSTpi mRNA expression (p < 0.05, p < 0.01 and p < 0.05, respectively;
Figure 4B) induced by APAP. In addition, only NAC increased GST activity (+13% p < 0.01; Figure 4A)
when compared to control APAP untreated rats.
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Figure 4. Effect of Gq or Tp extract on liver phase II enzyme following APAP toxicity in rats: (A) GST
activity; and (B) GSTpi isoform mRNA expression levels. Results are means ˘ SD (n = 6). One-way
ANOVA followed by Fisher’s test: ** p < 0.01 and *** p < 0.001 vs. control group; # p < 0.05, ## p < 0.01
and ### p < 0.001 vs. APAP group.

3.8. Effect of Gq and Tp Extracts on Liver TNF-α Expression Levels

The increased susceptibility to APAP liver injury has been reported to correlate with an elevated
expression of liver pro-inflammatory cytokines such as TNF-α. Therefore, we have observed the effects
of Gq and Tp extracts on mRNA expression levels of this cytokine (Figure 5). APAP administration
significantly up-regulated TNF-α mRNA expression (+7.4 fold; p < 0.01) relatively to control animals,
suggesting induction of a severe inflammatory response, which may be influenced by the concomitant
oxidative stress status previously found. Moreover, pretreatment with Gq extract, Tp extract or NAC
markedly blunted the increase of TNF-α mRNA expression (for all, p < 0.01) during APAP treatment.
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Figure 5. Effect of Gq or Tp extract on Liver TNF-α mRNA levels following APAP toxicity. Results are
means ˘SD (n = 6). One-way ANOVA followed by Fisher’s test: ** p < 0.01 vs. control group; ## p < 0.01
vs. APAP group.
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4. Discussion

Crude extracts of medicinal plants have received increasing interest for prevention of diet or drug
induced pathologies, due to protection conferred by presence in significant amounts of components
with antioxidant activity. It has been recognized that the polyphenol content of plant extracts is a main
part of their antioxidant activities due to their redox properties, allowing them to act as reducing agents,
hydrogen donors and singlet oxygen quenchers [15]. In this study, we have focused our attention
on Genista quadriflora Munby (Gq) and Teucrium polium geyrii Maire (Tp). Our data indicate that both
Gq and Tp extracts have higher amounts of polyphenols when compared to Genista vuralii (212 mg
GAE/g extract) [23] or Teucruim poluim L.subsp.polium (158 mg GAE/g extract) [27], in agreement with
the fact that polyphenols amounts and chemical composition are affected by different factors, such as
genotype, environmental conditions and extraction procedures [27,56].

To better identify the polyphenolic compounds of Gq and Tp extracts (phenolic acids, flavonoids)
whose antioxidant and hepatoprotective effects have already been the subject of numerous studies, we
proceeded to a TLC-fingerprint analysis of the Gq and Tp extracts. Presence of flavonoids and phenolic
acids as the predominant compounds in Gq and Tp extracts, respectively, may contribute to the high
TPC of these species. These results have been confirmed by HPLC chromatogram analyses of Gq and
Tp extracts (ZB, data not shown).

As the antioxidant potential of polyphenolic compounds in plant belonging to the genus Genista
and Teucrium has been reported in a number of in vitro studies [22,23,32,36,57], these results prompted
us to screen antioxidant activity and hepatoprotective effects of polyphenolic extracts from Gq or Tp in
rats submitted to APAP overdose.

Several experiments have previously demonstrated that plant derived phenolic compounds exert
potent antioxidative properties when given before APAP administration [58,59]. Moreover, comparison
of kaempferol treatment, cotreatment or posttreatment indicated that the protective influence of this
flavonol on doxorubicine induced cardiotoxicity occurred only when it was given before doxorubicine
administration [60]. Consequently, in this first study, we have chosen to test the influence of Gq or
Tp extract pretreatment on APAP hepatotoxicity. NAC was used as a positive control in the same
experimental conditions. No consequences of Gq extract, Tp extract or NAC administration on rat
bodyweight and no pathological signs were observed during the 10 days pretreatment period.

Serum enzyme levels such as aspartate transaminase (AST) and alanine transaminase (ALT)
are commonly used as hepatic markers to assess APAP-induced liver damage [61]. As expected, in
the present study, APAP treatment (1 g/kg) significantly increased the serum levels of these hepatic
enzymes. These changes reflected the occurrence of APAP-induced hepatocellular damages appearing
from histological data demonstrating disarrangement of hepatic cells with intense centrilobular
necrosis, sinusoid dilatation and inflammatory cells infiltration in APAP-treated animals. Interestingly,
a preventive treatment by Gq extract (300 mg/kg), Tp extract (300 mg/kg) or NAC (200 mg/kg) used as
a positive antioxidant control, fully abrogated the APAP-induced increase in hepatic serum enzymes,
suggesting a stabilization of hepatic membranes. These biochemical findings were in agreement with
our histological data demonstrating a reduction (Gq or NAC) or a full abrogation (Tp) of structural
liver abnormalities. Similarly, a beneficial effect of Teucruim spiece on AST and ALT release and liver
histology, has been reported in rat liver cancer and APAP toxicity in mice [33,34]. In the same line,
Yousef et al. [14] have reported that NAC, curcumin or quercetin normalizes transaminases levels
and restores liver histology in APAP-intoxicated rats, thus suggesting that antioxidant compounds
occurring in Gq or Tp extract are involved in the beneficial influence of the extracts observed in
our study.

Oxidative stress is a major mechanism underlying the pathogenesis of APAP-induced liver
damage [6,62]. An overdose of APAP saturates detoxification pathways, leading to hepatic GSH
depletion and excessive production of NAPQI, which freely binds to cellular molecules [2]. Lipid
peroxidation is an oxidative modification of unsaturated lipids and is involved in the destructive
processes that affect liver in APAP overdose [63,64]. The current work substantiates that ROS generated
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by APAP administration may be responsible for the observed increased lipid peroxidation rate and
altered antioxidant status. GSH plays an essential role in detoxification of NAPQI and prevention of
APAP induced liver injury [8,62]. Because NAPQI is directly detoxified by GSH, the fall in hepatic
GSH levels probably reflects its intensive use in this process. In addition, we observed that the GSH
replenishing (GR) and GSH depleting (GPx, and GST) enzymes activities were inhibited in APAP
treated rats, thus affecting the conversion of GSSH to GSH and the radical scavenging capacity of cells.
Furthermore, the simultaneous decrease in SOD activity also significantly contributed to the reduction
in antioxidative capacity inducing a stronger degradation of the cell status.

The antioxidant properties of Gq and Tp extracts pretreatments on APAP toxicity are clearly related
to restoration of the GSH level and of antioxidant enzymes activity. Phytoconstituents derived from
plants have gained much importance recently due to their diversified biological properties including
antioxidant and hepatoprotective activity which could be provided by both pretreatment (prophylactic)
and posttreatment (curative) [13,14,34]. It has been reported that a number of antioxidant plants have
shown to be promising in protecting against APAP-induced liver injury [13,14]. The cytoprotection
provided by pretreatment with our plant extracts may be due to (1) their interference with the metabolic
activation of APAP by CYP2E1 enzymes, (2) their interference with the binding of NAPQI to cellular
proteins at the initial steps of APAP toxicity, or (3) their antioxidant properties by directly scavenging
intracellular ROS [14,15]. This influence was at least as efficient than that of the standard NAC
antioxidant, classically used as a known APAP antidote acting by promoting liver GSH synthesis [1].
Previous studies demonstrated that flavonoids could stimulate the the activities of liver antioxidant
enzymes that are responsible for intracellular GSH synthesis [14,65,66]. Thus, the mechanism of the
hepatoprotective action of rich-polyphenol fraction from both Tp and Gq may be, in part, due to
enhancement of intracellular glutathione levels. In this regard, improvement of GSH pathways is an
important part of the Teucruim species polyphenolic antioxidative influence [16,57].

It is widely accepted that mitochondrial dysfunction is associated to APAP induced liver injury.
In this work, we observed that APAP inhibited mitochondrial respiration with concomitant decreases
in respiratory complex I and II and citrate synthase specific activities. As citrate synthase activity is
also a marker of mitochondrial mass, our results established that mitochondrial mass and biochemical
activity are significantly altered by APAP. These abnormalities could be explained on the basis of
previous findings indicating sensitivity of protein sulfhydryls in mitochondrial respiratory complexes
(CI and CII) to ROS/NAPQI produced inside the cell following APAP toxicity, thereby causing
loss in their activities [67–69]. In addition, upon APAP intoxication, oxidation of the mitochondrial
GSH pool and MnSOD inactivation by nitration may contribute to the mitochondrial bioenergetics
impairment [8,69]. Moreover, APAP or its metabolite NAPQI could directly interact with the inner
mitochondrial membrane, causing changes in its fluidity [8] and consequently alterations in the activity
of the respiratory chain. Based on this, modifications of the mitochondrial antioxidant system may be
responsible for the impairment of oxygen consumption seen herein.

Interventions that restored mitochondrial ROS and peroxynitrite scavenging capacity or prevented
mitochondrial permeability transition pore opening with iron chelators have been shown to protect
against APAP liver injury [7,9,69]. Recent works have shown that natural antioxidant products
such as resveratrol and quercetin can protect against APAP hepatotoxicity through prevention of
mitochondrial dysfunctions [70,71]. In this regard, it was found that Teucruim species fully preserves
mitochondrial respiration and increases GSH levels in cultured HepG2 cells [57]. Besides, it has been
reported that Genista and Teucruim species possess a good antioxidant activity toward a range of
free radicals species, with high reducing activity and iron chelating abilities [23,32,57]. We believe
that improvement of mitochondrial functionality with Gq or Tp extract may be linked to a direct
stimulation of ROS/NAPQI scavenging ability and/or iron chelating activity by their polyphenolic
compounds, which in turn relieved the electron transport chain from the oxidative insult and stabilized
mitochondrial membrane fluidity. In contrast to Tp extract, Gq extract exhibited only a modest
protective effect on APAP-induced mitochondrial respiration defect, as observed for improvement of
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liver histology. Different efficiencies in order to restore mitochondrial activity of Gq and Tp extracts
are probably linked to structure-activity differences of polyphenols contained in each plant to prevent
mitochondrial dysfunctions induced by oxidative stress [72]. The contribution of individual phenolics
to total antioxidant capacity was generally dependent on their structure and content levels in plant
extracts [73]. Therefore, we can presume that different components of Tp extract are most critical
for the pharmacological hepatoprotective effects than that contained in Gq extract to prevent liver
mitochondrial damages induced by APAP. Further studies are needed to identify differences in the
composition of phenolic compounds in Gq and Tp extracts, as well as the compared efficiency of each
of them to counteract oxidative stress.

The important role of NAC in fully preventing APAP toxicity, oxidative stress, and loss of
mitochondrial potential membrane has been previously reported [6]. Except its improvement of state 4
and 3 respiration, NAC failed to protect mitochondrial respiratory complexes activities in the present
study. In agreement with our data, another study has shown that NAC does not bring a complete
protection of mitochondrial activity in HepG2 cells during Aspirin-induced toxicity [74].

CYP2E1 has been reported to play a dominant role in bioactivation of APAP by conversion to its
active hepatotoxic metabolite, NAPQI [75]. In this work, we observed that APAP treatment increased
CYP2E1 isoform expression. As observed by Ghosh et al. [75], the alteration of the oxidative status
previously shown could be aggravated by enhanced formation of reactive oxygen species through
cytochrome P450-mediated APAP bioactivation. Interestingly, this increase in CYP2E1 levels was
markedly suppressed by Tp extract, Gq extract or NAC pretreatment. It has been found that drugs
with CYP2E1 inhibitory characteristics might possess ability to suppress APAP-induced hepatotoxicity
by reducing NAPQI formation [76]. Polyphenols could modulate the cytochrome CYP450 system
through the decrease in their hepatic content, the inhibition of their activity and the expression of these
enzymes [77]. Consequently, a direct modulation of CYP2E1 activity or levels by polyphenols may
favor hepatoprotection against APAP toxicity [78], thus partly explaining the improvement of APAP
toxicity induced by Tp or Gq extract. Finally, inhibition of the CYP2E1 pathway leading to a decrease in
NAPQI formation could also explain the restoration of GSH levels and improvement of the oxidative
status reflected by improvement of TBARs levels.

The phase II enzyme of drug metabolism GST catalyzes conjugation of toxic electrophiles with
glutathione and thereby plays an important role for the detoxication of such metabolites. GSTpi is one
of GSTs forms considered as the more effective catalyst of the conjugation of NAPQI with GSH [79].
In the present study, we found that GST activity was reduced whereas GSTpi mRNA levels were
found dramatically increased in APAP treated rats. Pretreatment with NAC, polyphenolic extracts
from Gq or Tp significantly enhanced GST when compared to the control APAP treated group. These
results are in agreement with a previous study concerning quercetin, curcumin and NAC following
APAP intoxication in rats [14]. Interestingly, we observed that the three pretreatments also markedly
blunted the increase of GSTpi mRNA induced by APAP. The importance of GSTpi in APAP induced
alterations is suggested by several studies. According to Henderson et al. humans with higher GSTpi
expression are more sensitive to APAP toxicity [80]. In the same line, GSTpi null mice are less sensitive
to APAP induced hepatotoxicity, in association with a higher expression of antioxidant proteins [80,81].
Consequently, the decrease in GSTpi expression by Gq extract, Tp extract or NAC observed in this
study is probably involved in the hepatoprotective influence of these extracts against APAP toxicity.

The increase susceptibility to APAP-induced liver injury appeared to correlate with an elevated
expression of liver pro-inflammatory cytokines, TNF-α, and IL-1, as well as inducible nitric oxide
synthase [82,83]. It was found that gene expression of TNF-α in treated liver was enhanced in a similar
pattern as the level of the corresponding protein [84]. In addition, liver TNF-α mRNA expression
level has been shown to serve as a valuable indicator for inflammatory response occurrence following
APAP toxicity [59]. In agreement with these data, APAP administration significantly up-regulated
TNF-α mRNA expression, suggesting the occurrence of a severe inflammatory response, which may
be influenced by the concomitant oxidative stress situation. Moreover, pretreatment with Gq extract,
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Tp extract or NAC markedly blunted the increase of TNF-α mRNA expression following APAP
treatment. These findings are consistent with previous studies demonstrating that NAC decreased
TNF-α production and oxidative stress induced by APAP toxicity [83,85]. In the same line, genistein,
the most abundant isoflavone compounds in Genista species with antioxidant potential [23], was found
to block NASH progression through suppression of TNF-α [86]. Furthermore, anti-inflammatory effect
of Teucruim species has also been reported [66,87], likely linked to the attenuation of JNK activation [66].
In addition, apigenin and luteolin are main antioxidant flavonoids detected in Teucrium species [36],
with the ability to inhibit TNF-α induced JNK activation during inflammation processes [73]. JNK is
thought to play a role in regulating the TNF-α mediated increase of APAP toxicity and its inhibition
provide healing liver protection [88,89]. Our data suggest that polyphenolic extracts from Gq and
Tp may exert a part of their anti-inflammatory effects and hepatoprotective influence by decreasing
TNF-α expression and consequently, as seen for other antioxidants, by inhibition of the JNK pathway.

However, an interesting question remains to be addressed. It has been shown that NAC
administration, the presently more efficient treatment of APAP overdose, needs to be given before or
very fast after APAP overdose to overcome hepatotoxicity. This observation suggests that the processes
induced by APAP and protected by NAC could be irreversibly altered when fully induced [90,91].
Consequently, it could be interesting to determine the respective ability of Gq and Tp extracts to
prevent or restore the consequences of APAP toxicity when given simultaneously or several times after
its administration.

5. Conclusions

Our study demonstrates, for the first time, in vivo hepatoprotective activity of polyphenolic
extracts from Gq and Tp, which attenuates hepatic oxidative stress and reduces transaminases leakage.
The protective effects of Gq and Tp extracts can be mostly attributed to the modulation of mitochondrial
bioenergetics, phase I and II enzymes and inflammatory processes upon APAP toxicity. Additional
studies performed with the aim to characterize the active principles of our extracts to be used in
pharmaceutical, food and nutraceutical industries are currently in progress.
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