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Regular Switching Components

Yan Gérard

LIMOS, University Clermont Auvergne, France

Abstract

We consider a problem of Discrete Tomography which consists of reconstruct-
ing a finite lattice set S ⊂ Z2 from given horizontal and vertical X-rays (i.e.
with prescribed numbers of points in each row and column). Without addi-
tional requirements, the problem can be solved in polynomial time. Many
variants require the solution to be in a chosen class A. For instance, the
problem is NP-complete for the class A = H ∩ V of HV-convex lattice sets
and it is polynomial for the class A = H∩V ∩P of HV-convex polyominoes.
Twenty years after these results, the problem’s complexity remains unknown
for A = C, the class of C-convex lattice sets (i.e. two-dimensional lattice
polytopes).

The main difficulty to solve this problem comes from combinatorial struc-
tures called switching components. Switching components are closed path
with horizontal and vertical edges such that the solutions S are composed
of either the elements of even or of odd indices. This binary choice can be
encoded by a Boolean variable associated with the switching component and
the convexity constraints are simply encoded by SAT clauses (2-clauses for
HV-convexity and 3-clauses for C-convexity).

The purpose of the paper is to investigate the properties of the switching
components and the consequences of the convexity requirements. We di-
vide the switching components in two classes: regular if their turning angle
is constant, irregular otherwise. We prove that adjacent regular switching
components have the same Boolean values. This property allows us to merge
them into extended switching components. We prove that if all switching
components are regular, then the extended switching components are all in-
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dependent (then the number of solutions with the considered feet is 2n, where
n is the number of extended switching components). Finally, we prove that
they are geometrically ordered.

Keywords: Discrete Tomography, X-rays, HV-convex lattice sets

1. Introduction

A word about some friends of Maurice Nivat

The scientific community involved in the field of Discrete Tomography
started their work about 25 years ago. Maurice Nivat promoted the field
by co-organizing or participating in some weeks of workshops in Dagstuhl
(1997), Thionville (1999), Sienna (2000), and Oberwolfach (2000). There,
he presented the field to younger researchers who became his students and
friends. This tribute to Maurice Nivat is also an opportunity to honor the
memory of three of his friends who unfortunately died much too early: Alain
Daurat, the last PhD student of Maurice (1973-2011), Alberto Del Lungo
(1965-2003) [1], and Attila Kuba (1953-2006).

1.1. Open problems in Discrete Tomography

The field of Discrete Tomography [2, 3, 4] started in the mid 90s when
the classical algorithms of Computerized Tomography failed to reconstruct
lattice sets as requested for instance in Electron Microscopy for the inves-
tigation of crystals [5, 6]. Due to the devices providing the measurements
and the complexity of the considered problems, special attention has been
given to dimension 2. The state of the art around this question was already
rich in complexity results, the most fundamental due to D. Gale and R.J
Ryser in 1957 [7, 8]. They proved independently that a finite lattice set with
prescribed number of points in each row and column can be computed in
polynomial time. This central problem has been extended in several direc-
tions including the following:

• Increasing the dimension of the lattice: The problem becomes NP-hard
from dimension 3 [9]. The question can also be related to timetables
and multi-commodity flow problems [10, 11].

• Increasing the number of X-ray directions: An X-ray is the vector
which counts the number of points of a lattice set in the sequence of
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consecutive parallel lines of given direction. If 3 or more directions are
used, then the problem becomes NP-hard [12].

• Reconstructing several disjoint sets: The problem is NP-hard when the
objective is to reconstruct two or more disjoint sets from the X-rays
[13, 14].

• Adding geometrical or topological constraints as we are going to precise
next.

Instead of searching for any lattice set with the prescribed X-rays as in the
initial problem investigated by D. Gale and H.G Ryser [7, 8], we can search
for a solution satisfying additional constraints. The constraints which are
added can be topological, for instance by searching for 4-connected solutions
(4-connected finite subsets of Z2 are called polyominoes), or geometrical, as
in convex solutions. We introduce for that purpose different classes of lattice
sets. The class of the 4-connected lattice sets or in other words polyominoes
is denoted P . The lattice sets having consecutive points on each horizontal
line are horizontally convex or equivalently H-convex. Their class is denoted
H. In the same way, V is the class of the vertically convex namely V-convex
lattice sets. By intersection, H∩V is the class of the HV-convex lattice sets
(Fig. 1). We end these notations with the class C of the C-convex lattice sets
in the usual meaning of convexity. A lattice set is C-convex if it is equal to
the intersection of its real convex hull with the lattice (Fig. 2). In other words
C is the class of the lattice polytopes. Both C-convex and HV-convex lattice
sets are not necessarily 4 or even 8-connected. The class of the HV-convex
polyominoes i.e 4-connected HV-convex lattice sets is denoted H ∩ V ∩ P .

The reconstruction of lattice sets with prescribed X-rays and belonging
to a chosen class has been started by two seminal papers:

• The first one is due to Richard Gardner and Peter Gritzmann[15]. They
considered the reconstruction of C-convex lattice sets with different
number of directions of X-rays. They characterized the sets of n direc-
tions for which any C-convex set is uniquely determined by its X-rays.
For 2 or 3 directions, there always exist ambiguous pairs or triplets of
X-rays. For n ≥ 7 directions, all C-convex lattice sets are uniquely
determined by their X-rays. For 3 < n < 7, the so-called cross-ratios of
the directions provide a characterization of the sets of directions with
either the uniqueness property, or ambiguous X-rays [15]. When the
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Figure 1: HV-convexity. The two left lattice sets are not HV-convex since their in-
tersection with some vertical or horizontal line has holes. The two right lattice sets are
HV-convex.

Figure 2: C-convexity. The left lattice set is not C-convex since its convex hull contains
a lattice exterior point (in white). The right lattice set is C-convex.

directions of X-rays provide uniqueness, these results have been com-
pleted by a polynomial time reconstruction algorithm by Sara Brunetti
and Alain Daurat [16].

• The second paper on which we focus our attention is the reconstruction
of HV-convex polyominoes of Z2 from their horizontal and vertical X-
rays. Elena Barcucci, Alberto Del Lungo, Renzo Pinzani, and Maurice
Nivat proved in 1996 that this problem can be solved in polynomial
time [17].

The polynomial time algorithm reconstructing a solution in the class H∩
V ∩ P from their horizontal and vertical X-rays is all the more noteworthy
that almost all other related problems are NP-hard. Deciding whether there
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exists a solution in the classes H, V , H ∩ V , P (or more generally with
neighborhood constraints) is NP-complete in these cases [18, 17, 19]. The
main remaining open question with orthogonal X-rays is the complexity of
the reconstruction of lattice polytopes or in other words C-convex lattice sets
[20]. It is a challenging problem whose adjacency with the reconstruction of
HV-convex polyominoes has drawn a new attention on the original algorithm
of [17]. Experts have noticed for twenty years that the 2-CNF formula built
at the last step of the algorithm is always satisfiable (oral communications).
However, this proposition remains a conjecture. Maurice Nivat and his co-
authors left part of the combinatorial structure of the problem unsolved,
although these questions are of major interest to tackle the remaining open
problems of Discrete Tomography.

1.2. Results

In this paper, we provide new results in the framework of the reconstruc-
tion of lattice sets from their horizontal and vertical X-rays with convexity
constraints. The reconstruction can be done by a generic algorithm denoted
ConvexTomo whose strategy has been first described in [17] and also used in
[21, 16]. ConvexTomo computes a partial solution and expresses the ambigu-
ities about the remaining part in combinatorial structures called switching
components. These structures are closed path with vertices on the lattice and
only horizontal and vertical edges. Any switching component P provides two
different ways to complete the partial solution, either by adding the vertices
with odd indices or the ones with even indices. This binary choice is en-
coded by a Boolean variable denotes P (S), where the argument S ⊂ Z2 is
the considered lattice set.

We divide the switching components in two classes according to the vari-
ation of their turning angle: They might turn sometimes to the left (counter-
clockwise) and sometimes to the right (clockwise). If the path always turns
to the same direction, the switching component is regular, and irregular oth-
erwise. A larger part of the paper is devoted to the regular case.

The main lemma of this work (Lemma 1) is that adjacent regular switch-
ing components are equivalent in the sense that the convexity constraints
enforce their Boolean variables to be equal. It follows that in the case where
all the switching components are regular, any pair of switching component
is either equivalent or independent (Theorem 1). This property allows us to
merge the equivalent switching components into extended switching compo-
nents. These objects are all independent. It provides the following structural
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property:
Given a chosen position of the feet (the points of a solution with extremal

coordinates), if the switching components can be computed and if they are
all regular, then the number of solutions (with the chosen feet) is 2n where
n is the number of extended switching components (Property 1).

This property does not hold in general: with irregular switching compo-
nents, the number of solutions is not necessarily a power of 2 (an example
with 3 solutions is presented in Fig.3).

As the condition of regularity of all the switching components may seem
a bit restrictive, we investigate the different cases in which it might occur. It
leads us to prove new properties of the switching components and to provide
some non-intuitive counter-examples.

• We prove that each switching component visits necessarily the four
areas (South West, North West, North East and South East) of the set
of undetermined points (Property 2).

• Except in one configuration of the feet (configuration e) of Figs. 20 and
21), the switching components are either all regular, or all irregular. In
configuration e), we might have both regular and irregular switching
components (this counter-intuitive case is illustrated in Fig.23).

• We prove that if all switching components are regular, then the ex-
tended switching components obtained by merging the adjacent switch-
ing components are well ordered (Property 3).

These properties might be helpful to reconstruct in polynomial time C-
convex lattice sets from their horizontal and vertical X-rays at least in the
case of regular switching components [22].

In Section 2, we state the problem DTA, present the classical approach
ConvexTomo and introduce the switching components. In Section 3, we prove
the main result about the equivalence of the adjacent regular switching com-
ponents. At last, Section 4 is devoted to the additional results (Properties 2
and 3).

2. Problem statement and generic algorithm ConvexTomo

First we introduce the notion of X-rays in order to state the problem
DTA. Secondly, we present the classical generic algorithm ConvexTomo. This
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Figure 3: Counter-example with irregular switching components. Given pre-
scribed X-rays h = (5, 17, 25, ...) and v = (2, 5, 7, 9, ...), we are searching for an HV-convex
or C-convex lattice set with the prescribed X-rays. A partial solution can be computed.
Some lattice points are inside the solution (black points, green cells), some lattice points are
excluded (red points, pink cells) while some points remain undetermined (grey points,white
cells covered by blue and cyan diamonds and squares). The blue path joining alternatively
the blue squares and diamonds by horizontal and vertical edges is a switching component,
and the same for the cyan path. These two switching components are both irregular
since their path turn sometimes clockwise and sometimes counterclockwise. With these
switching components, we can complete the partial solution by adding either the blue
squares or the blue diamonds and either the cyan squares or the cyan diamonds (but not
both). These two binary choices are encoded by two Boolean variables. The constraints
of convexity make them dependant. If we add the blue squares, then we have to add cyan
squares (if we add the cyan diamonds, then we have to add the blue diamonds). Due to
this relation, we have here exactly 3 solutions. We prove in the following that with regular
switching components, the number of solutions is necessarily a power of 2 (Property 1).
This example shows that there is no hope to extend this property to the irregular case.

algorithm requires the class A to be included in H ∩ V and to satisfy the
partition property described later. These two assumptions allow us to define
switching components.

2.1. Horizontal and vertical X-rays

An X-ray is the sequence of the cardinalities of the intersection between
a given lattice set and the consecutive diophantine lines in a given direction.
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In the case of the vertical and horizontal directions, it leads to the following
definition.

Definition 1. Given a finite lattice set S ⊂ Z2 included in the rectangle
[1,m] × [1, n], its vertical X-ray is the vector V (S) ⊂ Zm whose coordinate
vi(S) is the number of points of S in the vertical line x = i (we have Vi(S) =
|{(x, y) ∈ S|x = i}|). The horizontal X-ray of S is the vector H(S) ⊂ Zn
counting the number of points of S in each horizontal line y = j (we have
Hj(S) = |{(x, y) ∈ S|y = j}|) (Fig. 4).

Figure 4: The horizontal and vertical X-rays of a given lattice set S.

2.2. Problem statement

We introduce the problem of deciding whether there exists a finite lattice
set in a given class A with prescribed X-rays:

Problem 1 (DTA(h, v)).
Given a class A of lattice sets
Input: Two vectors v ∈ Zm, h ∈ Zn
Output: Does there exist a lattice set S ∈ C with V (S) = v and H(S) = h?

The problems DTA are known to be polynomial for the classes A of the
whole lattice sets [7, 8] and for the class H∩V∩P of the HV-convex polyomi-
noes [17]. Its complexity is unknown for the class C of the C-convex polytopes
and is NP-complete for many other classes (H, V , H ∩ V , P or lattice sets
with neighborhood relations) [18, 17, 20].
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2.3. The feet

We define the feet of a lattice set S as the subsets of its points with
minimal or maximal coordinates.

Definition 2. Given a finite lattice set S ⊂ Z2, we consider its South, East,
North and West feet as the sets

• South(S) = S ∩ {y = ymin(S)} where ymin(S) is the min ordinate of
the points of S.

• West(S) = S ∩{x = xmin(S)} where xmin(S) is the min abscissa of the
points of S.

• North(S) = S ∩ {y = ymax(S)} where ymax(S) is the max ordinate of
the points of S.

• East(S) = S∩{x = xmax(S)} where xmax(S) is the max abscissa of the
points of S.

Figure 5: The feet. The four feet of a finite lattice set.

2.4. Generic algorithm ConvexTomo

The original algorithm of [17] has been developed for the reconstruction
of HV-convex polyominoes (DTH∩V∩P), but it can be applied to solve DTA
with other classes A than H∩V ∩P . It requires two assumptions on A. The
first one is that the class A is included in the class H∩ V of the HV-convex
lattice sets. The second requirement is less direct. We present it after the
introduction of the filling operations.
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The generic algorithm ConvexTomo issued from [17] and used to solve DTA
can be decomposed in four steps:

1. Fix the feet (Fig.6).

2. Perform the filling operations: Take the X-rays and the geometrical
constraints into account in order to compute a partial solution. Pro-
ceed until the filling operations do not allow to add or exclude any
undetermined point.

3. If it remains undetermined points, connect them in path called switch-
ing components and represent the binary choice of adding either the
points with odd or even indices by a Boolean variable.

4. Express the condition that the lattice set S is in the given class A by
SAT clauses and solve the SAT instance.

Figure 6: Step 1. On the left, the different possible positions of the feet. On the right, a
position of the feet is chosen. The points are added in In (this set is represented by the
black points/grey cells) while the other extreme points which have not been chosen are
added in Out (red points/pink cells). The shell (grey points/white cells) is the set of the
points which are not yet determined.

2.5. Filling operations

Given the chosen feet, the filling operations used for solving DTA work
with a partition of the lattice into three sets:
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• The set In contains the points which are known to belong to all solu-
tions.

• The set Out contains the points which are known to be excluded from
all solutions.

• The set Shell is the set of the undetermined points.

The task of the filling operations is to take the constraints into account in
order to include or exclude as many points as possible and thus decrease the
cardinality of the shell (some filling operations are sketched in Fig.7). If a
point of In has to be added to Out or conversely, this contradiction leads to
the conclusion that the considered position of the feet admits no solution.
The next step starts when the filling operations did not find any contradiction
and are no longer able to decrease the shell size.

There exist different kinds of filling operations depending on the chosen
classA. The property ofHV-convexity and the prescribed X-rays provide the
main operations. The first operations are uniquely related to HV-convexity.
The intermediary lattice points between two points of In on the same row or
on the same column can be added to In. If there are two points p ∈ In and
p′ ∈ Out on the same row or column, then the points p′′ with p′ ∈ [pp”] can
be added to Out. There are also filling operations which take the prescribed
X-rays into account with HV-convexity (Fig.7). We refer to [21, 16] for a
complete presentation of the operations.

Some of the filling operations can be much more complex. It is the case
of the operations based on the 4-connectivity used for reconstructing HV-
convex polyominoes [17].

2.6. Second assumption: partition property

The algorithm ConvexTomo works under the assumption that the set of
undetermined points can be decomposed in switching components. It requires
first to provide a partition of the shell in four subsets that we denote NW,
NE, SE, and SW for North-West, North-East, South-East and South-West
according to their relative location towards the partial solution In (Fig. 8).
We call partition property the property that after the end of the filling oper-
ations, the position of the solutions are sufficiently determined to decompose
the shell in these four regions NW, NE, SE, and SW. Therefore there are
only two assumptions to use the generic algorithm ConvexTomo for DTA:

1. The class A of the considered lattice sets should be included in H∩V .
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Figure 7: Four filling operations. Each rectangle presents a configuration of the set In
(black points) and of the set Out (the excluded points are in red). Due to HV-convexity,
the two upper configurations lead to include or exclude new points. Below, the values of
the horizontal X-ray allow again to increase In or Out.

2. The partition property namely the guarantee that the shell provided
by the filling operations associated with A can always be partitioned
in four parts NW, NE, SE, and SW according to their locations.

The classes H ∩ V ∩ P and C both verify these requirements. They are
both included in H ∩ V . For H ∩ V ∩ P , the filling operations based on
4-connectivity provide a 4-connected set In [17]. Then, any 4-path joining
the four feet provides the partition of the set of the undetermined points. It
provides the partition property. In the case of the C-convex lattice sets, the
convex hull of the feet in R2 provides directly a partition of the shell in four
areas (Fig. 8).

Then the algorithm ConvexTomo can be applied to solve DTA(h, v) for
A = H ∩ V ∩ P or A = C but in order to remain as general as possible, we
just assume in the following that the condition A ⊂ HV and the partition
property are satisfied. The reader should keep in mind that the whole paper is
devoted to the decision problem DTA with A satisfying these two assumptions.

2.7. Corresponding points

We define vertical correspondences between the South and the North
points and horizontal correspondences between the West and the East points.

Definition 3. We consider an instance DTA(h, v) with X-rays h and v and a
class A ⊂ HV satisfying the partition property. Then the filling operations
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Figure 8: The 4 areas of the shell. On the left, we show an instance of DTH∩V∩P(h, v).
After the filling operations associated with H∩V ∩P, the set In is 4-connected. A 4-path
connecting the feet is drawn in yellow. It provides the partition of the grey undetermined
points in South-East, North-East, North-West, and South-West areas respectively denoted
SE, NE, NW, and SW. On the right, we consider an instance of DTC(h, v). The partition
of the shell in SE, NE, NW, and SW is given directly by the convex hull of the feet.

provide a shell which can be decomposed in four areas SE, NE, NW, and
SW.

The vertical correspondent of a point p = (i, j) of the South areas SE∪SW
is the point p = (i, j + vj).

The vertical correspondent of a point p = (i, j) of the North areas NE ∪
NW is the point p = (i, j − vj).

The horizontal correspondent of a point |p = (i, j) of the West areas
SW ∪ NW is the point p| = (i + hj, j).

The horizontal correspondent of a point p| = (i, j) of the East areas
SE ∪ NE is the point |p = (i− hj, j).

The vertical and horizontal correspondents have several properties.

1. The horizontal and vertical correspondents of an undetermined point
p are also undetermined (otherwise, the filling operations allow us to
assign p to In or Out).

2. Correspondences are symmetric relations.

3. If p is in a solution, then its correspondents are outside.

4. A point p and its correspondent p′ cannot be both outside a solution
because the segment of the solution is necessarily in between and there
are not enough points.
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Figure 9: Corresponding points. On the left, a configuration with the sets In (black
points), Out (red points), and Shell (white cells, grey points) of the undetermined points.
In the middle, a pair of vertical correspondents (green) and a pair of horizontal corre-
spondents (blue). We represent the points alternatively with squares or diamonds. Notice
that the segment represented by the dotted ellipse has only two possible positions. Due to
its length, if it contains the square, then it does not contain the diamond and conversely.
On the right, the correspondences define closed paths called switching components which
provide a partition of the undetermined points. For each switching component, either the
squares or the diamonds belong to a solution.

It follows that if p and p′ are correspondents, then p is in a solution S if and
only if p′ is not in S.

2.8. Switching components

The correspondences between the points define paths. The undetermined
point p1 has a horizontal correspondent p2 which has a vertical correspondent
p3 which has an horizontal correspondent p4 and so on until we come back to
p1 as the vertical correspondent (since the shell is finite, the path is necessarily
closed). This path is referred as a switching component (Figs. 9 and 10).

Definition 4. We consider an instance DTA(h, v) with a class A ⊂ H ∩ V
satisfying the partition property. The shell provided by the filling operations
is decomposed in SE, NE, NW, and SW.

A switching component P is a closed path of corresponding points pr with
indices r ∈ Z/2lZ (the length of the sequence is 2l) so that p2k and p2k+1 are
vertical correspondents, while p2k−1 and p2k are horizontal correspondents
(Fig. 10). We denote by P [0] the set of the vertices with even indices and by
P [1] the set of the vertices with odd indices.
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Figure 10: Switching components. On the left, two switching components P 1 and
P 2. The squares represent their points with even indices (the set P [0]) and the diamonds
represent the points with odd indices (the set P [1]). Notice that there are only 2 C-convex
solutions since the C-convexity forces adding P 1[0]∪P 2[0] or P 1[1]∪P 2[1] to the solution
while the sets including P 1[0] ∪ P 2[1] or P 1[1] ∪ P 2[0] also have the prescribed X-rays
but are not C-convex. In the middle, regular switching components are not restricted to
only one turn (the brown switching component makes 2 turns). On the right, an irregular
switching component. It turns clockwise at point 2 and counterclockwise at point 3. On
the contrary, the switching components of the two left images are regular (they always
turn clockwise).

By construction, the two sets P [0] and P [1] have the same horizontal and
vertical X-rays, since each point has a unique vertical and horizontal corre-
spondent in the other set (they are respectively represented with diamonds
and squares in all figures). In the same way as the corresponding points,
any solution S of DTA(h, v) with the considered feet falls in one of the two
possible cases:

• either P [0] ⊂ S and P [1] ∩ S = ∅,

• or P [1] ⊂ S and P [0] ∩ S = ∅.

In other words, considering a switching component P , a solution contains
either the points of the switching component with odd indices or the ones
with even indices.

2.9. Boolean variables for encoding the state of each switching component

The two possible states of a switching components P in a solution S are
encoded by a Boolean variable denoted P (S). Its value is null if P [0] is in

15



S and P [1] is excluded while P (S) = 1 if P [1] is in S and P [0] is excluded.
If we consider the whole sets of switching components P q for the indices q
going from q = 1 to the number Q of switching components, then the values
of the Q Boolean variables P q(S) provide a complete characterization of S.
Moreover, the 2Q possible assignments of the Q Boolean variables all provide
a set S with the prescribed horizontal and vertical X-rays. The problem is
to determine whether there exists an assignment which provides a solution
S in the chosen class A.

2.10. Encoding the convexity with clauses

The search for an assignment of the Boolean variables which provides a
solution S in the chosen class A is done by expressing the constraints issued
from A on the Boolean variables associated with the switching components.
With HV-convexity, E. Barcucci et al. have proved that the HV-convexity
constraints can be expressed by a 2-CNF formula i.e a conjunction of SAT
clauses with at most 2 literals per clause (Fig.11) [17].

The same approach holds for encoding C-convexity with SAT clauses
(Fig.11). The number of literals is however no more bounded by 2. Clauses
with 3 literals might be necessary with the difficulty that 3-SAT is no more
polynomial but NP-complete. It explains why, as far as we know, ConvexTomo
is not polynomial for solving DTC. A better understanding of the relations
between the switching components might be of interest in order to develop
an alternative approach.

3. Main result

We prove that the Boolean variables associated with adjacent regular
switching components are necessarily equal. Then we consider that the
switching components are equivalent. This main proposition allows to state
several properties.

3.1. Regular switching components

Before investigating the relationships between the switching components,
we divide them in two groups according to the regularity of their turning
angle.

Definition 5. A switching component is regular if the turning angle at each
vertex has a constant orientation (in other words, the switching component
always turns clockwise, or always counterclockwise (Fig.10)).
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Figure 11: 2-SAT and 3-SAT clauses encoding convexity. The switching compo-
nents being encoded by Boolean variables (represented here geometrically with colored
squares and diamonds), HV-convexity is expressed by a conjunction of 2-SAT clauses.
Consequently, the search of an HV-convex solution is reduced to a 2-SAT instance that
can be solved in linear time [23]. For expressing the C-convexity in the same manner, we
need clauses with 3 literals. It leads to the difficulty that 3-SAT is NP-complete.

The switching components which have both clockwise and anticlockwise
turning angles are simply said irregular (Fig.10).

3.2. Adjacent switching components

We define an adjacency relation between switching components. Two
switching components P and P ′ are adjacent if they contain respectively a
point p and a point p′ which are 4-adjacent.

3.3. Adjacent regular switching components are equivalent

We provide a first explanation about the property that the 2-CNF formula
expressing the HV-convexity of a solution of DTA(h, v) can be often reduced
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to a set of equalities.

Lemma 1. We consider an instance of DTA(h, v) with a class A ⊂ H ∩ V
satisfying the partition property (Section 2.6). The four feet being chosen
and the filling operations performed, the Boolean variables of any pair of
adjacent regular switching components are equal.

This lemma can be understood as follows. If P and P ′ are two switching
components with an adjacent pair of points p1 and p′1, then theHV-convexity
constraint provides a first relation of dependency: if p1 is in S, then p′1 is in
S. It can be formulated by the 2-clause P (S)∨ P ′(S). According to Lemma
1, at some other places, some other points of the two switching components
provide necessarily the converse clause P (S) ∨ P

′
(S) with the consequence

that P (S) and P ′(S) are necessarily equal.

Proof. We assume w.l.g that the points p1 = (x1, y1) and p′1 = (x′1, y
′
1) both

belong to the North West area NW and that p′1 is the right 4-neighbor of p1
(Fig.12).

Figure 12: Assumption of Lemma 1. We consider two adjacent switching components.
By symmetries, we can assume w.l.g that p′1 is the right 4-neighbor of p1. It follows by H-
convexity that if p1 is in the solution S (the odd part P [1] of the switching component P is
in S namely P (S) = 1), then p′1 is also in S (the odd part P ′[1] of the switching component
P ′ is also in S namely P ′(S) = 1). The black zone is a sketch of the set In. It underlines
the property that with regular switching components horizontal correspondences are only
between NW and NE or SW and SE while vertical correspondences are only between NW
and SW or NE and SE.
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We consider the positions of the points p0 = (x0, y0) (vertical correspon-
dent of p1), p2 and p3 = (x3, y3). We distinguish three cases according to the
comparison of y0 and y3.

• Case 1. y0 < y3

• Case 2. y0 = y3

• Case 3. y0 > y3

Figure 13: The three possible configurations used for proving Lemma 1. We
develop the three cases in the following.

The three cases are developed in Figs. 14, 15, and 16. We follow the path
of the second switching component P ′ by starting from p′1. This starting
point is in the region denoted A in Figs. 14, 15, and 16. We compute the
oriented graph of correspondences between the regions reached by P ′. This
graph provides a description of all the possible paths and thus of all the
possible configurations starting from the region A.

According to the relative position of p′1 towards p1, the HV-convexity
implies the clause P (S) ∨ P ′(S). Some regions provide the converse relation

P (S) ∨ P
′
(S) which provides the equality P (S) = P ′(S). They are colored

in grey in all the figures. Therefore the task of the proof is to show that any
closed path starting from p′1 passes necessarily through a grey region. We
prove it by computing the graphs of the correspondences of the regions as
drawn in Figs.14 and 15.

In the first and second cases (Figs.14 and 15), either the path passes
through a grey region and provides the equality, or it cannot come back to
the initial region A which is excluded since the path is closed. It provides
the equality.
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Figure 14: Case 1. In the first case, we decompose the four areas in different regions and
follow the path of the switching component P ′. It starts with a point p′1 in the region A.
The path ends also necessarily in A. Due to the relative position of p′1 towards p1, we
have P (S) = 1 =⇒ P ′(S) = 1. The horizontal correspondents of the points in region
A are either in region B, or in region C. The graph of the correspondences between the
regions that we can reach from region A is drawn below. It the switching component
P ′ passes through one of the grey regions B or F , the HV-convexity constraint leads to
P (S) = 0 =⇒ P ′(S) = 0. If it passes through the grey regions E or I, then HV-convexity
leads to P ′(S) = 1 =⇒ P (S) = 1. Therefore, if the switching component passes through
one of the four grey regions, then we have the equality P (S) = P ′(S). We notice at
last that the only way to avoid the grey regions is to follow the path (CDGH)∗ but it is
excluded because it would not be possible to end the path in region A.

In the third case, we proceed in two steps. In the first step, we consider
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Figure 15: Case 2. The second case is similar to the first one. Starting from a point p′1
in the region A, the path of the switching component either passes through a grey region
which provides the equality P (S) = P ′(S) or has a cycle (CDGH)∗ which does not allow
to end the path in region A. This last possibility is excluded.

the regions issued from the position of the points p1, p2, and p3 of P . We
introduce four regions denoted A, B, C and D represented in the first row
of Fig.16. Then we consider four points of P ′. The two first points p′1 and p′2
are respectively in A and B. For the two other points, we assume that the
switching component P ′ has two horizontal correspondents respectively in C
and D. The four possible cases with such a configurations are drawn in the
second row of Fig. 16. These four points of P ′ being fixed, we come back to
P and try to continue the path P after p3 in order to close it. The considered
positions of the points of P ′ define grey regions with the property that if the
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path P passes through one of these regions, then the equality P (S) = P ′(S)
is guaranteed by HV-convexity. These grey regions that the path P should
avoid in order to have P (S) 6= P ′(S) are drawn in the third row of Fig. 16.
If the switching component P avoids the four grey regions, then the figure
16 shows that the path P after p3 is restricted to a green region which does
not allow to come back to the initial point. This case can be excluded, it
leads to the following partial conclusion (i): If the switching component P ′

has two horizontal correspondents in the regions C and D, the equality of P
and P ′ is guaranteed.

Figure 16: Case 3. Preliminary analysis. We introduce four regions A, B, C and
D. The point p1 and p2 have coordinates noticed (x1, y1) and (x2, y2). The points p′1 =
(x1 + 1, y1) and p′2 = (x2 + 1, y2) (in red) are respectively in A and B. In the second row,
we assume that there is a pair of horizontal correspondents of P ′ in the regions C and D.
We denote their abscissa u and v with u < v. Four sub-cases are possible: u > x1 and
v = x2 + 1, u = x1 and v = x2 + 1, u = x1 and v > x2 + 1, u > x1 and v > x2 + 1. In the
third row, we consider the path of the switching component P after p3 (in blue). Either
it passes through one of the grey regions induced by P ′ and which provide the equality
between P and P ′, or it is maintained in the green area which does not allow to come
back to p1. This last case is excluded with the consequence that if P ′ has two horizontal
correspondents in B and C, we have the wanted equality P (S) = P ′(S).
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We come back to the path followed by the switching component P ′ as
drawn in Fig.17. We partition the undetermined points in regions according
to their positions relatively to p0, p1, p2 and p3 and investigate again the
regions crossed by the switching component P ′. The grey regions drawn in
Fig.17 are the ones which, due to HV-convexity, provide the equality of the
switching component P (S) = P ′(S). The diagram of the correspondences
between the regions shows that either P ′ passes through a grey region, or
passes through the edge BC for which the conclusion (i) provides already the
equality P = P ′, or is not closed which is in contradiction with its definition.
It follows that in all valid cases, we have the equality P (S) = P ′(S).

3.4. Extended switching components are independent

We consider the case where all the switching components are regular.
Lemma 1 provides the following corollary:

Theorem 1. We consider an instance of DTA(h, v) with a class A ⊂ H ∩ V
satisfying the partition property. The filling operations allow us to compute
the switching components (Fig.11). If they are all regular, then any pair
of switching components P and P ′ is either equivalent (for any solution S,
P (S) = P ′(S) with the convention the first point of any switching component
is in NW) or independent.

Proof. We assume that the HV-convexity constraint provides a dependency
between two switching components P and P ′. It means that they are in a
configuration where if a point pk of P is in a solution S, then the point p′k′ of
P ′ is also in S. By symmetries, we assume pk = (xk, yk) is in the North West
area. It follows that p′k′ is its South East quadrant {(x, y) ∈ NW|x ≥ xk, y ≤
yk} (Fig.18). Thus there is a 4-connected path of undetermined points from
pk to p′k′ . By induction, Lemma 1 proves that their switching components
are all equivalent and thus, provides the equality P (S) = P ′(S).

Theorem 1 states that we have either equivalent or independant switching
components It leads to merge the equivalent switching components in one
single extended switching components.

Definition 6. We consider an instance of DTA(h, v) with a class A ⊂ H∩V
satisfying the partition property.
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Figure 17: Case 3. Final analysis. We partition the areas in regions according to
their relative positions towards the points p0, p1, p2 and p3. Due to HV-convexity, if the
switching component P ′ has a point in one of the four grey regions W , X, Y and Z, then
we have the equality P (S) = P ′(S). The oriented graph of the horizontal and vertical
correspondences between regions is drawn below. It characterizes the possible path P ′

starting at p′1. Either it passes through a grey region, or it passes through the edge CD
for which we have already proved the equality (i), or we arrive to (CFGB)∗, the path
can not be closed and as previously, this case can be excluded. In the two valid cases,
P (S) = P ′(S).

An extended switching component P̃ is the union of all the switching
components P ′ (considered as the set of their points) whose Boolean variables
are equal to P due to HV-convexity (Fig.19).

Any extended switching component P̃ is a subset of the shell. We denote
P̃NW, P̃NE, P̃SE and P̃SW its four subsets in the four areas of the shell. By
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Figure 18: A 4-connected path. HV-convex dependencies between switching compo-
nents arise for instance in the case where the point p′k′ of the switching component P ′ is in
the South East quadrant of pk (in yellow). If pk is in a solution S, then by HV-convexity,
p′k′ is also necessarily in S. In any case, we can connect pk and p′k′ by a 4-connected path
of undetermined points (in brown). As their switching components are assumed to be all
regular, according to Lemma 1, all the switching components of these brown points are
equivalent. It provides the equivalence between the switching components of the blue and
red points.

Figure 19: Extended switching components. On the left, due to HV-convexity, the
switching components P 1, P 2, P 3, P 4 are necessarily equal while P 5 is independent. On

the right, we merge P 1, P 2, P 3, P 4 in the extended switching component P̃ 1 and P 5

becomes P̃ 5. Extended switching components are less structured, they are just sets of
points.

definition, for any solution S of the instance DTA(h, v), either P̃NW ∪ P̃SE is

in S and (P̃SW ∪ P̃NE) ∩ S = ∅ or P̃SW ∪ P̃NE is in S and (P̃NW ∪ P̃SE) ∩ S =

25



∅. Theorem 1 means that if all the switching components are regular, all
extended switching components are independent. An obvious corollary of
Theorem 1 is therefore the following property:

Property 1. We consider an instance of DTA(h, v) with a class A ⊂ H ∩
V satisfying the partition property. Given a position of the feet, if all the
switching components are regular, then the number of solutions (with the
chosen feet) is 2n where n is the number of extended switching components.

Property 1 does not hold with irregular switching components. A case
with 3 solutions is shown in Fig.3. We end this section with a last remark
about extended switching components in the regular case. Under the as-
sumption that all the switching components are regular, distinct switching
components pass necessarily through distinct rows and columns. Otherwise
they would have been merged. This property is used for ordering the ex-
tended switching components.

4. Complementary results

We come back to the general switching components and provide several
properties. We are interested in the characterization of the configurations
where all the switching components are regular.

4.1. Any switching component visits the 4 areas

Due to their constant turning angle, the regular switching components
have a cyclic property. With an initial point p1 chosen in NW, we have
p1+4k ∈ NW, p2+4k ∈ NE, p3+4k ∈ SE, p4k ∈ SW. This property does
not hold with irregular switching components. We can even ask whether an
irregular switching component can avoid one of the four areas NE, NW, SW,
SE.

Property 2. Any switching component passes through the four areas NE,
NW, SW, SE.

Proof. We assume w.l.g that there exists a switching component P which
does not pass through the area NE. We start from a point pk ∈ NW and
follow the path of the switching component. The horizontal correspondent
pk+1 of pk is necessarily in SE. The vertical correspondent pk+2 of pk+1 is
therefore in NW. By induction, for any positive integer n, we have pk+2n ∈
NW and pk+2n ∈ SE. The turning angles are alternatively +π

2
and −π

2
. Such

a path cannot come back to the point pk. It leads to a contradiction.
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4.2. Structure of the switching components according to the positions of the
feet

We investigate the relations between the positions of the feet and the
structure of the switching components. In order to determine them, we start
with an initial position of the South and North feet, and consider all the
possible cases by adding first the West foot and secondly the East foot. This
investigation is described step by step in Fig.20.

We can assume without loss of generality that the South foot is on the
left of the North foot. We notice that the vertical X-rays passing through
the South and North feet determine completely these columns (and we will
have the same property with the rows of the East and West feet). Then,
two cases are possible: either the points of In determined by the South and
North feet have a common row or they don’t share any row. In both cases,
we introduce the possible positions of the West foot. The points of In on the
rows of this foot might have different configurations. Many of them are not
HV-convex. After three feet, it remains only three possible cases. By adding
the last East foot, we obtain 8 configurations which can be reduced to 6 by
removing the symmetric cases. We denote them with letters from a) to f)
(Fig.20). Each of them has specific possible switching components (Fig.21).

• In case a), different structures of switching components are possible
but they are necessarily irregular (Fig.22).

• In case b), the structure of the switching components is constrained.
They are all irregular (Fig.22). The points pk and pk+8 are in the same
area of the shell. Moreover, starting from an initial point p1 in the
South West area, there is no area containing simultaneously points of
switching components with odd and even indices. It follows that the
constant assignment P [S] = 0 for all switching components, or the
constant assignment P [S] = 1 are two trivial solutions of the instance.
In other words, there are at least two solutions.

• In case c), we can have switching components with different structures,
but necessarily irregular (Fig.22).

• In case d), the structure of the switching components (all irregular
according to Fig.22 ) is constrained. The point pk+6 is in the same area
of the shell as pk. As in b) with points p1 ∈ SW, there are at least
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Figure 20: The possible configurations of the rows and columns of the feet.
For the clarity of the figure, the lattice points are represented by the square cell which
surrounds them. We start with the position of the South and North feet and consider all
the compatible cases with HV-convexity by adding the West and East feet. It leads at the
end to only 6 possible configurations denoted with letters from a) to f) (the configurations
b) and b’) as well as d) and d’) are symmetric).

two trivial solutions obtained with constant assignments of the Boolean
variables.

• The case e) is the unique configuration which admits simultaneously
irregular and regular switching components. Such a case is illustrated
in Fig.21. This example goes against intuition.
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Figure 21: The switching components in the 6 possible configurations. Above the
positions of the feet (blue and orange) and below, the six different possible configurations
obtained in Fig. 20. The set Out of the cells of the excluded points is colored in red
and the region of the possibly undetermined points is in grey. In each configuration, we
have different structures of switching components. Regular switching components are only
possible in the cases e) and f). Irregular switching components are possible in the cases
a), b), c), d) and e).

• In the case f), all the switching components are regular.

It remains a lot of open questions about irregular switching components.
The case e) is the only one where irregular and regular switching components
might exist together (Fig.23). In the cases b), d), and f), the structures of
the switching components guarantee that the two constant assignment of the
Boolean variables (P (S) = 1 for all switching components or P (S) = 0 for all
switching components) are trivial solution. In the configuration a), c) and e),
we still don’t know if it is possible to have an expression of the HV-convexity
constraints in 2-clauses which is not feasible.
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Figure 22: The switching components in configurations a), b), c) and d) cannot
have regular switching components. It can be easily proved by following the path of any
switching component in the shell (blue and green). After a few steps, any path has a
turning angle different from the first one.

4.3. Extended regular switching components can be ordered

We introduce an order relation on the points of the shell. For a pair of
points p(x, y) and p′(x′, y′), we denote p < p′ if x < x′ or if x = x′ and y < y′

for the points of the West areas of the shell and p < p′ if x > x′ or x = x′

and y < y′ for the East areas.
An order relation < defined on an arbitrary set of points X induces an

order relation A < B between a pair of subsets A ⊂ X and B ⊂ X if for any
pair a ∈ A and b ∈ B, we have a < b. The constraint to order sets is that
their points are well-ordered. Can the switching components be ordered?
Unfortunately not, the points of switching components are not necessarily
well ordered, even in the regular case (Fig.24). But it becomes true with
extended switching components in the case where the switching components
are all regular.

Property 3. If all switching components are regular, the extended switching
components can be ordered.

Proof. We assume that switching components have been defined and that
they are all regular. As already noticed, distinct extended switching compo-
nents pass necessarily through distinct rows and columns. They can share
neither a row nor a column. They are also necessarily 4-connected with the

30



Figure 23: An instance with regular and irregular switching components. The
only configuration which might provide both regular and irregular switching components
is e). In all the other cases, the switching components are either all regular, or all irregular.

set In. On each area of undetermined points, they follow the boundary of In
(Fig.25). Then the only case which can prevent them to be ordered is when
one extended switching component is surrounded by another. We assume
that such a configuration exists and show that it leads to a contradiction
(Fig.26).

We consider 4-connected components of extended switching components
that we call 4CC. We assume that a 4CC denoted P̃1 of the switching compo-

nent P̃ is surrounded by two 4CC P̃ ′1 and P̃ ′2 of another extended switching

component P̃ ′. It means P̃ ′1 < P̃1 < P̃ ′2. We can assume w.l.g that P̃ ′2 is upper

than all the 4CC of P̃ (otherwise we invert P̃ and P̃ ′). By definition, there

exists a path of horizontal correspondences connecting P̃ ′1 and P̃ ′2. With the

same number of turns around In, the surrounded 4CC P̃1 arrives on a 4CC
of P that we denote P̃2. We notice therefore that horizontal and vertical cor-
respondences preserve the order of the 4CCs (since they don’t share rows or
columns). Then by turning around In, it follows from the initial assumption

P̃ ′1 < P̃1 that we have also P̃ ′2 < P̃2. It contradicts the initial assumption
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Figure 24: An instance with regular switching components which can not be
ordered directly. The green switching components surrounds the two others.

that P̃ ′2 is upper than any 4CC of P̃ .

It follows from all these complementary properties that the extended
switching components have a simple structure along the boundary of the
set In: they are independent and well ordered. This property is a step for-
ward in the direction of the reconstruction of C-convex lattice sets in the case
where all the switching components are regular.

5. Conclusion

Although the switching components have been widely used for recon-
structing HV-convex lattice sets from their horizontal and vertical X-rays,
their combinatorial properties are still poorly known. We started the investi-
gation of the regular case. It occurs when the feet are not placed in opposite
corners of the rectangle (case f) of Fig.21). Then the switching components
are all regular. According to Lemma 1, adjacent switching components are
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Figure 25: Ordering the extended switching components. The extended switching
components follow the boundary of the set In (in black). They can be ordered if and only
if the right case, with an extended switching component surrounding another one can be
excluded.

equivalent. We merge them in extended switching components. While regu-
lar switching components might still have complex configurations, these new
objects can be easily ordered along the boundary of the set In.

The proofs of the results that we stated in the paper have required new
approaches based on the investigation of oriented graphs of regions. The reg-
ular switching components have revealed a part of their structure. It would
be of interest to investigate the irregular switching components similarly but
their structure is more complex. A better understanding of their relations
could be useful to determine the status of the conjecture: the 2-CNF formula
expressing the HV-convexity of the solution is always satisfiable. We hope
at last that it can help to determine the complexity of DTA(h, v) for the class
A = C of the C-convex lattice sets.
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