Skip to Main content Skip to Navigation
Journal articles

Immersion of transitive tournaments in digraphs with large minimum outdegree

William Lochet 1, 2
1 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
2 MC2 - Modèles de calcul, Complexité, Combinatoire
LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We prove the existence of a function $h(k)$ such that every simple digraph with minimum outdegree greater than $h(k)$ contains an immersion of the transitive tournament on k vertices. This solves a conjecture of Devos, McDonald, Mohar and Scheide.
Complete list of metadatas

Cited literature [7 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01835124
Contributor : William Lochet <>
Submitted on : Monday, July 16, 2018 - 8:33:09 AM
Last modification on : Thursday, March 5, 2020 - 12:20:46 PM
Document(s) archivé(s) le : Wednesday, October 17, 2018 - 1:10:52 PM

Files

immersion_final.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

William Lochet. Immersion of transitive tournaments in digraphs with large minimum outdegree. Journal of Combinatorial Theory, Series B, Elsevier, 2019, 134, pp.350-353. ⟨10.1016/j.jctb.2018.05.004⟩. ⟨hal-01835124⟩

Share

Metrics

Record views

597

Files downloads

224