Irregular conformal blocks and connection formulae for Painlevé V functions

Abstract : We prove a Fredholm determinant and short-distance series representation of the Painlevé V tau function τt associated with generic monodromy data. Using a relation of τt to two different types of irregular c = 1 Virasoro conformal blocks and the confluence from Painlevé VI equation, connection formulas between the parameters of asymptotic expansions at 0 and i∞ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as t → 0, +∞, i∞ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.
Type de document :
Article dans une revue
J.Math.Phys., 2018, 59 (9), pp.091409. 〈10.1063/1.5031841〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01833756
Contributeur : Inspire Hep <>
Soumis le : mardi 10 juillet 2018 - 01:05:00
Dernière modification le : mercredi 13 mars 2019 - 15:46:14

Lien texte intégral

Identifiants

Collections

Citation

O. Lisovyy, H. Nagoya, J. Roussillon. Irregular conformal blocks and connection formulae for Painlevé V functions. J.Math.Phys., 2018, 59 (9), pp.091409. 〈10.1063/1.5031841〉. 〈hal-01833756〉

Partager

Métriques

Consultations de la notice

43