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Abstract. As the Linked Open Data and the number of semantic web
data providers hugely increase, so does the critical importance of the
following question: how to get usable results, in particular for data mining
and data analysis tasks? We propose a query framework equiped with
integrity constraints that the user wants to be verified on the results
coming from semantic web data providers. We precise the syntax and
semantics of those user quality constraints. We give algorithms for their
dynamic verification during the query computation, we evaluate their
performance with experimental results, and discuss related works.
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1 Introduction

There exist now very large knowledge bases on the web of Linked Open Data,
as DBpedia, Yago or BabelNet. The largest ones contain millions of entities and
billions of facts about them (attribute values and relationships with other enti-
ties) [20]. Applications are needed to help humans exploring this huge knowledge
network, performing data analysis and data mining tasks. Promising recent pro-
posals are currently experimented on only one semantic web data source [7, 10],
and these processes can be expected to be even more helpful when they will
deal with several linked open data sets. One crucial point for such applications,
and in particular for data mining algorithms, is that the data collection and
pre-processing steps have to be safe and sound.

In order to help semantic web data mining tool designers for performing
the data collection and pre-processing steps, we propose a semantic web data
validator [4]. The idea is to extend a query environment over semantic graph
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databases with a mechanism for filtering answers according to a user customized
context. In this paper, we use the term ”user” for the query-writer. The user
context is composed of (i) the view she/he has defined on the needed semantic
web data and (ii) a set of personalization tools, such as integrity constraints,
confidence degrees, etc. In this paper, we only deal with integrity constraints,
that we call user quality constraints, leaving the other kinds of personalization
tools for other discussions (see [4, 6]).

User quality constraints are restrictions imposed on query results. Both the
constraints and the queries are expressed in terms of the user’s view of data.
The constraint verification is triggered by a query and consists in filtering its
answers. In this way, there may be some inconsistencies within sources, but the
answers given to the user are filtered to ensure their consistency w.r.t. her/his
constraints. The following example illustrates the kind of constraints a user can
define and what are their effects on query answers.

Example 1. Let us consider a query q1(X)← teacherOf(X,Y ) in a context with
two constraints:

cp : teacherOf(X,Y )→ professor(X).
cn : teacherOf(X,Y ), takesCourse(X,Y )→ ⊥.

The first constraint is to verify that each teacher of a course is a professor. The
second constraint disallows to accept, in the query answers, a person who teaches
a course while she/he is enrolled in the same course. Suppose the database
is as in Figure 1. Although {Bob, Tom,Alice, Ann} are answers to query q1,
{Alice,Ann} are invalid w.r.t. cp, while {Tom} causes a violation of constraint
cn. Only {Bob} satisfies all constraints. Thus, the answer to q1 in the user context
consisting of {cp, cn} is {Bob}.

teacherOf(Bob, DB) professor(Bob)
teacherOf(Bob, Java) professor(Tom)
teacherOf(Tom, Java) takesCourse(Tom, Java)
teacherOf(Alice, DB) takesCourse(Bob, Java)
teacherOf(Ann, DB) reasearchesIn(Ann, DB)

reasearchesIn(Bob, DB)

Fig. 1: Database instance

From Example 1, it can be noticed
that when a constraint is triggered
by instantiated atoms in the query’s
body, it requires auxiliary appropriate
queries to verify its side effect. For in-
stance, the fact teacherOf(Bob,DB)
triggers both cp and cn, thus queries
like q11() ← professor(Bob) and
q12()← takesCourse(Bob,DB) are produced to verify whether Bob is a profes-
sor and whether Bob is registered in the Database course. It is easy to see that,
when dealing with a big amount of data, the impact of such auxiliary queries
may be important. Even though most of them are simple queries, they can lead
to a system overloading. A solution to avoid such issue is to integrate as much as
possible the constraints into the query, in such a way that the answers will not
only satisfy the initial query, but they will also respect all integrated constraints.

This paper is organized as follows: in Section 2, we present the overall query
framework with user context, and precise the syntax and semantics of user qual-
ity constraints. In Section 3 we give algorithms for their dynamic verification
during the query computation. In Section 4 we evaluate their performance with
experimental results, and discuss related works.

beatrice
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2 A Querying Framework with Constraints

2.1 Querying environment

Fig. 2: Query system overview

Our query processing framework is
depicted in Figure 2. It comprises
two distinct parts which commu-
nicate: Data validation, responsi-
ble for checking constraints satisfac-
tion, and Data providers for com-
puting answers to the queries issued
from the data validation part. The
later may actually integrate several
end-data-providers, or it may con-
nect only one provider. For ensuring
that the final answers to the user’s
queries satisfy all user constraints,
a dialogue between the two parts
is established, for getting interme-
diate results and sending subsidiary
queries.

The user defines her/his con-
text by setting her/his view on the
queried sources, a set of datalog
predicates as explained in next sec-
tion, and a set of quality constraints involving these predicates. The user’s query
involves these predicates, so quality constraints can be used as rewriting-rules
to reformulate each query q, resulting in a union of conjunctive queries whose
answers, contained in q’s answers, are valid w.r.t. the user quality constraints.

Afterwards, these conjunctive queries are sent to the Data providers part,
which evaluates them against data stored on sources. The query evaluation pro-
cess is transparent to the validation step, in particular, answers that are entailed
are treated in the same way as those that actually exist in sources. We respect
the potential ontological dimension of semantic web sources, while interpreting
the user constraints using the closed-world assumption. Indeed, as it deals with
semantic data, the evaluating process performed by the Data providers part
relies on the open-world assumption, where ontological constraints are used to
deduce new information. Ontological constraints are used as rewriting-rules to
reformulate a query into a set of new conjunctive queries, for taking into account
integration information (OBDA/OBDI Systems [18, 3]), or for dealing with in-
complete information issues [3, 11, 15, 12]. But such rewritings are performed by
the Data providers part, independently from the Data validation part.

As our system may be deployed with various data management systems, a
module will translate datalog+- queries [5] (used by Graal3) into SPARQL for
FedX [19], and HIVE-SQL for MapReduce (as proposed in [4]).

3 https://graphik-team.github.io/graal/
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2.2 Constraints

Our constraints are expressed in a first-order logic formalism. We consider an
alphabet made up of three disjoint sets const, var and pred, of constants, variables
and predicate names, respectively. A term t is either a variable or a constant and
an atom is a formula p(x1, x2, . . . , xn) where p is a predicate name and each xi
is a term. A substitution is a total mapping σ : var→ T from variables to terms.
A homomorphism from a set of atoms A1 to a set of atoms A2, all over the same
schema R, is a substitution h from the set of terms of A1 to the set of terms of
A2 such that: (i) if t is a constant, then h(t) = t, and (ii) if r(t1, ..., tn) is in A1,
then h(r(t1, ..., tn)) = r(h(t1), ..., h(tn)) is in A2. The notion of homomorphism
naturally extends to conjunctions of atoms. Two atoms A1 and A2 are unifiable
if and only if there exists a substitution σ s.t. σ(A1) = σ(A2). Furthermore,
if two atoms A1 and A2 are unifiable then there exists a most general unifier
(mgu) θ s.t. θ(A1) = θ(A2).

A conjunctive query (CQ) q of arity n over a given schema is a logical rule
of the form q(X) ← φ(X,Y), where φ(X,Y) is a conjunction of atoms over the
schema, q is a n-ary predicate and X,Y are sequences of terms. Given a logical
rule r, we denote by body(r) the rule’s antecedent by head(r) its consequent.

Our user quality constraints [4] are also logical rules. We define a user context
as a set C of constraints, composed of three subsets, as follows:
Positive constraints (CP ): Each positive constraint has the form

∀X,Y L1(X,Y)→ ∃Z L2(X,Z)
L1(X,Y) and L2(X,Z) are atoms and Z are existential variables.
Negative constraints (CN ): each negative constraint is a rule having the form

∀X φ(X) → ⊥
where φ(X) is an atom L1(X) or a conjunction of two atoms L1(X1), L2(X2),
which have a non-empty intersection between the terms in X1 and X2. We refer
to CN1 and CN2 as sets of negative constraints having only one atom and two
atoms, respectively. Negative constraint is a special case of denial constraint with
at most two occurrences of database literals.
Equality-generating dependency constraints without nulls (CK): each EGD
is a rule having the general form

∀X1, X2,Y,Z1,Z2 L1(Y, X1,Z1), L2(Y, X2,Z2)→ X1 = X2.
where Y is a sequence of common terms of L1 and L2 that has at least one
element. Notice that EGD include functional dependency (and thus, key con-
straints) having the form L1(Y, X1,Z1), L1(Y, X2,Z2)→ X1 = X2.

In the rest of this paper, for simplicity, we will omit the quantifiers. We say
that a constraint c is triggered by an atom A when there is a homomorphism
h from body(c) to A. Positive constraints are a special case of linear tuple gen-
erating dependency (TGD [2]) which contain only one atom in the head. They
cover both inclusion dependency class and join dependency class [2]. When Z is
not empty, the homomorphism h is extended to h′ such that, for each existential
variable z ∈ Z, h′(z) is a new fresh variable. It is well-known that facts from a
database instance may trigger such constraints, and the chase procedure ([17])
is the standard process for the generation of new facts from a database instance
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and a set of dependencies (TGD or EGD) [2]. It can also be used to decide
containment of conjunctive queries in the presence of constraints ([14]). In this
paper, we consider that the set of positive constraints is weakly acyclic, which
guarantees the decidability of query containment [9]. In Example 1, cp and cn
are illustrations for the definitions of positive and negative constraints above.
An example of EGD constraints can be as follows:

ck : worksFor(X,Y, Z), headOf(X,W )→ Z = W.
It states that if a person X is the head of W and if she is working for organization
Y in department Z then W must be the department Z.

3 Validating Semantic Web Query Outputs

Given a user’s query q, the validation of its result on the basis of user’s quality
constraints in C can be performed in two ways: by rewriting q to take into ac-
count the constraints in C, or by the evaluation of auxiliary queries, composed
on the basis of initial results obtained for q. Even if the choice between these two
processes depends on the query evaluation power of data providers, it is impor-
tant to study their costs and benefits in a common framework. To do so, in this
paper, we use Graal [1] as conjunctive query evaluator for both techniques. More
precisely, we focus on testing and comparing the performance of our validation
approach in the following two scenarios: (1) the rewriting of q on the basis of
constraints in C, followed by the rewritten-query evaluation, and (2) what we
call the naive solution, i.e. evaluate q, then build and evaluate multiple auxiliary
queries on the basis of q’s answers. This section summarizes these two scenarios,
and in Section 4 we analyse in details their respective validation performance.

3.1 Query Rewriting with Constraints

Given a CQ q and a set of constraints C, let us consider examples to illustrate
the situations our query rewriting algorithm tackles with.

Example 2. Query q1 below looks for professors who were born in a foreign coun-
try. Constraints establish a user’s context imposing a professor to be associated
with a course (cpa) offered by a department (cpb

). Moreover, the user is inter-
ested only in professors working in the public sector (cpc

).
q1(X1)← professor(X1), placeOfBirth(X1, Z1), foreignCountry(Z1).

cpa
: professor(X)→ teacherOf(X,Y ).

cpb
: teacherOf(X,Y )→ offeredCourseIn(Y,Z).
cpc : professor(X)→ employeeGov(X).

In this context, we see body(q1) as a set of atoms capable of triggering constraints
and producing new atoms that should be added to the query’s body. This oper-
ation corresponds to a chase computation ([17]), which starts with the atoms in
body(q1). Special attention is required in the use of variable renaming. The new
rewritten query, that the system should send to data providers, is:
q′1(X1)←professor(X1), teacherOf(X1, Y1), offeredCourseIn(Y1, Y2),

employeeGov(X1), placeOfBirth(X1, Z1), foreignCountry(Z1). �



6 J. Chabin et al.

When the query, or the constraints, contain constants, the above rewriting
technique should be revised, as illustrated by the following example.

Example 3. Consider query q2, and constraint cp2 imposing restrictions on database
teachers - they should do research in the database domain:

q2(X)← teacherOf(X,Y ).
cp2 : teacherOf(Z,DB)→ researchesIn(Z,DB).

Notice that no restriction is imposed on teachers in other domains. Here we can-
not apply the chase as in Example 2, because a query q′2(X)← teacherOf(X,DB),
researchesIn(Z,DB) would ignore the teachers of all other domains. In this
case, our proposal is to replace q2 by the union of the two following queries:

q2.1(X)← teacherOf(X,Y ),¬teacherOf(X,DB).
q2.2(X)← teacherOf(X,Y ), teacherOf(X,DB), researchesIn(X,DB). �

Algorithm 1 summarizes our rewriting solution. In this algorithm the input is
composed of a conjunctive query, and positive and negative constraints. However,
negative constraints in CN2, i.e., those having the form L1(X1), L2(X2)→ ⊥ are
transformed into two equivalent formulas: L1(X1) → ¬L2(X2) and L2(X2) →
¬L1(X1). In this way, negative constraints receive a similar treatment as positive
constraints. For instance, from Example 1, the constraint cn can be written as
cn1

: teacherOf(X,Y )→ ¬takesCourse(X,Y ) and cn2
: takesCourse(X,Y )→

¬teacherOf(X,Y ). Query q1 is then rewritten as q1(X) ← teacherOf(X,Y ),
¬takesCourse(X,Y ).

In Algorithm 1, Function RewriteWithConstraints is the main program, which
ensures that each query is rewritten by taking into account all positive and
negative constraints in C. It calls Function Integrate, the kernel of our rewriting
method, which computes the new queries that replace the given query q, by
integrating in q the restrictions imposed by the given constraint c.

The instantiation of constraints w.r.t. the atoms L in q’s body is done on
line 15 by using a mgu θ, and c′ is the resulting constraint, instantiated with
constants in q. Then, on line 18, we consider the cases where c′ can be triggered
by L. This happens when θ is a variable renaming, or, when it replaces variable
in c by constants in L (afterwards, there may still exists a homomorphism ν
from body(c′) to L). For instance, consider query q3 and constraint c3 as follows:

q3(X)← professor(Bob), teacherOf(Bob,X)
c3 : professor(X)→ inDept(X,Y )

With L = professor(Bob) and θ = {X/Bob}, we obtain c′3 : professor(Bob)→
inDept(Bob, Y1), where Y1 is a new variable resulting from variable renaming
performed by createRule (line 19). Similarly, in Example 2, for L = professor(X1)
and θ = {X/X1} we obtain c′pa

: professor(X1)→ teacherOf(X1, Y1).
When the homomorphism ν exists, the query’s body is completed with the

head of c′ (line 19). The loop on line 5 ensures that the query’s body will be
completed with all the atoms obtained by triggered constraints. Notice that
the idea here is to use a chase procedure applied to rules that respect some
syntactic restrictions. Indeed, our current implementation deals with a set of
weakly acyclic TGD ([9]). Roughly, a set of TGD is acyclic if it does not allow
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for cascading of labelled null creation during the chase. Example 2 illustrates a
rewritten query obtained by following the above steps.

Algorithm 1: RewriteWithConstraint

Input : A conjunctive query q and a set of constraints C = CP ∪ CN

Output: A set of queries Q s.t. each q′ ∈ Q does not contain explicit
contradictions and the answers of q′ respect CP ∪ CN . Notice that we
can get Q = ∅ as output.

1 Function RewriteWithConstraint(q, C):
2 Q = {q};
3 repeat
4 hasChanged = false;
5 foreach c ∈ C do
6 foreach q ∈ Q do
7 Q′ = Integrate(q, c);
8 if (|Q′| = 1 and q′ ∈ Q′ is more restricted than q) or (|Q′| > 1)

then
9 Q = Q\{q} ∪Q′;

10 hasChanged = true;

11 until not hasChanged ;
12 return Q;

13 Function Integrate(q, c):
14 Q′ = {q};
15 foreach L ∈ body(q) s.t. ∃mgu θ : θ(L) = θ(body(c)) and not tested(L, c)

do
16 c′ = createRule(θ(head(c)), θ(body(c)));
17 foreach q′ ∈ Q′ do
18 if ∃ homomorphism ν from body(c′) to L then
19 q1 = createRule(head(q′), body(q′) ∧ ν(head(c′))) ;
20 Q′′ = {q1} ;

21 else
22 q1 = createRule(head(q′), body(q′) ∧ ¬θ(body(c′))) ;
23 q2 = createRule(head(q′), body(q′) ∧ θ(body(c′)) ∧ θ(head(c′)));
24 Q′′ = {q1, q2};

25 Q′′ = Simplify V erify(Q′′);

26 if (|Q′′| = 1 and q′′ ∈ Q′′ is more restricted than q′) or (|Q′′| > 1) then
27 Q′ = Q′\{q′} ∪Q′′;

28 markTested(L,c);
29 //Mark L as already tested w.r.t. c, i.e. tested(L, c) = true

30 return Q’;

When the homomorphism ν does not exist, we are dealing with constants that
cannot map to variables or with different constants. Let us consider Example 3,
after executing line 15 of Algorithm 1 with L = teacherOf(X,Y ). We have
c′p2 : teacherOf(Z,DB) → researchesIn(Z,DB) (no changes w.r.t. cp2). No
homomorphism from body(c′) to L is possible. Line 22 deals with results that are
not concerned by the constraint. In this case, the query body is completed with
the negation of the constraint’s body. Thus, in our Example 3, q2.1 selects people
who do not teach DB. With the database instance of Figure 1, the answer for q2.1
is Tom. Then, on line 23, we deal with results concerned by the constraint. In
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Example 3, q2.2 selects two kinds of people: (i) those who are database researchers
and only teach DB and (ii) those who teach and do research in the database
domain but also teach other subjects. Continuing with our example, the desired
answers for q2 are Bob, Ann and Tom. With our algorithm, Bob and Ann are
not answers for q2.1, but they are answers to q2.2. The result of q2 is the union
of the answers for q2.1 and q2.2.

Rewritten queries, put in the set Q′′, are sent to function Simplify Verify
(line 25) that, for each query, removes redundant atoms. This function also
ensures that Q′′ does not contain queries with explicit contradiction. In other
words, the function checks whether: (i) there is no two atoms having the form
L(X) and ¬L(X) in the query body and (ii) atoms in the query body cannot
trigger a negative constraint.

We use query containment (see, for instance [2] for a revision on the subject)
to decide whether a rewritten query replaces a given one. On line 27, notice that
at each iteration step, the set Q′ contains the most restricted rewritten queries
obtained so far. Each iteration step considers an atom in the query body and
one single constraint. The output of the Integrate function is the set Q′, which
contains the most restricted rewritten queries obtained for one query w.r.t. one
constraint c. Then, on line 9, the replacement of the original query q is considered.
If only one query q′ results from Integrate, q is replaced by q′ only when q′ is
more restricted than q. Otherwise, when more than one rewritten queries result
from Integrate, q is replaced by them.

The query obtained after only chasing the original query w.r.t. positive con-
straints corresponds to the universal plan of [8]. However, when dealing with
negative constraints, even when Integrate performs only lines 17-20 to rewrite a
given query, the rewritten query may contain negative atoms.

3.2 Building Auxiliary Queries

Given a query q, to ensure its answer consistency w.r.t. user’s quality constraints,
instead of dealing with query rewriting, one can consider the generation of sub-
queries from the initial answers obtained from q. Let ht be the homomorphism
used to produce tuple t as an answer to the query q. We want to check whether
t is valid w.r.t. constraints. Tuple t is considered valid only when all constraints
triggered during the validation process are satisfied.

Let L(X) be an atom of body(q). The instantiated atom ht(L(X)) may trigger
a constraint c. According to the type of c, an auxiliary query q′ is created:

– For c ∈ CP the auxiliary boolean query is q′()← ht(L0(X0)) where L0(X0) =
head(c). The resulting tuple t is valid w.r.t. c if the answer of q′ is pos-
itive. Notice however that each fact f resulting from the instantiation of
ht(L0(X0)) on the database may trigger another constraint. The validation
process continues until no constraint is triggered and corresponds to a chase
procedure, establishing a dialogue between the validator and the providers.

– For c ∈ CN and assuming that c has the form L(X), L0(X0) → ⊥ the
auxiliary boolean query is q′()← ht(L0(X0)). Tuple t is valid w.r.t. c if the
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answer of q′ is negative. Clearly, if c has the form L(X)→ ⊥, the verification
is straightforward.

– For c ∈ CK , assuming that c has form L(Y, X1,Z1), L0(Y, X2,Z2)→ X1 =
X2 and X = Y ∪ X1 ∪ Z1, the auxiliary query is q′(X2) ← ht(L0(Y, X2,
Z2)). Tuple t is valid w.r.t. c if the answer set is a singleton containing the
tuple value ht(X1).

3.3 Complete Validation

Finally, Algorithm 2 is responsible for validating the result of a query q w.r.t.
a set of constraints C. Algorithm 1 rewrites the query only w.r.t. positive and
negative constraints. Then it must be completed by the generation of auxiliary
queries, from the answers of the rewritten queries, at least for dealing with EGD
constraints in C. On line 2 of Algorithm 2, Function RewriteWithConstraint
returns a set Q of rewritten queries. Afterwards, Function Eval evaluates all
queries in Q (line 3), and answers are stored in the set Solutions. On line 5,
Ccheck is the set of the constraints which are not addressed by Algorithm 1.
Function Valid verifies whether an answer sol is valid w.r.t. Ccheck by generating
corresponding auxiliary queries, as sketched in Section 3.2.

Algorithm 2:

Input : A conjunctive query q and a set of constraints C.
Output: Answers of q respecting C.

1 AnsSet = ∅;
2 Q = RewriteWithConstraint(q, C);
3 Solutions = Eval(Q);
4 Cache = CreateCache();
5 Ccheck = remainingConstraints(C);
6 foreach sol ∈ Solutions where sol = (t, ht) do
7 if Valid(sol, Ccheck,Cache) then
8 AnsSet := AnsSet ∪ {t};

9 return AnsSet;

4 Experimental Results and Related Works

Our main goal is to compare the overall performance between (i) our first sce-
nario, i.e. the query rewriting approach performed by Algorithm 2 when only
the EGD constraints are not considered by Function RewriteWithConstraint,
and (ii) our second scenario, the naive approach, performed by Algorithm 2
when Function RewriteWithConstraint is simply not applied. Both approaches
compute the same valid answers (whose number is given in column 5 and 6 in
Table 1(a) for the given conjunctive query, i.e. answers that satisfy the given
set of quality constraints. Another important goal of experiments is to analyze
features that affect the computation efficiency, such as the size of datasets, the
size of queries, the number and type of constraints, etc.

We performed experiments using a HP ZBook laptop equipped with a quad-
core Intel i7-4800MQ processors at 2.7GHz and 16Gb of RAM. We developed



10 J. Chabin et al.

Trig.
cons.

Num.Rew.Que. Max num.
atoms

Valid answers
w.opt. wo.opt. 1 univ. 5 univ.

Q1 4 1 4 7 523 3331

Q2 1 1 1 2 7861 36682

Q3 2 2 2 5 3599 23749

Q4 0 1 1 2 10735 67702

Q5 6 6 8 14 50 59

Q6 8 2 8 13 6631 36538

Q7 6 2 8 13 21 220

(a) Queries and Rewritten Queries

1 university 5 universities
RewTime EvalTime Total EvalTime Total

Q1 0.043 0.372 0.415 0.492 0.535

Q2 0.001 0.429 0.430 6.388 6.389

Q3 0.007 0.124 0.131 0.804 0.811

Q4 0 0.111 0.111 0.692 0.692

Q5 0.048 0.702 0.75 0.773 0.821

Q6 0.011 20.522 20.533 122.285 122.296

Q7 0.01 3.193 3.203 162.105 162.115

(b) Rewriting, Evaluation-Verification (s)

Table 1: Rewriting Approach

1 university 5 universities
Eval. Verif. Total Init.ans. Num.Que. Eval. Verif. Total Init.ans. Num.Que.

Q1 0.965 1.172 2.137 1548 2072 1.191 7.14 8.331 10095 13426

Q2 0.153 49.952 50.105 7861 7861 1.038 t/o t/o 36682 -

Q3 0.041 1.515 1.556 3599 3599 2.59 10.709 13.299 23749 23749

Q4 0.026 0.072 0.098 10735 0 0.166 0.43 0.596 67702 0

Q5 0.227 1.704 1.931 50 200 0.735 1.363 2.098 59 236

Q6 9.205 57.948 67.153 6631 39786 16.108 t/o t/o 36538 -

Q7 4.772 0.535 5.307 96 159 292.216 0.712 292.928 645 1305

Table 2: Evaluation and Verification in the Naive Approach (s)

Java programs using Graal, a Java toolkit dedicated to knowledge-base query-
ing within the framework of existential rules (e.g. Datalog+-). We used the
LUBM4 benchmark, which describes the organizational structure of universi-
ties with 43 classes and 32 properties, and provides a generator of synthetic
data with varying size. For analyzing the impact of the size of databases on the
tested solutions, we created two versions of datasets containing data of 1 and 5
universities, containing 86,165 and 515,064 triples, respectively. These datasets
are loaded and managed directly by Graal, which converts them from RDF/XML
to Dlgp, its supported data format. Inspired by the 14 test queries of LUBM,
we devised 7 queries and 12 constraints written in Dlgp (4 positive, 5 nega-
tive, and 3 keys) 5.The queries spread from simple queries with few atoms (Q1,
Q2) to more complex queries (Q6, Q7), and may contain constants (Q5). Some
constraints also involve constants (Cp2, Cp3, Cp4). Column 1 in Table 1(a) con-
tains the number of constraints triggered by each query. The second and third
columns present the number of rewritten queries either applying the simplifica-
tion query-containment test (Function Simplify V erify), or not. Theoretically,
a query that involves n constraints can be rewritten into 2n reformulations in the
worst case. Experimental results show that in some cases (Q1, Q6, Q7), Func-
tion Simplify V erify significantly reduces the number of rewritings. Column 4
shows the maximum number of atoms in rewritten queries, which demonstrates
that the more constraints are used in the rewriting procedure, the more complex
are the rewritings (number atoms or joins).

4 Lehigh University: http://swat.cse.lehigh.edu/projects/lubm/
5 Details in the techinical report: http://www.univ-orleans.fr/lifo/rapports.

php?annee=2017
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We now turn our attention to the time of rewriting and complete evaluation-
verification, reported in Table 1(b), which contains the following information:
(i) the time needed for rewriting, indicated in Column RewTime; (ii) the time
needed for evaluating all queries obtained from the rewriting step, shown in col-
umn EvalT ime, for the two tested datasets; (iii) the total time for performing
these two steps (Column Total). Rewritings are very fast and the evaluation
time is clearly the major part in the total time, in all cases. Furthermore, the
evaluation time is directly proportional to the size of the tested dataset. More-
over, the rewritten-query complexity affects the evaluation time, for instance,
Q6 and Q7 have 13 atoms in their body and their evaluation times on 5 uni-
versities are the biggest ones. Interestingly, Q5 has 14 atoms and does not need
so much time for the evaluation. The reason is that Q5 contains a constant,
which highly reduces its querying space. In summary, these first experiments
demonstrate how the dataset size, the query complexity, the number of involved
constraints and the presence of constants in initial and rewritten queries, impact
the overall time of the rewriting-and-evaluating approach for processing a query
with user-constraints.

Concerning now the experimental results for the naive approach, shown in
Table 2, we have, for each dataset: (i) the time needed for evaluating the initial
query in Column Eval.; (ii) the time necessary for generating and executing
auxiliary queries to verify all answers obtained from the previous evaluation step,
in Column V erif.; (iii) the overall processing time in Column Total. (iv) the
number of answers before constraint verification in Column Init.Ans.; and (v)
the number of auxiliary queries generated, in Column Num. Queries. Naturally,
the dataset size has a similar effect as in the rewriting approach. However, the
number of generated auxiliary queries plays an even more significant role in the
total processing time. Intuitively, this number depends (i) on the size of the initial
answer set and (ii) on the number of involved constraints. We can notice that,
contrary to the rewriting approach, the complexity of the query has little effects
on the total execution time in the naive approach. See, for instance, Q6 and Q7
which have similar complexity. However, Q6 has many answers, provoking the
generation of many sub-queries. Indeed, the verification step is carried out by
generating simple sub-queries for each answer w.r.t. each constraint.

Perhaps one of the most meaningful observation provided by our experiments
is that, when the dataset size increases, the rewriting approach is clearly far more
efficient than the naive approach. This is specially the case when the initial query
gives a large number of answers, no matter if it is a simple or a complex query,
and these answers trigger a lot of constraints: Q2 and Q6 are typical examples
of such cases, which induce a time-out for 5 universities. For Q4, which triggers
no constraint, the naive approach is better or similar to the rewriting one.

Related Works We already mentioned the main works related to our pro-
posal in Section 2.1. Firstly, ontological-constraints-based query-rewritings in
Ontology-Based Data Access (OBDA) systems [18, 3] and rewritings in incom-
plete information querying systems [11, 15, 12] inspired our solution. In [16] we
also find different semantics for query answering over inconsistent Datalog±
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ontologies. Their goal is to propose corrections to the database, while ours is
to avoid answering on the basis of inconsistent data. Indeed, we designed our
solution with traditional database constraints that must be verified, while in
those works ontological constraints are seen as inference rules. Our user con-
straints allows us to verify answer sets and eleminate those answers that do not
comply with the user needs. For instance, coming back to cp given in Intro-
duction, which enforces that all person who teaches is a professor, the answer
teacherOf(Bob,DB) is valid only if professor(Bob) is true in the provided
answers, i.e. the fact professor(Bob) is not inferred from the user constraints.

For this reason, our rewriting algorithm is based on traditional results in
the database domain already cited in Section 2.2 [2, 17, 14]. We are currently
studying to what extent our proposed user-context is covered by the traditional
framework of answering queries using views, for which a general rewriting algo-
rithm is presented in [8], and further improved in [13]. We already mentioned
this algorithm, called C&B for its two phases (Chase and BackChase), at the end
of Section 3.1. It first constructs a canonical rewriting called UniversalP lan by
using TGDs rules, which play the same role as our positive constraints, and then
it searches minimal reformulations among the candidates in the UniversalP lan,
using EGDs rules. But how it could apply to our context is not obvious, because
we already mentioned that, in general, the Chase can not be directly used with
constraints containing constants, excepted when there exists a homomorphism
from the constraint’s atoms to the query’s atom (see Lines 17-20 in Algorithm 1).

5 Conclusion

We presented a solution for validating a set of user quality constraints when
performing query evaluation, in the semantic web context. A naive way to verify
them is to generate auxiliary queries after having got the result set from the
evaluation of the user query. Our experiments have put in evidence that these
auxiliary queries, generally simple but performed on huge data sets, sometimes
lead to overload the system. Integrating as much as possible the constraints into
the original user query can help to overcome this drawback. We presented an
algorithm for such a constraint-query integration, and provided experimental
results that demonstrate its benefits regarding total query-with-constraints pro-
cessing time. Both techniques are correct and complete. In other words, given
the query Q and the constraints C, (i) there is no answer to Q that satisfies C,
but is not in the answer set of both methods (completeness); (ii) all the answers
produced by both algorithms are answers to Q that respect C (correction). Our
immediate future works will concern extending our experiments to take into
account the data provider features and capabilities (e.g. not all of them can
evaluate complex queries).
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