The "Coffee-flux collaborative observatory": measuring and modeling carbon, nutrients, water and sediment Ecosystem services in a coffee agroforestry watershed (Costa Rica)

Olivier Roupsard, Karel van den Meersche, Clementine Alline, Bruno Rapidel, Jacques Avelino, Fédérico Gomez-Delgado, Fabien Charbonnier, Laura Benegas, Kristen Welsh, Rintaro Kinoshita, et al.

To cite this version:
Olivier Roupsard, Karel van den Meersche, Clementine Alline, Bruno Rapidel, Jacques Avelino, et al.. The "Coffee-flux collaborative observatory": measuring and modeling carbon, nutrients, water and sediment Ecosystem services in a coffee agroforestry watershed (Costa Rica). 2016, 23 p. hal-01837379

HAL Id: hal-01837379
https://hal.archives-ouvertes.fr/hal-01837379
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The “Coffee-Flux Collaborative Observatory”: measuring and modeling carbon, nutrients, water and sediment Ecosystem Services in a coffee agroforestry watershed (Costa Rica).

O. Roupsard1,2,8, K. Van den Meersche1,2,8, C. Allinne1,6,8, B. Rapidel1,6,8, J. Avelino2,8,12, F. Gómez-Delgado1,4,8,23, F. Charbonnier1,2,8, M. Jara5, A. Perez2, A. Barquero5, C. Rivera Wilson2, M. Navarro12, P. Vaast1

1 UMR Eco&Sols, F-34060 Montpellier– France
2 CATIE, 7170 Turrialba– Costa Rica
3 INRA-Ensam-UMR Lisah – France
4 ICE (Costa Rica Institute of Electricity) – Costa Rica
5 Hacienda Aquiares – Costa Rica
6 UMR System, F-34060 Montpellier – France
7 UMR ISPA, Bordeaux – France
8 PCP Agroforestry MesoAmerica: Pôle de Compétences en Partenariat
9 Cornell University–USA
10 UMR AMAP, F-34060 Montpellier– France
11 University of Idaho–USA
12 UPR Bioagresseurs de pérennes, CIRAD, Montpellier F-34398, France
13 Swedish University of Agricultural Sciences (SLU)
14 Agrocampus Ouest, Rennes, France
15 Supagro, Montpellier, France
16 AgroParisTech, France
17 UMR EEF, INRA-Nancy, France
18 U. Savoie, France
19 INSAIA, Nancy-France
20 CNRS, CEFU UMR 5175, 34293, Montpellier Cedex 5, France
21 Department of Physical and Environmental Sciences, Center for Critical Development Studies, University of Toronto Scarborouh, Canada
22 World Meteorological Organization (WMO-Costa Rica)
23 U. Nancy I-France
24 U. Bordeaux-France
25 U. Viçosa-Brazil
26 UNA-Stable Isotope Research Group: National University of Costa Rica
27 UR BEF, INRA-Nancy, France
28 SLU, SWEDEN
29 UR BEF, INRA-Nancy, France
30 U. Copenhagen

Photo 1: Coffee-Flux experimental watershed: arabica coffee agroforestry watershed in the Aquiares farm (Costa Rica), with Erythrina poeppigiana shade tree. Photo Nils Roar.
Coffee is one of the world's largest agricultural export by value (FAO, 2011, Pendergrast, 2009). Costa Rica declared its ambition to become the first C-Neutral country in 2021 and will lead the development of NAMA-Café and C-Neutral coffee certification. The Coffee-Flux experimental site is unique to study simultaneously carbon, water, sediment and nutrient ecosystem services.

Aims and Philosophy of the CoffeeFlux Collaboration

The aim of Coffee-Flux is to assess carbon, nutrients, water and sediment Ecosystem Services (ES) at the scale of a coffee agroforestry watershed. Observation, experimentation, modelling and remote-sensing are combined, collecting data and calibrating models locally, then upscaling to larger regions. The project has been running continuously since 2009, in order to encompass seasonal and inter-annual fluctuations of coffee productivity and ecosystem services. Coffee-flux is a platform where collaborative research on coffee agroforestry is promoted: data are being shared between collaborators and positive interactions are enhanced. The philosophy is to concentrate several investigations on one specific site and for several years, to share a useful common experimental database, to develop modelling and to publish results in highly-ranked scientific journals. Applied research is also highly encouraged (e.g. C-Neutral certification, NAMA, Agronomy, etc.). Coffee-Flux benefits from infrastructure, easy access from CATIE and very good security, ready to welcome complementary scientific investigations and collaborations. The project is wide open to complementary projects, scientists and of course to students. The core data base is for sharing.

Sponsors-Networks-Flowchart

Coffee-flux was launched in December 2009 in Costa Rica by Cirad, CATIE, PCP and the Aquaires farm. First, it was a sub-project of CAFNET (EuropAid/121998/C/G): “Connecting, enhancing and sustaining environmental services and market values of coffee agroforestry in Central America, East Africa and India”. Coffee-Flux is a contributor of FLUXNET and became an Observatory within the European and french SOERE F-ORE-T network in early 2011. It is fueled by projects and delivers products to Networks and Instruments.

Site and Infrastructure Description

A 1 km² coffee watershed, homogeneously shaded with tall *Erythrina poeppigiana* was selected in Aquaires, one of the largest coffee farms of the country, “Rainforest Alliance” certified, located on the slopes of the Turrialba volcano, ranging in elevation from 1,020 up to 1,280 m.a.s.l., strongly influenced by the climatic conditions of the Caribbean hillside, and without strong dry spell. The

2 CATIE: Centro Agronómico Tropical de Investigación y Enseñanza: http://www.catie.ac.cr/
8 Observatoire SOERE/F-ORE-T: http://www.allenvi.fr/?page_id=768
watershed is instrumented with automatic flumes, pluviometers, soil moisture probes, piezometers, turbidimeters, sapflow and eddy-covariance tower (for H$_2$O and CO$_2$ gas fluxes).

Photo. 2: The Coffee-Flux experimental display.

Monitoring Ecosystem Services

Hydrological service: Coffee-Flux is monitoring and modelling the water balance partitioning (rainfall, interception, superficial runoff, infiltration, sapflow, soil water balance, evapotranspiration, aquifer fluctuations and total streamflow), and the sediment yield from plot to watershed. One model was developed (Hydro-SVAT: Gómez-Delgado et al., 2011). Also δ18O/δD isotopic tracing experiments are underway (collaboration with UNA, Ricardo Sánchez-Murillo et al., 2015). 1 PhD thesis is achieved (Gómez-Delgado F., 2010), two are in progress (Benegas L.; Welsch K.) and 2 postgraduate fellowships achieved (Kinoshita, 2009; Deffner A.).

Carbon service: Coffee-Flux is monitoring the leaf area index (LAI) using field and remote sensing techniques (High Resolution Multispectral Images; MODIS), the Net Primary Productivity (NPP: tree + coffee growth and mortality) above and below-ground (minirhizotrons, rhizotrons), the Gross Primary Productivity or (GPP = ecosystem photoynthesis), the ecosystem + soil respiration, the whole plant gas exchanges, the leaf gas exchanges and the Net Ecosystem Exchange (NEE) which is the ecosystem C balance, using combined eddy covariance, growth+litter monitoring and various plant chambers. The SOC, nitrogen, active C, non-crystalline clay minerals such as allophane, imogolite, ferrihydrite as well as metal-humus complexes have been surveyed, SOC and N were estimated by VISNIR and mapped (kriging) for the whole watershed (Kinoshita et al., 2015). 1 PhD is completed (Charbonnier F.), two PhD in progress (Perez Molina J.P., Vezy, R.), 6 MSc achieved (Taugourdeau S.; Audebert L.; Defrenet E.; Nespoulous, J., Khac E., Soma M.) and 2 postgraduate fellowships (Jarri, L., Cambou A., Guidat, F., Rançon, F.). One radiation absorption + photosynthesis + transpiration model is being used (MAESPA: Charbonnier et al., 2013).

Nutrient balance: Coffee-Flux is monitoring nutrient inputs, assimilation and leaching, according to distance to shade trees and within an experimental display controlling fertilization (K. Van Den Meersche). Nitrates and P are also being monitored in aquifers and streamflow (PhD of K. Welsch).
Other GHGs emissions: A N₂O & CO₂ soil flux automatic monitoring experiment was settled in February 2016 in a fertilization trial, in collaboration with U. Copenhagen; Master of Carolín Mages).

Protection against erosion: Coffee-Flux is monitoring erosion at plot scale (with trees and without trees) and sediment yield at the watershed scale (using automatic turbidimeter). Also in the PhD of Gómez-Delgado F. (2010).

Coffee pests and diseases regulation: Incidence and severity of coffee pests and diseases (including coffee leaf rust) are being monitored under shaded and full sun conditions, and compared with or without treatment (C. Allinne). Incidence is also measured in function of the fertilization level.

Effect of Shade on coffee microclimate: The CATIE Agroforestry trial (Elias de Melo) has been equipped to monitor coffee canopy temperature and microclimate according to Shade types (MSc. of Maxime Soma, PhD of Rémi Vezy).
Fig. 1: The red line is the time-course of streamflow at the outlet of the Coffee-Flux watershed (automatic flume), showing a large contribution of the baseline (aquifer responding in terms of discharge and recharge) + episodic and rather low contribution of superficial runoff (peaks after rainfall events). This behaviour is typical of watersheds with large infiltration capacity, low superficial runoff and probably low laminar sediment transport.
Fig. 2: Time-course of the sediment transport assessed by automatic turbidimeter (OBS-3, see photo) and bottle collection at the outlet of the Coffee-Flux watershed. The rating curve of turbidity in terms of sediment load is also given.

Fig. 3: Time-course of daily potential (ET₀-Penman Monteith, FAO) and real evapo-transpiration (ETR, by eddy covariance) in the Coffee-Flux Watershed. ETR/ET₀ varies from 0.4 to 0.7, according to LAI fluctuations mainly.
Fig. 4: Cumulative water balance of the CoffeeFlux watershed, as measured by independent methods (ETR by eddy covariance; Q by flume).

Fig. 6: Structure and simulations of the lumped Hydro-SVAT model for the water-balance partitioning of the Coffee-Flux watershed (Gómez-Delgado et al, HESS, 2011)
Fig. 7: Time-course of carbon net ecosystem exchange (F_c), and its partitioning into ecosystem respiration (positive values, mainly at night) and C uptake (photosynthesis + respiration, negative values). One cycle is one day, data from year 2010.

Fig. 8: Root turnover (birth, growth, mortality) assessed by minirhizotrons.
Simulating intra-plot light absorption with MAESTRA

Fig. 9: Scenes for the simulation of light absorption, water and CO$_2$ exchanges by every plant of the plot under actual or double shade-tree density. Charbonnier et al., AFM, 2013

Simulating intra-plot light absorption with MAESTRA

Fig. 10: Intra-plot variability for light absorption. Top views and transects for yearly absorbed PPFD by the coffee layer, relative absorbed diffuse PPFD by the coffee layer, relative absorbed by the coffee layer when shade trees are present or not. Charbonnier et al., AFM, 2013.
Fig. 11: Measuring photosynthesis at three scales: leaf, whole coffee-plant and ecosystem. Charbonnier et al, 2012.

Fig. 12: Verifying photosynthesis simulated by the MAESTRA model at the whole plant—scale. Charbonnier et al, 2012.
Fig. 13: Scheme for the methods used when upscaling LAI from transects to MODIS pixels and to farm: (a) 14 farm transects (see Fig. 2); (b) High resolution Worldview2 NDVIHR image, calibrated using the 14 transects (step 1); (c) Farm LAI map at 2 m resolution computed from step 2; (d) MODIS pixel position (white frame) used to compute the LAIHR average and to calibrate the MODIS LAI-NDVI relationship at 250 m resolution from step 3; (e) Computing pixel and farm LAI_MODIS from step 4; (f) computing pixel and farm LAI_MODIS,coffee after retrieving pixel and farm LAI-proxy,tree from step 5.

Fig. 13: Methods used in Leaf Area Index assessment from plant to plot to farm. Taugourdeau et al., 2014.

Fig. 14: Monitoring Leaf Area Index at farm scale using MODIS 2001-2012. Taugourdeau et al., AGEE, 2014.
Fig. 15: Estimating the GHG balance of the Aquaires Farm, application to C-Neutral certification. O. Roupsard dec 2014, presentation to Junta Nacional del Carbono/Costa Rica.

Fig. 16: A proposed strategy to enhance C-Neutral certification in the coffee sector. O. Roupsard dec 2014, presentation to Junta Nacional del Carbono/Costa Rica.
Fig. 17: Schematics and averaged yields in the fertilization/shade experiment (K. Van den Meersche et al.).
Fig. 18: Maps of a) measured soil organic carbon (SOC) by dry combustion; b) c) and d) predicted soil organic carbon; and e), f) and g) prediction residuals. Figures b) and e) are associated with the ordinary kriging method, c) and f) with co-kriging with aluminum extracted by sodium pyrophosphate (Alp), and d) and g) with co-kriging with visible-near-infrared reflectance spectroscopy (VNIRS) predicted SOC (SOCVNIRS). Kinoshita et al., Geoderma, 2015
Figure 19: Kriged map of shade tree canopy openness in the CATIE agroforestry trial. Grey lines represent the edges of the whole-plot treatment (Shade type) and black lines are for the 3 Blocs. C = Chloroleucon; T = Terminalia; E = Erythrina; ★ = Reference weather stations (blue: shaded in C+E, red: in Full-Sun, FS). N = 570 canopy openness measurements used for kriging. Source: MSc of Maxime Soma.
Figure 20: Kriged map of predicted coffee canopy temperature (Tc) for typical days (top: 08/05/2015 at 02:08 PM; bottom: 01/06/2015 at 12:17 AM), exhibiting contrasted climatic conditions. Top map is typical of cloudy conditions and bottom map is typical of sunny days. Temperatures in °C. N=570 kriged values. Vertical axis in meters. Colour scale in degree Celsius. Source: MSc of Maxime Soma.
Figure 21: Time series of (A) precipitation $d^{18}O$ and observed surface meteorological variables, (B) air temperature, (C) relative humidity and (D) cumulative precipitation during 2013 at the three study sites Heredia (blue), Turrialba (green) and Caño Seco (red). Black arrows denote the transition from the dry season (Dec-April) to the wet season (May-Nov). Source: Sanchez-Murillo et al., Quaternary Science Reviews, 2015
Local team and students

- Dr. Olivier Roupsard (UMR Eco&Sols/Cirad/CATIE, ecophysiologist, bioclimatologist)
- Dr. Karel Van den Meersche (UMR Eco&Sols/Cirad/CATIE, ecophysiologist)
- Dr. Clémentine Allinne (UMR System/Cirad/CATIE, phytopathologist)
- Dr. Bruno Rapidel (UMR System/Cirad/CATIE, agronomist, ecophysiologist)
- Dr. Jacques Avelino (Cirad/CATIE, phytopathologist)
- Dr. Elias de Melo Virginio Filho (CATIE, agroforester)
- Dr. Federico Gómez-Delgado (WMO/ hydrologist)
- Dr. Muriel Navarro (Ti Motu Design/ biologist)
- Dr. Fabien Charbonnier (CONACyt-ECOSUR, ecophysiologist)
- Dr. Simon Taugourdeau (CIRAD, ecologist)
- PhD std. Laura Benegas (CATIE/SLU, hydrologist)
- PhD std. Kristen Welsh Unwala (U. Idaho/CATIE/ hydrologist)
- PhD std. Junior Pastor Perez Molina (U. Viçosa-Supagro, ecophysiologist)
- PhD std. Remi Vezy (U. Bordeaux, modeler-ecophysiologist)
- MSc Rintaro Kinoshita (U. Cornell, pedologist)
- MSc Louise Audebert (U. Nancy I, ecophysiologist)
- MSc Jérôme Nespoulous (U. Savoie, pedologist)
- MSc Elsa Defrenet (Agrocampus Ouest-Rennes, ecophysiologist)
- MSc Emmanuelle Khac (Agroparistech_Montpellier, ecophysiologist)
- MSc. Maxime Soma (AgroparisTech, ecophysiologist)
- Ing. Titouan Baraer (VetAgro Sup, agronomist)
- Ing. std. Aurélie Cambou (ENSAIA-Nancy, ecophysiologist)
- Ing. std. Anna Deffner (Supagro, ecophysiologist)
- Ing. std. Laura Jarri (Supagro, ecophysiologist)
- Ing. std. Florian Guidat (ENSAIA-Nancy, pedologist)
- Ing. std. Florian Rançon (Supagro, remote-sensing)
- Ing. std. Maëva Colombet (ENSAT, agronomist)
- A. Perez (CATIE, Technician)
- A. Barquero and family (Aquiares farm, Technicians)

Collaborations

- Aquiares farm: MSc. Don Alfonso Robelo (CEO); MSc. Diego Robelo; MSc. Guillermo Ramirez; MSc. Rafael Vargas; MSc.Manuel Jara; MSc. Alonso Barquero.
- CATIE: Prof. Francisco Jiménez; Prof. Jeffrey Jones; Prof. Nelly Vasquez; Prof. Tamara Benjamin; Prof. Pablo Imbach; PhD std Luis Molina; MSc. Patricia Leandro
- CIRAD : Dr. Anne Clément-Vidal
- Idaho University (USA) : Dr. Lee Vierling; Dr. Jan Eitel; Prof. Jan Boll
- Instituto Costarricense de Electricidad (ICE, Costa-Rica): Dr. Federico Gómez-Delgado
- Swedish University of Agricultural Sciences (SLU): Prof. Anders Malmer; Dr. Ulrik Ilstedt
- U. Copenhagen: Prof. Anders Priemé; Prof. Bo Elberling; Mathias Madsen
- U. Toronto: Dr. Marney Isaac
- U. Western Sydney-Australia: Dr. Remko Duursma
- U.Macquarie NSW-Australia: Dr. Belinda Medlyn.
- UMR BIOEMCO-Paris : Dr. Christian Valentin; Dr. Christian Hartmann
- UMR ISPA ; Dr. Denis Loustau, Dr. J.-C. Domech
- UMR-AMAP, Montpellier : Dr. Jean Dauzat; Dr. Alexia Stokes; Dr. Hervé Rey; Dr. Thierry Fourcaud; Dr. John Kim
- UMR-CEFE, Montpellier : Dr. Catherine Roumet; Dr. Ivan Prieto-Aguilar
- UMR-Eco&Sols Montpellier ; Dr. Christophe Jourdan, Dr. Tiphaine Chevallier, Dr. Alain Albrecht ; Dr. Bernard Barthès, Dr. Philippe Thaler ; Dr. Yann Nouvellon ;
- UMR-EEF, INRA Nancy : Dr. Erwin Dreyer (Président de Centre INRA);
Journal Articles (published)

Journal Articles (submitted)

Thesis

Benegas, L., 2010-2013. The role of trees for groundwater recharge: PhD research plan, CATIE/SLU October 2009 – November 2013. Faculty of forest Sciences. Swedish University of Agricultural Sciences (SLU), Umeå/Uppsala/Alnarp.

Deswarte, C. 2015. Spatio-temporal distribution of coffee diseases according to shade in agroforestry systems, Master II Productions Végétales option Ingénierie des Agro systems. Agrocampus Ouest Rennes-France. XX pp + Appendices.

Perez Molina, J.P., 2013. Variabilité temporal y espacial de la respiración del suelo y su partición en respiración autotrófica y heterotrófica, necromasa y tasas de liberación de nutrientes de la hojarasca, en un sistema agroforestal de café, comparado a bosque de origen. MSc, Dep. Forestal, CATIE. Costa Rica. 29 Nov 2013, p. 82.

Perez Molina JP. 2014-2018. Coffee Acclimation to elevated [CO2]. A field experiment with FACE (Free-Air CO2 Enrichment) in Brazil, PhD project PhD, PhD Project, U. Viçosa, Brazil. Bourses du Sud CIRAD.

Vezy R. 2014-2017. Simulation of alternative management practices for perennial plantation adaptation to global changes, PhD, Université de Montpellier 2, France.

Communications

International Conference on Functional-Structural Plant Models. 7, 2013-06-09/2013-06-14, Saariselkä, Finland, Saariselkä, Finland.

Roupasd O. 2015. Accompanying NAMA-Café with the C-Neutral certification : a joint PCP effort to link our activities with socio-economical stakes. In: PCP, ed. PCP Evaluation. CATIE.

Workshops organized

Visitors

Coffee-Flux is also place for organizing visits, training and for demonstrating the PCP, CATIE, Aquaires and Cirad collaboration: we organize one or two visits per month for officials (e.g. coffee sector in Central America, MAG, Fundecooperacion, GIZ, NAMA-Café), politicals (MAE, French Embassy), journalists (Daily Newspaper-La Nación; Et si on changeait le monde-Television, Vigie de l'eau-Vision conference and Web site), University Professors (Norway, Sweden, Denmark, USA, England), groups of students (all levels, e.g. U. Costa Rica), and congress field trips (21st Century Watershed Technology Conference ASABE; ASIC 2012-Costa Rica)

Contacts and links

| Olivier Roupsard
| Tree-Crop Physiologist
| CIRAD-Persyst, UMR Ecologie Fonctionnelle et Biogéochimie des Sol
| and Agrocosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France. | **Posted at:**
| CATIE 7170, Apartado 3
| Cartago, Turrialba 30501
| COSTA RICA
| Email : olivier.roupnard@cirad.fr |

Web sites:

- UMR ECO&SOLS: http://www.montpellier.inra.fr/ecosols
- Theme 3 of UMR Eco&Sols: Carbone et changements globaux: http://www5.montpellier.inra.fr/ecosols/Themes-de-recherche/carbone_changements_globaux
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza): http://www.catie.ac.cr/