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Abstract. We give an new proof of the well-known competitive exclusion

principle in the chemostat model with N species competing for a single re-
source, for any set of increasing growth functions. The proof is constructed by

induction on the number of the species, after being ordered. It uses elementary

analysis and comparisons of solutions of ordinary differential equations.

1. Introduction. The Competitive Exclusion Principle (CEP) has a long history
in the scientific literature. Since the thirties, the Russian botanist Gause conducted
experiments on the growth of yeasts and paramecia in mixed cultures, and reported
that the most competitive species systematically eliminated the other [5]. In his
book “The struggle for existence”, he showed that competitive exclusion had indeed
a more universal scope : two similar living organisms evolving in the same envi-
ronment and competing for a shared resource cannot coexist for ever, one of them
having always a slight advantage over the other one, or being more adapted to the
ecosystem [6]. In the 1960s, this statement has become quite popular in ecology but
also in economics : the CEP applies to many kinds of ecosystems, and not only for
micro-organisms, since there are consumers and resources [7]. It is also commonly
taught as “Gause’s law” in theoretical ecology.

However, it was not until the 1970s that the first statement of a mathematical
theorem was found in the literature, along with its proof [10], for the chemostat
model. It refers to the mathematical result that establishes conditions under which
almost all solutions converge toward a steady-state of the system having at most
one species. The chemostat model is widely used in microbiology and ecology as a
mathematical representation of growth of micro-organisms in ecosystems that are
continuously fed with nutrients. Several textbooks on the mathematical analysis of
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this model with one and more species are available [17, 1, 8]. The chemostat model
can be also considered as a quite general resource/consumers model [12]. The CEP
has also a long history in the literature of bio-mathematics. Hsu, Hubbell and
Waltman have proposed a first proof in 1977 for Monod’s functions as particular
growth rates [10]. Hsu generalized this result in 1978 for different removal rates
[9]. These two contributions use explicit Lyapunov functions to demonstrate the
overall convergence. In 1980, Armstrong and McGehee have given a simple proof
for any monotonic growth functions but for particular initial conditions belonging
to an invariant set [2]. In 1985, Butler and Wolkowicz proposed a proof for any
monotonic growth function [3]. One of the difficulties to prove the global stabil-
ity originates from the fact that the graphs of any growth function can intersect
one another at several points. During the transients a species could dominate the
competition without being the final winner of the competition on the long run. Fi-
nally, it was in 1992 that Wolkowicz and Lu proposed a proof, based on a Lyapunov
function, for growth functions more general than Monod functions (but under addi-
tional technical assumptions) and different removal rates [18]. This result has been
later extended or complemented [11, 14, 13, 16, 15]. However, the proof of global
stability for any monotonic growth functions and removal rates remains today an
open mathematical problem [4].

In the present paper, we propose a new proof of the CEP for any monotonic
growth functions but under identical removal rates. The existing proofs rely on rel-
atively sophisticated tools, such as ω-limit sets [3], Lyapunov functions and LaSalle
Invariance Principle [10, 18] and the theory of asymptotically autonomous systems
(e.g. Appendix F in [17]). We show here that it is possible to obtain a proof with
elementary analysis, based on single comparisons of solutions of ordinary differential
equations. While species are sorted in ascending break even concentrations, the key
of the proof relies on the observation of the time evolution of the proportions ri of
the density of species i over the density of the first species. Whatever is the initial
condition and how the transients could exhibit an alternation of dominance among
species or not, there always exists a finite time at the end of which the proportion
rN is decreasing exponentially for any future time. We show that this property
is due to the level of the resource that reaches in finite time an interval which is
unfavourable for the N -th species, and belongs to this interval for ever. We show
that these two properties hold for the other species by induction on the index set
{N,N−1, · · · , 2} : this is our main result (Proposition 2 given in Section 3.4). This
proves that the only winner of the competition is the first species.

2. Competitive exclusion principle for the chemostat. The classical chemo-
stat model for N ∈ N∗ species competing for a single resource is given by the system
of differential equations ṡ = D(Sin − s)−

N∑
i=1

µi(s)xi

ẋi = µi(s)xi −Dxi (1 ≤ i ≤ N)

, (1)

where the operating parameters D > 0, Sin > 0 are the removal rate and the
incoming density of resource (or input substrate concentration). The variable s(t)
denotes the density of resource (or substrate concentration) at time t. For 1 ≤
i ≤ N , xi(t) represents the density of the i-th species and µi(·) is the specific
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growth rate function of species i. In this writing we have assumed, without any
loss of generality, that the yield coefficients of resource s transformed in xi are all
identically equal to 1. In microbial ecology, the growth function µi often takes the

form of a Monod’s function µ(s) = µmax
s

k + s
, but we consider here more general

ecosystems without particularizing the expression of the growth function. We make
the following assumption.

Assumption 1 (Growth function). For each 1 ≤ i ≤ N , we assume that

1. µi ∈ C1(R+).
2. µi(0) = 0.
3. µi(·) is an increasing function.

One can straightforwardly check that the positive orthant of RN+1 is invariant
by the dynamics (1).

As often considered in the literature, we associate to each growth function the
break-even concentration defined as follows.

Definition 1 (Break-even concentration). Under Assumption 1, for a given number
D > 0, the break-even concentration λi = λi(D) for the i-th species is defined as
the unique solution of the equation µi(s) = D, when it exists. When there is no
solution to this equation, we set λi =∞.

On can notice that under Assumption 1, the growth functions are indeed more
general than Monod type ones. They could for example change their concavity, be
unbounded, or having isolated zeros for their derivatives, even for s = λi.

Assumption 2. Species have distinct finite break-even concentrations, and without
loss of generality are enumerated by indices such that

λ1 < λ2 < · · · < λN . (2)

We dot not consider here species with λi = ∞, as one can straightforwardly
check on equations (1) that this implies that the variable xi converges to zero.

In Figure 1, we have represented several growth functions and the removal rate
(in dashed line).

λ1 λ2 λ3 λ4 λ5

s



Figure 1. Growth functions and their break-even concentrations.
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We shall see further how the particular cases when some numbers λi are identical
can be tackled, packing the corresponding species (see Section 3.5 below). We first
do not consider these non generic situations for sake of simplicity of the presentation.

We recall the statement of the Competitive Exclusion Principle.

Proposition 1 (Competitive Exclusion Principle). Assume one has λ1 < Sin

with Assumptions 1 and 2 fulfilled. For any non-negative initial condition with
x1(0) > 0, the solution of the system (1) converges to the equilibrium point (λ1, Sin−
λ1, 0, . . . , 0).

3. Proof of Proposition 1. The proof is based on a backward inductive argu-
ment : we show that the proportion, with respect to the density of the total biomass,
of the density of each species goes to 0 when t tends to +∞ excepted for the species
with minimal break-even concentration.

3.1. Change of coordinates. We introduce the variable b, as the density of the
total biomass, and the proportion’s vector p := (pi)1≤i≤N where :

b :=

N∑
i=1

xi and pi :=
xi
b
. (3)

Additionally, we define the function µ̄(s, p) :=

N∑
i=1

piµi(s). In those new variables,

one can easily check that the system (1) writes :
ṡ = D(Sin − s)− µ̄(s, p)b

ḃ = µ̄(s, p)b−Db
ṗi = pi(µi(s)− µ̄(s, p)) (1 ≤ i ≤ N).

(4)

3.2. Non extinction of the biomass. We first give a necessary and sufficient
condition for the persistence of the biomass, of interest in itself.

Lemma 1. Consider that Assumptions 1 and 2 are fulfilled.

1. For any non-negative initial condition of (1), the solution verifies

lim
t→+∞

(b(t) + s(t)) = Sin.

2. Any species j with λj ≥ Sin satisfies lim
t→+∞

xj(t) = 0, whatever is the initial

condition of (1).
3. When λ1 < Sin, for any non-negative initial condition such that there exists

i ∈ {1, · · · , N} with xi(0) > 0 and λi < Sin, the variable b(t) is bounded from
below by a positive number for any t > 0.

Proof. 1. Consider the variable m := b + s. Then m solves the linear differential
equation ṁ = D(Sin − m), which posses a unique equilibrium m? = Sin, that is
moreover globally asymptotically stable.

2. Consider first species j such that λj ≥ Sin (if it exists). Fix ε > 0. Then
η = D − µj(Sin − ε/2) is a positive number. As m(·) converges to Sin, there exists
T > 0 such that s(t) + xj(t) ≤ m(t) < Sin + ε/2 for any t > T . This implies that
the dynamics of species j satisfies

ẋj(t) ≤ (µj(Sin − xj(t) + ε/2)−D)xj(t) =: φj(xj(t))
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for any t > T . The function φj has the property

xj ≥ ε ⇒ φj(xj) ≤ (µj(Sin − ε/2)−D)xj ≤ −ηε < 0.

Therefore, the variable xj(t) exits the domain {xj ≥ ε} in finite time and stays
outside for any future time, i.e. there exists T ′ > T such that xj(t) < ε for any
t > T ′. This statement is obtained for any arbitrary ε, which proves the convergence
of the xj(·) towards 0.

3. Let k be the maximal index such that λk < Sin (which exists by Assumption
2) and denote b0 := x1 + · · ·+ xk. For any i ≤ k, notice that one has

µi(s)xi ≥ min
1≤j≤k

µj(s)xi

for any s and xi, and by simple addition,

k∑
i=1

µi(s)xi ≥
(

min
1≤i≤k

µi(s)

)( k∑
i=1

xi

)
= min

1≤i≤k
µi(s)b0. (5)

The dynamics of b0 writes

ḃ0 =

k∑
i=1

ẋi =

k∑
i=1

µi(s)xi −D
k∑
i=1

xi

and by inequality (5), one has ḃ0(t) ≥ Ψ(t, b0(t)) for any t > 0, where Ψ is defined
as follows

Ψ(t, b0) :=
(

min
1≤i≤k

µi(s(t))−D
)
b0. (6)

As the inequality µi(Sin) > D is fulfilled for any i ≤ k, and the functions µi are
continuous, there exist ε > 0 and η > 0 such that

min
1≤i≤k

µi(σ)−D > ε for any σ > Sin − η. (7)

Since m(t) converges to Sin and xj(t) converges to 0 for any j > k, there is a time
T ? ≥ 0 such that

s(t) = m(t)− b0(t)−
∑
j≥k

xj(t) > Sin − b0(t)− η

2
for any t > T ?.

Then, by inequality (7), the function Ψ defined in (6) fulfills the following property :

t > T ?, b0 ≤ η
2 ⇒ Ψ(t, b0) ≥

(
min

1≤i≤k
µi(Sin − η)−D

)
b0 ≥ ε b0.

As one has b0(0) > 0 by hypothesis, b0(t) is strictly positive for any t > T ?. Let us
show that b0 cannot stay into or enter the interval [0, η2 ] for times larger than T ?.

Notice first that for any t > T ? such that b0(t) = η
2 , one has ḃ0(t) > 0. Therefore,

if there exists t̄ > T ? such that b(t̄) = η
2 , one has b(t) > η

2 for any t > t̄. If there
exists t1 > T ? such that b(t1) < η

2 , then one can use the comparison principle of
scalar o.d.e. as follows. Let b0(·) be the solution of the Cauchy problem :

ḃ0 = εb0, b0(t1) = b0(t1) > 0 ⇒ b0(t) = b0(t1)eε(t−t1).

Then, one has b0(t) ≥ b0(t) for any t > t1 such that b0(t) < η
2 . As b0 reaches η

2 in
finite time, we deduce that there exists t̄ > t1 such that b0(t̄) = η

2 and one concludes
as before. Finally, the variable b(t) ≥ b0(t) is bounded from below by η

2 in finite
time.
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3.3. Frame on the substrate’s dynamics. By Assumption 2, growth functions
are ordered on each interval [λi, λi+1] (see Figure 1) in the sense that, for all i ∈
{1 · · ·N − 1}, one has

µi(s) > µj(s), ∀j > i, ∀s ∈ [λi, λi+1].

By continuity of µi(·), there are numbers ν > 0, s−i < λi and s+i > λi+1 such that

µi(s) > µj(s) + ν, ∀s ∈ [s−i , s
+
i ], ∀j > i. (8)

By monotonicity of µi, we have µi(s
−
i ) < D and µi(s

+
i ) > D. Moreover, one has

j < i ⇒ µj(s
+
i ) > µj(λi) > µj(λj) = D

s+i > λi+1 ⇒ µi+1(s+i ) > D

Therefore, the numbers{
γ− := D − µ1(s−1 )
γ+ := min

2≤i≤N
min
j<i

µj(s
+
i−1)−D (9)

are positive. We define also the following numbers :

D− := D − γ−

2
, D+ := D +

γ+

2
. (10)

Lemma 2. Assume one has λ1 < Sin with Assumptions 1 and 2. For any non-
negative initial condition with x1(0) > 0, there exists T > 0 such that ṡ(t) ∈
[Φ−(t, s(t)),Φ+(t, s(t))] for any t > T , where{

Φ−(t, s) := [D− − µ̄(s, p(t))] b(t)
Φ+(t, s) := [D+ − µ̄(s, p(t))] b(t).

(11)

Proof. From Lemma 1, we know that b(·) is bounded from below by a positive
number. Consider the function

z :=
Sin − s
b

= 1 +
Sin −m

b
.

Since m(·) converges to Sin and b(·) is bounded from below by a positive number (see
Lemma 1), z(t) converges to 1 when t tends to +∞. Furthermore, for t > T with
T large enough, one has Dz(t) ∈ [D−, D+]. Remark that the substrate dynamics
can be written as follows

ṡ = Φ(t, s) := b(t) [Dz(t)− µ̄(s, p(t))] ,

and one then obtains the inequalities Φ−(t, s) ≤ Φ(t, s) ≤ Φ+(t, s) for any t > T .

3.4. Extinction of the species by induction.

Proposition 2. Assume one has λ1 < Sin with Assumptions 1 and 2. For any
non-negative initial condition with x1(0) > 0, the solution of system (1) satisfies

i. There exists T1 > 0 s.t. s(t) ∈ [s−1 , s
+
1 ], ∀t > T1

ii. lim
t→+∞

pj(t) = 0, ∀j > 1.

Proof. We shall proceed by backward induction. Let us define the property

(Pi) :

{
i. There exists Ti > 0 s.t. s(t) ∈ Ii := [s−1 , s

+
i ], ∀t > Ti

ii. lim
t→+∞

pj(t) = 0, ∀j > i.

for i ∈ {1, . . . , N − 1}.
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As x1(0) > 0, the variable x1 stays positive for any time and one can consider
variables ri := xi

x1
for i ∈ {2, · · · , N}, whose dynamics is

ṙi = [µi(s(t))− µ1(s(t))]ri. (12)

By monotonicity of functions µi(·) and property (8), we can write

s < s−1 ⇒ max
i
µi(s) < max

i
µi(s

−
1 ) = µ1(s−1 ) ≤ D− − γ−

2
(13)

where γ−, D− are defined in (9), (10). Similarly, one has

s > s+N−1 ⇒ min
i
µi(s) > min

i
µi(s

+
N−1) ≥ D+ +

γ+

2
(14)

where γ+, D+ are defined in (9), (10).
Consider a number T > 0 given by Lemma 2. From Lemma 1, there exists a

number η > 0 such that b(t) ≥ η
2 for any t > T . It then follows from (13) and (14)

that the functions Φ± defined in (11) fulfill the following inequalities :

s < s−1 , t > T ⇒ Φ−(t, s) ≥ b(t)
(
D− −max

i
µi(s)

)
>
η γ−

4
> 0

s > s+n−1, t > T ⇒ Φ+(t, s) ≤ b(t)
(
D+ −min

i
µi(s)

)
< −η γ

+

4
< 0.

Therefore the variable s enters the interval IN−1 in a finite time TN−1 > T and
belongs to it for any future time. Furthermore, the inequalities (8) ensure to have
µN (s) − µ1(s) < −ν for any s in the interval IN−1, and then the dynamics of rN
satisfies ṙN ≤ −νrN for t > TN−1. Thus rN converges to 0, and xN converges as
well. Property PN−1 is then satisfied.

Assume that Pi is satisfied for an index i ∈ {2, · · · , N − 1} and let us show that
Pi−1 is fulfilled. Figure 2 illustrates the sets Ii. Since the functions pj converge to

ℐ1

ℐi-1

ℐi

ℐN-2

ℐN-1

1

- λ1 2

- λ2 1

+ i

- λi i-1

+ i+1

- λi+1 i

+ N-1

- λN-1 N-2

+ N

- λN N-1

+
s

Figure 2. Illustration of the intervals Ii = [s−1 , s
+
i ] for i ∈

{1, · · · , N − 1} (in green, the values of the break-even concentra-
tions λi, in orange, the nested intervals Ii)

.

0 for all j > i, there is T ′ > Ti such that∑
j>i

pj(t) < ε :=
γ+/4

D+ + γ+/2
, ∀t > T ′.
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Then, for s > s+i−1 and t > T ′, the following inequality holds

µ̄(s, p(t)) ≥
∑
j≤i

µj(s)pj(t)

≥ min
j≤i

µj(s
+
i−1)(1− ε)

≥ (D+ + γ+

2 )(1− ε) = D+ +
γ+

4

which provides the property of the function Φ+:

s > s+i−1, t > T ′ ⇒ Φ+(t, s) ≤ −η γ
+

8
< 0.

Thus, in a finite time Ti−1 > T ′, s enters into the interval Ii−1 and stays inside it for
any future time. Furthermore, inequalities (8) lead to write ṙi ≤ −νri for t > Ti−1,
which shows that xi converges to zero. Property Pi−1 is then satisfied.

3.5. The case of identical break-even concentration. We relax Assumption
2 allowing some λi with i > 1 to be identical and show that Proposition 1 is also
satisfied.

If there exist i and ` ≥ 1 such that λ1 < λi−` = · · · = λi < Sin, at step i in the
induction of the proof, we replace species i by the sum of species i − `, . . . , i and
show property Pi, that is lim

t→+∞
pj(t) = 0 for all j > i− `+ 1.

This can be done considering ri :=

i∑
j=i−`

rj instead of ri, and remark that we

have also s+i−1 = · · · = s+i−1−`. Then, one has

ṙi =

 i∑
j=i−`

αj(t)µj(s(t))− µ1(s(t))

 ri
where αj(t) =

rj(t)

ri(t)
> 0 with

i∑
j=i−1

αj(t) = 1. By (8), we have

i∑
j=i−1

αj(t)µj(s) < µ1(s)− ν, ∀s ∈ [s−1 , s
+
i ]

and then ṙi(t) < −ηri(t). Thus ṙi ≤ η ri for t > T which shows that ri converges
to zero as well as every xj with i ≤ j ≤ i+ `. The rest of the proof is identical.

3.6. Conclusion. Now that we know that the variables xj converge to 0 for any
j > 1, we can easily show that s tends to λ1 as follows.

Accordingly to Proposition 2, there exists T1 > 0 such that s(t) ∈ [s−1 , s
+
1 ] for

any t > T1. By Lemma 1, b(t) + s(t) tends to Sin and the variable b is bounded
from below by a positive number, say ζ > 0. Then, there exists T 1 > T1 such that
s(t) ∈ [s−1 , Sin −

ζ
2 ] for any t > T 1 . We then consider the variable

r(t) =
µ̄(s(t), p(t))b(t)

µ1(s(t))(Sin − s(t))
, t > T 1

which tends to 1 when t tends to +∞, and write the dynamics of s as

ṡ = Γ(t, s) := (Sin − s)(D − µ1(s)r(t)) (15)
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Take any ε > 0 sufficiently small to have [λ1− ε, λ1 + ε] ⊂ (s−1 , Sin− ζ
2 ). Define then

η = 2 min(µ1(λ1 + ε)−D,D−µ1(λ1− ε)). The function µ1(·) being increasing such
that µ1(λ1) = D, one has η > 0 and can write

s > λ1 + ε⇒ µ1(s) > D + η
2 , s < λ1 − ε⇒ µ1(s) < D − η

2 .

As r tends to 1, there exists T2 > T 1 such that

t > T2, s > λ1 + ε⇒ µ1(s)r(t) > D + η
t > T2, s < λ1 − ε⇒ µ1(s)r(t) < D − η

Then, the function Γ fulfills the following properties

t > T2, s ∈ [λ1 + ε, Sin − ζ
2 ]⇒ Γ(t, s) < −η ζ2 < 0

t > T2, s ∈ [s−1 , λ1 − ε]⇒ Γ(t, s) > η(Sin − s−1 ) > 0

which allows to conclude that the variable s converges to the interval [λ1−ε, λ1 +ε],
and this can be obtained for any arbitrarily small ε > 0.
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