, EQPX-29-01), and from GENCI-TGCC/CINES

S. Y. Chen and G. D. Doolen, LATTICE BOLTZMANN METHOD FOR FLUID FLOWS, Annual Review of Fluid Mechanics, vol.30, issue.1, pp.329-364, 1998.
DOI : 10.1146/annurev.fluid.30.1.329

S. Marié, D. Ricot, and P. Sagaut, Comparison between lattice Boltzmann method and Navier???Stokes high order schemes for computational aeroacoustics, Journal of Computational Physics, vol.228, issue.4, pp.1056-1070, 2009.
DOI : 10.1016/j.jcp.2008.10.021

D. Casalino, A. F. Ribeiro, E. Fares, and S. Nölting, Lattice???Boltzmann Aeroacoustic Analysis of the LAGOON Landing-Gear Configuration, AIAA Journal, vol.7, issue.4, pp.1232-1248, 2014.
DOI : 10.1016/j.jsv.2014.01.028

A. Sengissen, J. Giret, C. Coreixas, and J. Boussuge, Simulations of LAGOON landing-gear noise using Lattice Boltzmann Solver, 21st AIAA/CEAS Aeroacoustics Conference, pp.21-2993, 2015.
DOI : 10.1006/jcph.2000.6538

A. D. 'hooge, L. Rebbeck, R. Palin, Q. Murphy, J. Gargoloff et al., Application of real-world wind conditions for assessing aerodynamic drag for on-road range prediction, 2015.

M. E. Gleason, B. Duncan, J. Walter, A. Guzman, and Y. Cho, Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results, SAE International Journal of Passenger Cars - Mechanical Systems, vol.8, issue.1, pp.275-293, 1556.
DOI : 10.4271/2015-01-1556

D. Casalino, A. Hazir, and A. Mann, Turbofan broadband noise prediction using the lattice boltzmann method, AIAA Journal, pp.1-20, 2017.
DOI : 10.2514/1.j055674

M. R. Khorrami, E. Fares, B. Duda, and A. Hazir, Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale, 22nd AIAA/CEAS Aeroacoustics Conference, pp.22-2711, 2016.
DOI : 10.1098/rspa.2010.0172

M. R. Khorrami and E. Fares, Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft, 22nd AIAA/CEAS Aeroacoustics Conference, pp.22-2706, 2016.
DOI : 10.1098/rspa.2010.0172

O. Filippova and D. Hänel, A Novel Lattice BGK Approach for Low Mach Number Combustion, Journal of Computational Physics, vol.158, issue.2, pp.139-160, 2000.
DOI : 10.1006/jcph.1999.6405

K. Yamamoto, X. He, and G. Doolen, Simulation of Combustion Field by Lattice Boltzmann Method., Transactions of the Japan Society of Mechanical Engineers Series B, vol.68, issue.674, 2002.
DOI : 10.1299/kikaib.68.2908

K. Yamamoto, Combustion Simulation Using the Lattice Boltzmann Method, JSME International Journal Series B, vol.47, issue.2, pp.4003-409, 2004.
DOI : 10.1299/jsmeb.47.403

K. Yamamoto and N. Takada, LB simulation on soot combustion in porous media, Physica A: Statistical Mechanics and its Applications, pp.111-117, 2006.
DOI : 10.1016/j.physa.2005.09.033

S. Chen, Z. Liu, C. Zhang, Z. He, Z. Tian et al., A novel coupled lattice Boltzmann model for low Mach number combustion simulation, Applied Mathematics and Computation, vol.193, issue.1, pp.266-284, 2007.
DOI : 10.1016/j.amc.2007.03.087

S. Chen, Z. Liu, Z. Tian, B. Shi, and C. Zheng, A simple lattice Boltzmann scheme for combustion simulation, Computers & Mathematics with Applications, vol.55, issue.7, pp.1424-1432, 2008.
DOI : 10.1016/j.camwa.2007.08.020

URL : https://doi.org/10.1016/j.camwa.2007.08.020

Z. Guo, B. Shi, and N. Wang, Lattice BGK Model for Incompressible Navier???Stokes Equation, Journal of Computational Physics, vol.165, issue.1, pp.288-306, 2000.
DOI : 10.1006/jcph.2000.6616

N. I. Prasianakis and I. V. Karlin, Lattice Boltzmann method for thermal flow simulation on standard lattices, Physical Review E, vol.76, issue.1, pp.1-11, 2007.
DOI : 10.1103/PhysRevE.55.2780

URL : http://arxiv.org/pdf/cond-mat/0703598

A. F. Rienzo, P. Asinari, E. Chiavazzo, N. I. Prasianakis, and J. Mantzaras, Lattice Boltzmann model for reactive flow simulations, EPL (Europhysics Letters), vol.98, issue.3, 2012.
DOI : 10.1209/0295-5075/98/34001

E. Chiavazzo, I. V. Karlin, A. N. Gorban, and K. Boulouchos, Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations, Combustion and Flame, vol.157, issue.10, pp.1833-1849, 2010.
DOI : 10.1016/j.combustflame.2010.06.009

E. Chiavazzo, I. V. Karlin, A. N. Gorban, and K. Boulouchos, Efficient simulations of detailed combustion fields via the lattice Boltzmann method, International Journal of Numerical Methods for Heat & Fluid Flow, vol.21, issue.5, pp.494-517, 2011.
DOI : 10.1103/PhysRev.94.511

URL : http://porto.polito.it/2375176/1/s1_ln717172695844769_1939656818Hwf_1852670004IdV_9634528827171726PDF_HI0001.pdf

C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distribution-function discrete Boltzmann model for combustion, Combustion and Flame, vol.164, pp.137-151, 2016.
DOI : 10.1016/j.combustflame.2015.11.010

URL : http://arxiv.org/pdf/1405.5500

Q. Li, K. Luo, Y. He, Y. Gao, and W. Tao, Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices, Physical Review E, vol.3, issue.1, p.16710, 2012.
DOI : 10.1016/j.jnnfm.2010.01.026

URL : http://arxiv.org/pdf/1109.6672

Y. Feng, P. Sagaut, and W. Tao, A three dimensional lattice model for thermal compressible flow on standard lattices, Journal of Computational Physics, vol.303, pp.514-529, 2015.
DOI : 10.1016/j.jcp.2015.09.011

URL : https://hal.archives-ouvertes.fr/hal-01276507

D. G. Goodwin, H. K. Moffat, and R. L. Speth, Cantera: An objectoriented software toolkit for chemical kinetics, thermodynamics, and transport processes, 2017.

Y. Qian, D. D-'humiéres, and P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters (EPL), vol.17, issue.6, pp.479-484, 1992.
DOI : 10.1209/0295-5075/17/6/001

X. W. Shan, X. F. Yuan, and H. D. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier???Stokes equation, Journal of Fluid Mechanics, vol.550, issue.-1, pp.413-441, 2006.
DOI : 10.1017/S0022112005008153

P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. i. small amplitude processes in charged and neutral onecomponent systems, Phys. Rev, pp.94-511, 1954.

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, American Journal of Physics, vol.30, issue.5, 1970.
DOI : 10.1119/1.1942035

Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, vol.8, issue.4, p.46308, 2002.
DOI : 10.1063/1.869035

T. Poinsot and D. Veynante, Theoretical and numerical combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

Q. Li, Y. He, Y. Wang, and G. Tang, Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows, Physics Letters A, vol.373, issue.25, pp.2101-2108, 2009.
DOI : 10.1016/j.physleta.2009.04.036

Y. Feng, P. Sagaut, and W. Q. Tao, A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices, Computers & Fluids, vol.131, pp.45-55, 2016.
DOI : 10.1016/j.compfluid.2016.03.009

URL : https://hal.archives-ouvertes.fr/hal-01461781

J. Latt and B. Chopard, Lattice Boltzmann method with regularized pre-collision distribution functions, Mathematics and Computers in Simulation, vol.72, issue.2-6, pp.165-168, 2006.
DOI : 10.1016/j.matcom.2006.05.017

J. Jacob, O. Malaspinas, and P. Sagaut, A new hybrid recursive regularized bhatnagar-gross-krook collision model for lattice-boltzmannmethod based large-eddy simulation, Physics of Fluids, 2018.

S. P. Thampi, S. Ansumali, R. Adhikari, and S. Succi, Isotropic discrete Laplacian operators from lattice hydrodynamics, Journal of Computational Physics, vol.234, pp.1-7, 2013.
DOI : 10.1016/j.jcp.2012.07.037

URL : http://arxiv.org/pdf/1202.3299

A. Kumar, Isotropic finite-differences, Journal of Computational Physics, vol.201, issue.1, pp.109-118, 2004.
DOI : 10.1016/j.jcp.2004.05.005

O. Malaspinas, B. Chopard, and J. Latt, General regularized boundary condition for multi-speed lattice Boltzmann models, Computers & Fluids, vol.49, issue.1, pp.29-35, 2011.
DOI : 10.1016/j.compfluid.2011.04.010

A. Liñán, The asymptotic structure of counterflow diffusion flames for large activation energies, Acta Astronautica, vol.1, issue.7-8, pp.1007-1039, 1974.
DOI : 10.1016/0094-5765(74)90066-6

F. A. Williams, Combustion Theory, SEcond Edition, Chemical Engineering Science, vol.42, issue.9, 1985.
DOI : 10.1016/0009-2509(87)85045-5

F. Shum-kivan, Simulation des grandes echelles de flammes de spray et modélisation de la combustion non-prémélangée, 2017.