SMMB - A stochastic Markov-blanket framework strategy for epistasis detection in GWAS

Abstract : Motivation: Large scale genome-wide association studies (GWAS) are tools of choice for discovering associations between genotypes and phenotypes. To date, many studies rely on univariate statistical tests for association between the phenotype and each assayed single nucleotide polymorphism (SNP). However, interaction between SNPs, namely epistasis, must be considered when tackling the complexity of underlying biological mechanisms. Epistasis analysis at large scale entails a prohibitive computational burden when addressing the detection of more than two interacting SNPs. In this paper, we introduce a stochastic causal graph-based method, SMMB, to analyze epistatic patterns in GWAS data. Results: We present SMMB (Stochastic Multiple Markov Blanket algorithm), which combines both ensemble stochastic strategy inspired from random forests and Bayesian Markov blanket-based methods. We compared SMMB with three other recent algorithms using both simulated and real datasets. Our method outperforms the other compared methods for a majority of simulated cases of 2-way and 3-way epistasis patterns (especially in scenarii where minor allele frequencies of causal SNPs are low). Our approach performs similarly as two other compared methods for large real datasets, in terms of power, and runs faster. Availability: parallel version available on Contact: Supplementary information: Supplementary data are available at Bioinformatics online.
Type de document :
Article dans une revue
Bioinformatics (Oxford, England), 2018, Equipe I, 〈10.1093/bioinformatics/bty154〉
Liste complète des métadonnées
Contributeur : Stephanie Chatel <>
Soumis le : lundi 30 juillet 2018 - 10:36:42
Dernière modification le : jeudi 7 février 2019 - 15:03:37



Clément Niel, Christine Sinoquet, Christian Dina, Ghislain Rocheleau. SMMB - A stochastic Markov-blanket framework strategy for epistasis detection in GWAS. Bioinformatics (Oxford, England), 2018, Equipe I, 〈10.1093/bioinformatics/bty154〉. 〈hal-01833925〉



Consultations de la notice