Pasta and gluten: facts and fakes
Joel Abecassis, Marie-Francoise Samson

To cite this version:
Joel Abecassis, Marie-Francoise Samson. Pasta and gluten: facts and fakes. Word Pasta Day Scientific Consensus Conference, Oct 2015, Milan, Italy. hal-01837495

HAL Id: hal-01837495
https://hal.archives-ouvertes.fr/hal-01837495
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pasta and Gluten: Facts and Fakes

Joël Abecassis and Marie-Françoise Samson
UMR-IATE
INRA Montpellier, France
This presentation was prepared at the initiative of the French Pasta Manufacturers Association (SIFPAF) but the content of this presentation is on the sole responsibility of the authors.
How Traditional Pasta are made?

- Only one raw material: Durum wheat
- Primary processing: Extraction of the starchy endosperm in form of semolina
- Pasta processing:
 - Hydration
 - Mixing
 - Forming: sheeting or cold extrusion (< 55°C)
 - Drying
- Sensorial attributes
 - Yellow color
 - High capacity to hold water during cooking with low amount of solid losses
 - Texture: firm and elastic
 - Surface condition: no stickiness, no disintegration
Physicochemical Basis of Pasta Quality

Pasta processing consists in developing a protein network able to entrap starch granules during cooking.

- Starch Swelling and Gelatinisation
- Protein Network forming and denaturation

Native starch

Swelling

Leaching and Pasting

Disulfid bond (elasticity)
Non Covalent bond (viscosity)
Proteins and Gluten

- **Semolina**
 - Water
 - Salted Solution
- **ALBUMINS**
- **GLOBULINS**
- **GLIADINS** (35 %)
- **GLUTENINS** (45 %)
 - solubles
 - insolubles

Cytoplasmic or metabolic proteins

GLUTEN

Quality

Viscosity

Elasticity
Gluten (wheat) Related Pathogenesis

Autoimmunes
- Coeliac disease
- Dermatitis herpetiformis
- Gluten ataxia
- Genetic background: HLA DQ2 and DQ8
- Atrophy of duodenal villi
- Anti-transglutaminase 2 Ac
- Anti-class A endomysium Ac
- Anti deamidated gliadin IgG

Allergic
- Wheat allergy
- Mediated by anti-ω gliadin IgE
 - Respiratory symptoms (baker asthma)
 - Induced by physical effort
 - Skin and digestive symptoms

Non autoimmune Non allergic
- Non coeliac gluten sensitivity NCGS
- Gluten intolerance (?) with:
 - No serological markers
 - No IgE
 - No atrophy of intestinal mucosa

Dermatological form
- Abrupt onset
- Itching
- Redness
- Eczema

Neurological form
- Headache
- Disturbance in attention
- Chronic tiredness

Prevalence
- Coeliac disease: 0.7-1.5%
- Dermatitis herpetiformis: < 1%
- Gluten intolerance: 6-8%
Global Social Media Hype: Eating wheat makes you fat and sick

The Paleolithic Diet

The Surprising Truth About Wheat, Carbs, and Sugar - Your Brain's Silent Killers

REASONS FOR PURCHASING 'GLUTEN-FREE' FOODS

- No reason: 35%
- Healthier option: 26%
- Digestive health: 19%
- Weight loss: 13%
- Enjoy the taste: 13%
- Someone in my family has a gluten sensitivity: 10%
- Inflammation: 9%
- Diet cleanse: 9%
- Trendy: 0%
- Some other reason: 0%
- I have a gluten sensitivity: 0%

The biggest reason for purchasing gluten-free foods is "no reason at all".

Gluten-Free is healthy!
How to Prepare Gluten Free Pasta?

- Gluten Free pasta should have the same sensorial attributes as traditionnal pasta:
 - Color
 - Cooking Quality
- Mixing different raw material: Flour and/or starch products without gluten content
- Adding or not additives for color
- Adapting pasta processing
 - Modifying starch properties
 - Additives for cooking quality
How to Replace Gluten Functionality?

Modifying the starch components in order to:

1. Create a new organised structure to give a form to pasta during extrusion (binding properties)
 - Heat-treated flours and starches
 - Extrusion cooking

2. Limit starch swelling and solubilisation during cooking
 - High-amylose content (starch)
 - Additives to complex amylose: Emulsifiers (mono and diglycerides)
 - Other texturing ingredients: hydrocolloids (guar, Xanthan, CMC, etc.)
Commercial GF Pasta Ingredients

<table>
<thead>
<tr>
<th>Starch sources</th>
<th>Protein sources</th>
<th>Additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice (flours and starches)</td>
<td>Protein isolates from pea or lupin</td>
<td>Hydrocolloids and gums</td>
</tr>
<tr>
<td>Corn (flours and starches)</td>
<td></td>
<td>• Xanthan</td>
</tr>
<tr>
<td>Pseudocereals: (flours)</td>
<td>Egg</td>
<td>• Guar</td>
</tr>
<tr>
<td>• Buckwheat,</td>
<td></td>
<td>• ...</td>
</tr>
<tr>
<td>• Quinoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potato and tubers (starch)</td>
<td>Whey</td>
<td>Inulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legume (flour)</td>
<td>Aroma, cane sugar syrup, salt</td>
</tr>
</tbody>
</table>

Sources:
Mariotti et al. (2011) J. Cereal Sci. 53: 319-327
web sites of different French supermarkets and health food stores
Some Examples of GF Pasta

- Rice pasta
- Durum Pasta
- Buckwheat Pasta
- Lentil Pasta
- Quinoa Pasta
Macronutrients of Traditional and GF Pasta

<table>
<thead>
<tr>
<th>Pasta</th>
<th>Protein (%)</th>
<th>Total Carbohydrates (%)</th>
<th>Total Lipids (%)</th>
<th>Fiber (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF pasta</td>
<td>11.2</td>
<td>80.8</td>
<td>5.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Durum pasta</td>
<td>13.8</td>
<td>78.4</td>
<td>2.6</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Means based on 15 GF products and 38 non GF pasta
Micronutrients of Traditional and GF Pasta Minerals

<table>
<thead>
<tr>
<th>Products</th>
<th>Ca</th>
<th>Fe</th>
<th>Mg</th>
<th>P</th>
<th>K</th>
<th>Na</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF pasta</td>
<td>19</td>
<td>1.46</td>
<td>77</td>
<td>224</td>
<td>197</td>
<td>326</td>
<td>1.44</td>
</tr>
<tr>
<td>Durum pasta</td>
<td>25</td>
<td>2.46</td>
<td>90</td>
<td>266</td>
<td>328</td>
<td>6</td>
<td>2.19</td>
</tr>
</tbody>
</table>

Source: http://ndb.nal.usda.gov/ndb/foods
Micronutrients of Traditional and GF Pasta

<table>
<thead>
<tr>
<th>Products</th>
<th>Vitamins (mg/100 g)</th>
<th>Folate (µg/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thiamin</td>
<td>Riboflavin</td>
</tr>
<tr>
<td>GF pasta</td>
<td>0.25</td>
<td>0.08</td>
</tr>
<tr>
<td>Durum pasta</td>
<td>0.25</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Sensorial Properties of GF Pasta

<table>
<thead>
<tr>
<th>Composition</th>
<th>Colour</th>
<th>Cooking Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brightness</td>
<td>Yellowness</td>
</tr>
<tr>
<td>Rice Flour</td>
<td>↗</td>
<td>↘ ↘</td>
</tr>
<tr>
<td>Yellow Corn Flour</td>
<td>↘</td>
<td>↗</td>
</tr>
<tr>
<td>Corn Starch</td>
<td>↘</td>
<td>→</td>
</tr>
<tr>
<td>Rice + Corn flours + additives</td>
<td>→</td>
<td>→</td>
</tr>
</tbody>
</table>

Glycemic Index of Traditional and GF Pasta

<table>
<thead>
<tr>
<th>Pasta content</th>
<th>GI</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole wheat</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td>64</td>
<td>Bacchetti et al. (2014) Food Funct. 5:3014-3017</td>
</tr>
</tbody>
</table>
Price Differential between GF and Traditional Pasta

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Price differential</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>2015</td>
<td>x 5.0</td>
<td>prices recorded on web sites of different French supermarkets and health food shops (based on 36 durum wheat pasta formats and 36 GF equivalent products + 1 pasta made with legumes)</td>
</tr>
</tbody>
</table>
Conclusions

1. Durum wheat remains the most suited raw material to reach pasta quality attributes expected by consumer with a very high reliability.

2. GF pasta can be elaborated from a large diversity of raw materials. It results as a “non well-defined” product exhibiting large variability.

3. Except celiac patients and other gluten proven pathologies, eviction of gluten in pasta is not justified neither for sensorial properties nor for nutritional aspects.

4. For non-celiac sensitivity, not only gluten has to be considered but other hypothesis should be explored (fodmaps, ATI, etc). It is suggested to organise a vast study through an international consortium.

5. In a longer term vision, pasta stakeholders should be able to separate trends from fads with the aim not to demonize traditional pasta which is a pillar of the Mediterranean diet.