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Abstract

In the second section “Courant-Gelfand theorem” of his last published paper
(Topological properties of eigenoscillations in mathematical physics, Proc. Steklov
Institute Math. 273 (2011) 25–34), Arnold recounts Gelfand’s strategy to prove
that the zeros of any linear combination of the n first eigenfunctions of the Sturm-
Liouville problem

− y′′(s) + q(x) y(x) = λ y(x) in ]0, 1[ , with y(0) = y(1) = 0 ,

divide the interval into at most n connected components, and concludes that “the
lack of a published formal text with a rigorous proof . . . is still distressing.”
Inspired by Quantum mechanics, Gelfand’s strategy consists in replacing the anal-
ysis of linear combinations of the n first eigenfunctions by that of their Slater
determinant which is the first eigenfunction of the associated n particle operator
acting on Fermions.
In the present paper, we implement Gelfand’s strategy, and give a complete proof
of the above assertion. As a matter of fact, we refine this strategy, and prove
a stronger property taking the multiplicity of zeros into account, a result which
actually goes back to Sturm (1836).

1 Introduction

On September 30, 1833, C. Sturm1 presented a memoir on second order linear differential
equations to the Paris Academy of Sciences. The main results are summarized in [19, 20],
and were later published in the first volume of Liouville’s journal, [21, 22]. We refer to
[5] for more details. In this paper, we shall consider the following particular case.

∗berard-helffer-ecp-gelfand-180707.tex
1Jacques Charles François Sturm (1803–1855)
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Theorem 1.1 (Sturm (1836)). Let q be a smooth real valued function defined is a neigh-
borhood of the interval [0, 1]. The Dirichlet eigenvalue problem

(1)

{
− y′′(x) + q(x) y(x) = λ y(x) in ]0, 1[ ,

y(0) = y(1) = 0 ,

has the following properties.

1. There exists an infinite sequence of (simple) eigenvalues

λ1 < λ2 < · · · ր ∞,

with an associated orthonormal family of eigenfunctions {hj , j ≥ 1}.

2. For any j ≥ 1, the eigenfunction hj has exactly (j − 1) zeros in the interval ]0, 1[.

3. For any 1 ≤ m ≤ n, let U =
∑n

k=m ak hk be any nontrivial real linear combination
of eigenfunctions. Then,

(a) U has at most (n− 1) zeros in ]0, 1[, counted with multiplicities,

(b) U changes sign at least (m− 1) times in ]0, 1[.

Sturm’s motivations came from mathematical physics. He took a novel point of view,
looking for qualitative behavior of solutions rather than for explicit solutions. To prove
Assertions 1 and 2, he introduced the comparison and oscillation theorems which today
bear his name. Assertion 3 came as a corollary of Sturm’s investigation of the evolution
of zeros of a solution u(t, x) of the associated heat equation, with initial condition U , as
times goes to infinity (in direct line with his motivations). We give a proof of Assertion 3
in Section 2.

Remarks 1.2. (i) In the framework of Fourier series, Assertion 3b is often referred to as
the Sturm-Hurwitz theorem.
(ii) Sturm’s theorem applies to more general operators, with more general boundary
conditions; we refer to [5] for more details.

R. Courant2 partly generalized Assertion 2, in Sturm’s theorem, to higher dimensions.

Theorem 1.3. Let 0 < λ1 < λ2 ≤ λ3 · · · ր ∞ be the Dirichlet eigenvalues of −∆
in a bounded domain of Rd, listed in nondecreasing order, with multiplicities. Let u be
any nontrivial eigenfunction associated with the eigenvalue λn, and let β0(u) denote the
number of connected components of Ω\{0} (nodal domains). Then,

β0(u) ≤ n .

In a footnote of [10, p. 454], Courant makes the following statement.

Statement 1.4. Any linear combination of the first n eigenfunctions divides the domain,
by means of its nodes, into no more than n subdomains. See the Göttingen dissertation
of H. Herrmann, Beiträge zur Theorie der Eigenwerten und Eigenfunktionen, 1932.

2Richard Courant (1888–1972).
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In the literature, Statement 1.4 is referred to as the “Courant-Herrmann theorem”,
“Courant-Herrmann conjecture”, “Herrmann’s theorem”, or “Courant generalized the-
orem”. In [6, 7], we call it the Extended Courant property.

Remarks 1.5. 1. It is easy to see that Courant’s upper bound is not sharp. This is
indeed the case whenever the eigenvalue λn is not simple. More generally, it can be
shown that the number β0(u) is asymptotically smaller than γ(n)n when n tends to
infinity, where γ(n) < 1 is a constant which only depends on the dimension n. It is
interesting to investigate the eigenvalues for which Courant’s upper bound is sharp,
see the review article [9]. For this research topic, we also refer to the surprising
recent paper [12].

2. In dimension greater than or equal to 2, there is no general lower bound for β0(u),
except the trivial ones (1 for λ1, and 2 for λk, k ≥ 2). Examples were first given by
A. Stern in her 1924 Göttingen thesis, see [4].

In the early 1970’s, V. Arnold3 noticed that Statement 1.4, would provide a partial answer
to one of the problems formulated by D. Hilbert4.

Citation from Arnold [3, p. 27].

I immediately deduced from the generalized Courant theorem [Statement 1.4]
new results in Hilbert’s famous (16th) problem. . . . And then it turned
out that the results of the topology of algebraic curves that I had derived
from the generalized Courant theorem contradict the results of quantum field
theory. . . . Hence, the statement of the generalized Courant theorem is not
true (explicit counterexamples were soon produced by Viro). Courant died in
1972 and could not have known about this counterexample5.

Arnold was very much intrigued by Statement 1.4, as is illustrated by [3], his last pub-
lished paper, where he in particular relates a discussion with I. Gelfand6, which we tran-
scribe below, using Arnold’s words, in the form of an imaginary dialog.

(Gelfand) I thought that, except for me, nobody paid attention to Courant’s remarkable
assertion. But I was so surprised that I delved into it and found a proof.

(Arnold is quite surprised, but does not have time to mention the counterexamples before
Gelfand continues.)

However, I could prove this theorem of Courant only for oscillations of one-dimensional
media, where m = 1.

(Arnold) Where could I read it?

(Gelfand) I never write proofs. I just discover new interesting things. Finding proofs
(and writing articles) is up to my students.

Arnold then recounts Gelfand’s strategy to prove Statement 1.4 in the one-dimensional
case.

3Vladimir Igorevich Arnold (1937-2010).
4David Hilbert (1862–1943).
5[1], the first paper of Arnold on this subject, we are aware of, dates from 1973.
6Israel Moiseevich Gelfand (1913-2009).
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Quotations from [3, Section 2].

Nevertheless, the one-dimensional version of Courant’s theorem is apparently
valid. . . . Gelfand’s idea was to replace the analysis of the system of n eigen-
functions of the one-particle quantum-mechanical problem by the analysis
of the first eigenfunction of the n-particle problem (considering as particles,
fermions rather than bosons). . . .

Unfortunately, [Gelfand’s hints] do not yet provide a proof for this generalized
theorem: many facts are still to be proved. . . .

Gelfand did not publish anything concerning this: he only told me that he
hoped his students would correct this drawback of his theory. . . .

Viktor Borisovich Lidskii told me that “he knows how to prove all this”. . . .

Although [Lidskii’s] arguments look convincing, the lack of a published formal
text with a proof of the Courant-Gelfand theorem is still distressing.

In [13], Kuznetsov refers to Statement 1.4 as Herrmann’s theorem, and relates that
Gelfand’s approach so attracted Arnold that he included Herrmann’s theorem for eigen-
functions of problem [ (1)] together with Gelfand’s hint into the 3rd Russian edition of his
Ordinary Differential Equations, see Problem 9 in the “Supplementary problems” at the
end of [2].

More precisely, Arnold’s Problem 9 proposes to prove the following statement, which is
the one-dimensional analogue of Statement 1.4.

Statement 1.6. The zeros of any linear combination of the n first eigenfunctions of the
Sturm-Liouville problem (1) divide the interval into at most n connected components.

This statement is equivalent to saying that any linear combination of the n first eigen-
functions of (1) has at most (n − 1) zeros in the open interval. This is a weak form of
Sturm’s upper bound, Assertion 3a in Theorem 1.1. In the present paper, we implement
Gelfand’s strategy to prove Statement 1.6 (see also [7]), and we extend this strategy to
take into account the multiplicities of zeros, and to prove Assertion 3a in Theorem 1.1.
Inspired by Quantum mechanics, Gelfand’s strategy consists in replacing the analysis
of linear combinations of the n first eigenfunctions by that of their Slater determinant
which is the first eigenfunction of the associated n particle operator acting on Fermions.
We give more details in Section 5. Note that Assertion 3b is actually a consequence of
Assertion 3a, see Section 2.

The paper is organized as follows. In Section 2, we give J. Liouville’s7 1836 proof of
Assertion 3 in Theorem 1.1. In Section 3, we introduce some notation. In Section 4, we
give preliminary results on Vandermonde determinants, to be used later on. In Section 5,
we explain Gelfand’s strategy, and we apply it to a particular case, the harmonic oscillator.
Section 6 is devoted to the proof of Assertion 3a in Theorem 1.1, in the general case,
following Gelfand’s strategy: in Subsection 6.2, we prove Sturm’s weak upper bound on
the number of zeros of a linear combination of eigenfunctions, Statement 1.6, thus solving
Problem 9 in [2]; Sturm’s strong upper bound is proved in Subsection 6.4.

7Joseph Liouville (1809–1882).
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2 Liouville’s proof of Sturm’s theorem

Assertions 1 and 2 in Theorem 1.1 are well-known, and can be found in many textbooks.
This is not the case for Assertion 3. In this section, we give a short proof, based on the
arguments of Liouville [16], and Rayleigh8 [18, § 142].

Proof of Assertion 3a. Write equation (1) for h1 and for hk, multiply the first one by hk,
the second by (−h1) and add to obtain the relation

(
h1 h

′
k − h′

1 hk

)′
= (λ1 − λk) h1 hk .

Multiply by ak, and sum from k = m to k = n to obtain

(2)
(
h1 U

′ − h′
1 U
)′
= h1 U1 ,

where U1 =
∑n

k=m(λ1 − λk) ak hk. Integrating this relation from 0 to x, and using the
Dirichlet boundary condition, gives

h1(x)U
′(x)− h′

1(x)U(x) =

∫ x

0

h1(t)U1(t) dt .

Note that the left hand side can be rewritten as h2
1(x)

d
dx

U
h1
(x) in ]0, 1[. Count zeros

with multiplicities. Assume that U has N zeros in ]0, 1[. Then so does U
h1
, so that, by

Rolle’s theorem, d
dx

U
h1

has a least (N − 1) zeros in ]0, 1[. It follows that the function

x 7→
∫ x

0
h1(t)U1(t) dt has at least (N − 1) zeros in ]0, 1[. Note that it also vanishes at

both 0 and 1 because the hj form an orthonormal family. By Rolle’s theorem again,
we conclude that its derivative, h1 U1, has at least N zeros in ]0, 1[. Because U and U1

have the same form, we can repeat the argument, and conclude that, for any ℓ ≥ 1,
the function Uℓ =

∑n

k=m(λ1 − λk)
ℓ ak hk has at least N zeros in ]0, 1[. Letting ℓ tend to

infinity, using the fact that the eigenvalues λk are simple, and the fact that hn has (n−1)
zeros in ]0, 1[, it follows that N ≤ (n− 1).

Proof of Assertion 3b. Assume that U changes sign exactly M times at the points
z1 < · · · < zM in the interval ]0, 1[, and that M < (m− 1), i.e., M ≤ (m− 2). Consider
the function,

V (x) :=

∣∣∣∣∣∣∣

h1(z1) . . . h1(zM) h1(x)
...

...
...

hn(z1) . . . hn(zM) hn(x)

∣∣∣∣∣∣∣

It is easy to prove that the function V is not identically zero (see Lemma 6.1). It clearly
vanishes at the points zj , 1 ≤ j ≤ M , and it is a linear combination of the eigenfunctions
h1, . . . , hM (develop the determinant with respect to the last column). According to
Assertion 3a in Theorem 1.1, V does not have any other zero, and each zj has order 1, so
that V changes sign exactly at the points zj . Since M ≤ (m− 2), the functions U and V
are orthogonal, and their product U V does not change sign in ]0, 1[. It follows that U V
vanishes identically, a contradiction.

8John William Strutt, Lord Rayleigh (1842–1919).
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Remark 2.1. With the above notation, we can rewrite (2) as

(3) h1 U1 = h1 U
′′ + (λ1 − q) h1U .

A similar relation holds between Uℓ+1 and Uℓ. Using these relations, and letting ℓ tend
to infinity as in the preceding proof, we obtain the following lemma which is interesting
in itself.

Lemma 2.2. The nonzero linear combination U cannot vanish at infinite order at any
point in [0, 1]. In particular, its zeros are isolated.

3 Notation

Let n be an integer, n ≥ 1, and J ⊂ R an interval. Given n points x1, . . . , xn in J, we
denote the corresponding vector by ~x = (x1, . . . , xn) ∈ Jn. Generally speaking, we denote

by ~k = (k1, · · · , kn) a vector with positive integer entries.

We use the notation
⇀
c = (c1, . . . , cn−1) for an (n− 1)-vector with entries in J.

Given n real continuous functions f1, . . . , fn defined on J, we denote by ~f the vector-
valued function

(
f1, · · · , fn

)
, and we introduce the determinant

(4)
∣∣∣~f(x1) . . . ~f(xn)

∣∣∣ :=

∣∣∣∣∣∣∣∣∣

f1(x1) f1(x2) . . . f1(xn)
f2(x1) f2(x2) . . . f2(xn)

...
... . . .

...
fn(x1) fn(x2) . . . fn(xn)

∣∣∣∣∣∣∣∣∣
.

Given a vector ~b = (b1, . . . , bn) ∈ R
n, we denote by

(5) S~b(x) =
n∑

j=1

bj fj(x) ,

the linear combination of f1, . . . , fn, with coefficients bj ’s.

Let ~c ∈ Jn be a vector of the form

(6) ~c = (c̄1, . . . , c̄1, c̄2, . . . , c̄2, . . . , c̄p, . . . , c̄p) ,

with c̄1 repeated k1 times, . . . , c̄p repeated kp times, 1 ≤ p ≤ n, k1 + · · ·+ kp = n, and
with c̄1 < c̄2 < · · · < c̄p.

It will be convenient to relabel the variables ~x = (x1, . . . , xn) according to the structure
of ~c, as follows,

(7) ~x = (x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2, . . . , xp,1, . . . , xp,kp) ,

so that,

(8)

{
x1,1 = x1, . . . , x1,k1 = xk1 and, for 2 ≤ i ≤ p ,

xi,1 = xk1+···+ki−1+1, . . . , xi,ki = xk1+···+ki−1+ki .
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In this case, we will also write the vector ~x as

(9) ~x =
(
x(1), . . . , x(p)

)
,

with x(i) = (xi,1, . . . , xi,ki), for 1 ≤ i ≤ p.

We shall usually use both ways of labeling inside a formula, there should not be any
confusion.

We introduce the real polynomials

(10)





Q1(x1) = 1 ,
and, for n ≥ 2,

Qn(x1, . . . , xn) =
∏n

j=2(x1 − xj) ,

and

(11)





P1(x1) = 1 ,
and, for n ≥ 2,

Pn(x1, . . . , xn) =
∏

1≤i<j≤n(xi − xj) =
∏n−1

i=1 Qn+1−i(xi, . . . , xn) .

4 Vandermonde determinants

Lemma 4.1. The polynomial Pn, defined in (11), is the Vandermonde9 determinant

(12) Pn(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣

1 . . . 1
x1 . . . xn

...
...

xn−1
1 . . . xn−1

n

∣∣∣∣∣∣∣∣∣
.

Furthermore,

1. Pn is anti-symmetric under the action of the group of permutations sn, and homoge-
nous of degree n(n−1)

2
.

2. As a function of x1, . . . , xn, Pn is harmonic, ∆Pn = 0, and satisfies

(13) ∂n−1
xn

∂n−2
xn−1

· · · ∂2
x3
∂x2 Pn = (−1)

n(n−1
2 (n− 1)! (n− 2)! . . . 2! .

Proof. The identity (12) is well-known, and readily implies Assertion 1. The polynomial
Pn being anti-symmetric, its Laplacian is also anti-symmetric, and hence, must be divi-
sible by Pn. Being of degree less than Pn, ∆Pn must be zero. The identity (13) follows
immediately from the multi-linearity of the determinant, or by induction on n.

Notation. When ~x = (x1, . . . , xn), we will also write Pn(~x) for Pn(x1, . . . , xn) . We will
denote by Dn(∂~x) the differential operator

(14) Dn(∂~x) := ∂n−1
xn

∂n−2
xn−1

· · · ∂2
x3
∂x2

which appears in (13), so that

(15) Dn(∂~x)Pn(~x ) = (−1)
n(n−1)

2 (n− 1)! (n− 2)! . . . 2! .
9Alexandre Théophile Vandermonde (1735–1796).
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Lemma 4.2. Given ~x = (~y, ~z) ∈ R
p × R

q, the function

~x 7→ Pp(~y)Pq(~z)

is harmonic as a function on R
p+q.

We shall now describe the local behaviour of the harmonic polynomial Pn near a point
~c ∈ Rn at which it vanishes. We first treat two simple examples.

Example 4.3. Let n = 5, and ~c = (c̄1, c̄1, c̄2, c̄2, c5), with c̄1 < c̄2 < c5. Then, P5(~c) = 0.

Write ~x = ~c+ ~ξ. An easy computation gives,

(16) P5(~c+ ~ξ) = P2(ξ1, ξ2)P2(ξ3, ξ4)
{
ρ(~c) + ω(~c, ~ξ )

}
,

where ρ(~c) = (c̄1−c̄2)
4 (c̄1−c5)

2 (c̄2−c5)
2 is a nonzero constant, and where ω(~c, ~ξ ) denotes

a polynomial in the (ξi − ξj)’s, with coefficients depending on ~c, and without constant
term.

Example 4.4. Let n = 5. Let ~c = (c̄1, c̄1, c̄1, c4, c5), with c̄1 < c4 < c5. Then, P5(~c) = 0.

Write ~x = ~c+ ~ξ. An easy computation gives,

(17) P5(~c+ ~ξ) = P3(ξ1, ξ2, ξ3)
{
ρ(~c) + ω(~c, ~ξ )

}
,

where ρ(~c) = (c̄1−c4)
3 (c̄1−c5)

3 (c4−c5) is a nonzero constant, and where ω(~c, ~ξ ) denotes
a polynomial in the (ξi − ξj)’s, with coefficients depending on ~c, and without constant
term.

Remark 4.5. In both examples, the leading term on the right hand side of Pn(~c+ ~ξ ) is a
homogeneous harmonic polynomial is some of the variables ξj’s, as we can expect from
Bers’s theorem, [8].

In the following lemma, we use both the standard coordinates names and their relabeling
(7)–(9), for both variables ~x and ~ξ.

Lemma 4.6. Let p be an integer, 1 ≤ p ≤ n, and (k1, . . . , kp) be a p-tuple of positive
integers, such that k1+ · · ·+kp = n. Let (c̄1, . . . , c̄p) be a p-tuple, such that c̄1 < · · · < c̄p.
Let ~c be the n-vector

(18) ~c = (c1, . . . , c1, . . . , cp, . . . , cp) ,

where each c̄j is repeated kj times, 1 ≤ j ≤ p. Writing ~x = ~c + ~ξ, and relabeling the

coordinates of the vectors ~x and ~ξ as in (7)–(9), we have the following relation,

(19) Pn(~c+ ~ξ ) = ρ(~c )Pk1(ξ1,1, . . . , ξ1,k1) . . . Pkp(ξp,1, . . . , ξp,kp)
(
1 + ω(~c, ~ξ )

)
,

where ρ(~c ) is a nonzero constant depending only on ~c, and where ω(~c, ~ξ is a polynomial
in the variables (ξi − ξj)’s, with coefficients depending on the cj’s, and without term of
degree 0.

8



Proof. From the definition of Pn, and using the relabeling of the variables ~x and ~ξ, as
indicated in (7)–(9), we obtain the following relations.

(20) Pn(~c+ ~ξ ) =

(
k1∏

i=1

Qn+1−i(ci + ξi, . . . , cn + ξn)

)
n∏

i=k1+1

Qn+1−i(ci + ξi, . . . , cn + ξn) ,

(21) Pn(~c+ ~ξ ) =

(
k1∏

i=1

Qn+1−i(ci + ξi, . . . , cn + ξn)

)
Pn−k1(c2,1 + ξ2,1, . . . , cp,1 + ξp,kp) ,

Developing the factors Qn+1−i for i ≤ k1, we obtain,

(22)

k1∏

i=1

Qn+1−i(ci + ξi, . . . , cn + ξn) = ρ1(~c )Pk1(ξ1,1, . . . , ξ1,k1)
(
1 + ω(~c, ~ξ )

)
,

where

(23) ρ1(~c ) =
[
Qn+1−k1(c̄1, c2,1, . . . , cp,kp)

]k1 6= 0 ,

and where

(24) ω(~c, ~ξ )

is a polynomial in the variables (ξi − ξj)’s, with coefficients depending on the cj’s, and
without term of degree 0. Finally, we have

Pn(~c+ ~ξ ) = ρ1(~c )Pk1(ξ1,1, . . . , ξ1,k1)Pn−k1(c2,1 + ξ2,1, . . . , cp,1 + ξp,kp)
(
1 + ω1(~c, ~ξ )

)
,

or, more concisely,

(25) Pn(~c+ ~ξ ) = ρ1(~c )Pk1

(
ξ(1)
)
Pn−k1

(
ξ(2), . . . , ξ(p)

) (
1 + ω1(~c, ~ξ )

)
.

We can then apply the same kind of computation to the factor Pn−k1, and repeat the
operation until we finally obtain the desired formula, with

(26) ρ(~c ) = ρ1(~c ) · · · ρp(~c ) 6= 0 .

Notation. In the sequel, we shall use ω(~c, ~ξ ) as a generic notation for a function in the

variables (ξi − ξj)’s which tends to zero as ~ξ tends to zero.

5 Gelfand’s strategy and the harmonic oscillator

In this section, we explain Gelfand’s strategy to prove Statement 1.6, and how one can
extend it to obtain a proof of Assertion 3a in Theorem 1.1, in the particular case of the
harmonic oscillator.

9



Let H(1) denote the 1-particle harmonic oscillator

(27) H(1) := −
d2

dx2
+ x2

on the line. The eigenvalues are given by {λn = 2n − 1, n ≥ 1}, they are simple, with
associated orthonormal basis of eigenfunctions {hn, n ≥ 1},

(28) hn(x) = γn−1Hn−1(x) exp(−x2/2) ,

where Hm is the m-th Hermite polynomial, and γm a normalizing constant [14, Chap. 3].
The polynomial Hm(x) has degree m, with leading coefficient 2m, and satisfies the differ-
ential equation,

(29) y′′(x)− 2x y′(x) + 2my(x) = 0

on the line R.

We consider the n-particle Hamiltonian in R
n,

(30) H(n) :=

n∑

j=1

(
−

∂2

∂x2
j

+ x2
j

)
= −∆+ |~x|2 .

Gelfand’s strategy is to look at H
(n)
F , the operator H(n) restricted to Fermions, i.e., to

functions which are anti-invariant under the action of the permutation group sn on R
n,

(31) L2
F (R

n) =
{
f ∈ L2(Rn) | f

(
xσ(1), . . . , xσ(n)

)
= ε(σ)f(x1, . . . , xn), ∀σ ∈ sn

}
.

Equivalently, we consider the Dirichlet realization H
(n)
F of H(n) in

(32) Ωn = {(x1, . . . , xn) ∈ R
n | x1 < x2 · · · < xn} .

Introduce the Slater 10determinant

(33) Sn(~x) =

∣∣∣∣∣∣∣

h1(x1) . . . h1(xn)
...

...
hn(x1) . . . hn(xn)

∣∣∣∣∣∣∣
= An exp(−|~x |2/2)

∣∣∣∣∣∣∣

H0(x1) . . . H0(xn)
...

...
Hn−1(x1) . . . Hn−1(xn)

∣∣∣∣∣∣∣
.

Using the properties of Hermite polynomials, we find that

(34) Sn(~x) = Bn exp(−|~x |2/2)Pn(~x) .

In the preceding equalities, An and Bn are nonzero constants depending only on n.

According to Arnold [3, Section 2], Gelfand noticed the following two facts.

A. The (antisymmetric) eigenfunction [Sn] of the operator [h(n)] is the first
eigenfunction for this operator (on functions satisfying the Dirichlet condition
in the fundamental domain [Ωn]).

B. Choosing the locations [(c2, . . . , cn)] of the other electrons (except for the
first one), one can obtain any linear combination of the first n eigenfunctions
of the one-electron problem as a linear combination [Sn(x, c2, . . . , cn)] (up to
multiplication by a nonzero constant).

10John Clark Slater (1900–1976).
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Observe however that B is true only for linear combinations of the n first eigenfunctions
which have (n− 1) distinct zeros.

In the case of the harmonic oscillator, the proof of facts A and B is easy. More precisely,
we have the following proposition which implies Statement 1.6 in this particular case.

Proposition 5.1. Recall the notation ~h(c) =
(
h1(c), . . . , hn(c)

)
.

1. The function Sn(~x ) is the first Dirichlet eigenfunction of −∆+ |~x |2 in Ωn.

2. For any
⇀
c = (c1, . . . , cn−1) ∈ Ωn−1, the vectors ~h(c1), . . . ,~h(cn−1), are linearly

independent.

3. Given ~b ∈ R
n\{0}, the linear combination

S~b(x) =

n∑

j=1

bjhj(x)

has at most (n− 1) distinct zeros. Furthermore, if the function Sn(~x ) has exactly
(n− 1) distinct zeros c1 < c2 < · · · < cn−1, then there exists a nonzero constant C
such that

S~b(x) = CSn(c1, . . . , cn−1, x) for all x ∈ R .

4. The function Sn(c1, . . . , cn−1, x) vanishes at order 1 at each cj, 1 ≤ j ≤ (n − 1),
and does not have any other zero.

Proof. Assertion 1. It is clear that Sn is an eigenfunction of −∆ + |x|2, and that it
vanishes on ∂Ωn. From (12) and (34), we see that it does not vanish in Ωn, so that Sn

must be the first Dirichlet eigenfunction for −∆+ |~x|2 in Ωn.

Assertion 2. If the vectors ~h(c1), . . . ,~h(cn−1), were dependent, Sn(c1, . . . , cn−1, x) would
be identically zero. Developing this determinant with respect to the last column, we
would have

Sn−1(c1, . . . , cn−1) hn(x) + · · · ≡ 0 .

This is impossible because the hj ’s are linearly independent and Sn−1(c1, . . . , cn−1) 6= 0 .

Assertion 3. Assume that S~b has at least n distinct zeros c1 < · · · < cn. The n components
bj , 1 ≤ j ≤ n would satisfy a system of n equations, whose determinant Sn(c1, . . . , cn)

is positive. This would imply that ~b = ~0. Assume that S~b has exactly (n − 1) ze-
ros, c1 < · · · < cn−1. The function x 7→ Sn(c1, . . . , cn−1, x) can be written as a linear

combination S
~s(

⇀
c )
(x), with coefficients sj(

⇀
c ), 1 ≤ j ≤ n given by Slater like determi-

nants. Both vectors ~b and ~s(
⇀
c ) would then be orthogonal to the (n − 1) independent

vectors ~h(c1), . . . ,~h(cn−1). This implies that there exists a nonzero constant C such that
~b = C ~s(

⇀
c ).

Assertion 4. It suffices to consider the case of c1. Consider ~c = (c1, c1, c2, . . . , cn−1), and
write

Sn(~c+ ~ξ ) = Bn exp(|~c+ ~ξ |2/2)Pn(~c+ ~ξ ) .

11



Using Lemma 4.6, we conclude that

Sn(~c+ ~ξ ) = α(~c ) (ξ1 − ξ2)
(
1 + ω(~c, ~ξ )

)
,

for some nonzero constant α(~c ) depending on ~c.

It follows that
Sn(c1 + ξ, c1, . . . , cn−1) = α(~c ) ξ (1 + ω(~c, ξ)) ,

so that this function vanishes precisely at order 1 at c1.

Remark 5.2. It is standard in Quantum mechanics (except that the usual context for
the one-particle Hamiltonian is a 3D-space) that the ground state energy is the sum
of the n first eigenvalues of the one-particle Hamiltonian, a consequence of the Pauli11

exclusion principle. This is for example the main motivation for considering this sum
when analyzing the celebrated Lieb-Thirring’s inequality in connection with the analysis
of the stability of matter (see for example [15]).

The following lemma allows us to extend Gelfand’s strategy, and to take care of the
multiplicity of zeros to achieve a proof of Sturm’s upper bound.

Lemma 5.3. Let
⇀
c = (c̄1, . . . , c̄1, . . . , c̄p, . . . , c̄p), where c̄j is repeated kj times, with

c̄1 < · · · < c̄p, and k1 + · · ·+ kp = n− 1. Let ~k = (k1, . . . , kp). Consider the function

(35) S~k
(x) = |~h(c1) . . .~h

(k1−1)(c1) . . . ~h(cp) . . .~h
(kp−1)(cp)~h(x)| ,

where ~h(m)(x) is the vector
(
h
(m)
1 (x), . . . , h

(m)
n (x)

)
, and where the superscript (m) denotes

the m-th derivative. Then, the function S~k is not identically zero, and vanishes at exactly

order kj at c̄j. Furthermore, the vectors ~h(c1), . . . ,~h
(k1−1)(c1), . . . ,~h(cp), . . . ,~h

(kp−1)(cp),
are linearly independent.

Proof. It suffices to consider the case of c̄1. Clearly, S~k
vanishes at least at order k1 at

c̄1. We consider the k1-th derivative of this function. We have

S
(k1)
~k

(x) = ± |~h(c1) . . .~h
(k1−1)(c1)~h(c2) . . .~h

(k2−1)(c2) . . . ~h(cp) . . .~h
(kp−1)(cp)~h

(k1)(x)| .

Claim: the value of this determinant at x = c̄1 is different from zero. Indeed, consider
the vector ~c = (c̄1, . . . , c̄1, . . . , c̄p, . . . , c̄p), where c̄1 is repeated k1 + 1 times, and for

2 ≤ j ≤ p, c̄j is repeated kj times. Then S
(k1)
~k

(c̄1) is a higher order derivative of Sn at

~c. More precisely, using the relabeling of variables associated with ~c, as given in (7)–(9),

S
(k1)
~k

(c̄1) is, up to sign, the derivative

∂k1
ξ1,k1+1

. . . ∂ξ1,2 ∂
k2−1
ξ2,k2

. . . ∂ξ2,2 . . . ∂
kp−1
ξp,kp

. . . ∂ξp,2 Sn(~c+ ~ξ )
∣∣∣
~ξ=0

,

or, using the notation (14),

Dk1(∂ξ(1)) . . .Dkp(∂ξ(p))Sn(~c+ ~ξ )
∣∣∣
~ξ=0

.

The claim then follows from Lemma 4.1, Equation (13) and Lemma 4.6, Equation (19).
The second assertion follows immediately.

As a by product of the preceding proof, we have,

11Wolfgang Ernst Pauli (1900–1958).
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Corollary 5.4. Given, p, 1 ≤ p ≤ n, let k1, . . . , kp be p positive integers such that
k1 + · · ·+ kp = n. Let c̄1 < · · · < c̄p be real numbers. Then, the determinant

(36) |~h(c1) . . .~h
(k1−1)(c1)~h(c2) . . .~h

(k2−1)(c2) . . . ~h(cp) . . .~h
(kp−1)(cp)|

is nonzero, so that the corresponding vectors are linearly independent.

Proposition 5.5. For any n ≥ 1, a nontrivial linear combination S~b of the eigenfunctions
h1, . . . , hn of the harmonic operator H(1) has at most (n−1) zeros on the real line, counted
with multiplicities. Assume that S~b has p zeros, c1 < · · · < cp on the real line, with
multiplicities kj’s, such that k1 + · · ·+ kp = n− 1. Then, there exists a nonzero constant
C such that

S~b(x) = C |~h(c1) . . .~h
(k1−1)(c1) . . . ~h(cp) . . .~h

(kp−1)(cp)~h(x)| .

Proof. The first assertion is a particular case of Sturm’s upper bound, Theorem 1.1. Here
is a proof, à la Gelfand, of this elementary property. Assume that a linear combination
S~b has a least n zeros on the real line, counted with multiplicities. From these zeros, one
can determine some positive integer p, and sequences c̄1 < · · · < c̄p, k1, . . . , kp satisfying
the assumptions of Corollary 5.4, and such that S~b vanishes at order (at least) kj at c̄j ,

1 ≤ p. This last condition implies that the n entries of the vector ~b satisfy a system of n
equations, whose determinant is precisely

|~h(c1) . . .~h
(k1−1)(c1)~h(c2) . . .~h

(k2−1)(c2) . . . ~h(cp) . . .~h
(kp−1)(cp)|.

Corollary 5.4 then implies that ~b = 0, so that a nontrivial linear combination S~b can have
at most (n− 1) zeros on the real line, counted with multiplicities.

Here is a trivial proof. The function S~b is a linear combination of Hermite polynomials
H0, . . . , Hn−1, times the positive function exp(−|~x |2/2). This immediately implies that
the number of zeros of S~b on the real line, counted with multiplicities, is at most (n− 1).

The second assertion is a consequence of (the proof of) Lemma 5.3.

6 The Dirichlet Sturm-Liouville operator

In this section, we show how Gelfand’s strategy, Section 5, can be applied to the general
Dirichlet Sturm-Liouville problem (1).

6.1 Notation

Let q be a C∞ real function defined in a neighborhood of the interval I :=]0, 1[. We
consider the 1-particle operator

(37) h(1) := −
d2

dx2
+ q(x) ,

and, more precisely, its Dirichlet realization in I, i.e. the Dirichlet boundary value problem

(38)

{
−d2y

dx2 + q y = λ y ,

y(0) = y(1) = 0 .

13



Let {(λj, hj), j ≥ 1} be the eigenpairs of h(1), with

(39) λ1 < λ2 < λ2 < · · · ,

and {hj, j ≥ 1} an associated orthonormal basis of eigenfunctions.

We also consider the Dirichlet realization h(n) of the n-particle operator in In,

(40) h(n) := −
n∑

j=1

( ∂2

∂x2
j

+ q(xj)
)
= −∆+Q ,

where Q(x1, . . . , xn) = q(x1) + · · ·+ q(xn).

Denote by ~k = (k1, · · · , kn) a vector with positive integer entries, and by ~x = (x1, · · · , xn)
a vector in In. The eigenpairs of h(n) are the (Λ~k, H~k), with

(41)

{
Λ~k = λk1 + · · ·+ λkn , and

H~k
(~x) = hk1(x1) · · ·hkn(xn) ,

where H~k
is seen as a function in L2(In, dx) identified with

⊗̂
L2(I, dxj).

The symmetric group sn acts on In by σ(~x) = (xσ(1), · · · , xσ(n)), if ~x = (x1, · · · , xn). It
consequently acts on L2(In), and on the functions H~k

as well. A fundamental domain of
the action of sn on In is the n-simplex

(42) ΩI
n := {0 < x1 < x2 < · · · < xn < 1} .

In analogy with (33), we introduce the Slater determinant Sn defined by,

(43) Sn(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣

h1(x1) h1(x2) . . . h1(xn)
h2(x1) h2(x2) . . . h2(xn)

...
...

...
hn(x1) hn(x2) . . . hn(xn)

∣∣∣∣∣∣∣∣∣
.

Let
⇀
c = (c1, . . . , cn−1) ∈ In−1. We consider the function x 7→ Sn(c1, . . . , cn−1, x). De-

veloping the determinant with respect to the last column, we see that this function is a
linear combination of the functions h1, . . . , hn, which we write as

(44) S
s(

⇀
c )
(x) =

n∑

j=1

sj(
⇀
c ) hj(x)

where s(
⇀
c ) =

(
s1(

⇀
c ), . . . , sn(

⇀
c )
)
, and

(45) sj(
⇀
c ) = sj(c1, . . . , cn−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

h1(c1) . . . h1(cn−1)
...

...
hj−1(c1) . . . hj−1(cn−1)
hj+1(c1) . . . hj+1(cn−1)

...
...

hn(c1) . . . hn(cn−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

so that s(
⇀
c ) is computed in terms of Slater determinants of size (n− 1)× (n− 1).
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6.2 Weak upper bound

We now prove Statement 1.6 using Gelfand’s strategy, as explained in Section 5.

Lemma 6.1. The function Sn is not identically zero.

Proof. The proof relies on the fact that the functions hj , 1 ≤ j ≤ n are linearly in-
dependent. Clearly, S1(x1) = h1(x1) 6≡ 0. We now use induction on n. Assume that
Sn−1(x1, . . . , xn−1) 6≡ 0. Develop the determinant Sn(x1, . . . , xn) with respect to the last
column,

Sn(x1, . . . , xn) = Sn−1(x1, . . . , xn−1) hn(x) + · · · .

By the induction hypothesis, there exists (x0
1, . . . , x

0
n−1) ∈ In−1, such that

Sn−1(x
0
1, . . . , x

0
n−1) 6= 0. Then, Sn(x

0
1, . . . , x

0
n−1, xn) 6≡ 0 because the hj’s are linearly

independent, and the lemma follows.

Lemma 6.2. The function Sn is the first Dirichlet eigenfunction of h(n) in ΩI
n, with

corresponding eigenvalue Λ(n) := λ1 + · · ·+ λn. In particular, the function Sn does not
vanish in ΩI

n. More precisely, one can choose the signs of the functions hj, 1 ≤ j ≤ n,
such that Sk is positive in ΩI

k for 1 ≤ k ≤ n. As a consequence, for any c1 < · · · < cn−1

in I, the vectors ~h(c1), . . . ,~h(cn), are linearly independent.

Proof. An eigenfunction Ψ of h
(n)
F is given by a (finite) linear combination Ψ =

∑
α~k

H~k

of eigenfunctions of h(n), such that the corresponding Λ~k
are equal, and such that Ψ is

antisymmetric. If ~k = (k1, · · · , kn) is such that ki = kj for some pair i 6= j, using the
permutation which exchanges i and j, we see that the corresponding α~k

vanishes. It

follows that the eigenvalues of h
(n)
F are the Λ~k

such that the entries of ~k are all different.

It then follows that the ground state energy of h
(n)
F is Λ(n).

It is clear that Sn vanishes on ∂ΩI
n. Its restriction SΩI

n
to ΩI

n satisfies the Dirichlet

condition on ∂ΩI
n, and is an eigenfunction of h

(n)
F corresponding to Λ(n). Suppose that

SΩI
n
is not the ground state. Then, it has a nodal domain ω strictly included in Ωn.

Define the function U which is equal to SΩI
n
in ω, and to 0 elsewhere in In. It is clearly

in H1
0 (Ω

I
n). Using sn, extend the function U to a Fermi state UF on In. Its energy is Λ(n)

which is the bottom of the spectrum of h
(n)
F . It follows that UF is an eigenfunction of

h
(n)
F , and a fortiori of h(n). This would imply that Sn is identically zero, a contradiction

with Lemma 6.1.

The fact that one can choose the Sn to be positive in ΩI
n follows immediately.

If the vectors ~h(c1), . . . ,~h(cn) were linearly dependent, the function given by (44) would be
identically zero, contradicting the fact that the coefficient of hn in this linear combination
is Sn−1(c1, . . . , cn−1) > 0.

The following proposition provides a weak form of Sturm’s upper bound on the number
of zeros of a linear combination of eigenfunctions of (38) (“weak” in the sense that we
here do not count zeros with their multiplicities).
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Proposition 6.3. Let ~b ∈ R
n, with ~b 6= ~0. Then, the linear combination S~b has a most

(n − 1) distinct zeros in I =]0, 1[. If S~b has exactly (n − 1) zeros in I, c1 < · · · < cn−1,
then there exists a nonzero constant C such that

S~b(x) = CSn(c1, . . . , cn−1, x) .

Furthermore, each zero cj has order 1.

Proof. Given ~b, assume that S~b has at least n distinct zeros c1 < . . . cn in I. This means
that the n components bj , 1 ≤ j ≤ n, satisfy the system of n equations,





b1h1(c1) + · · ·+ bnhn(c1) = 0,

· · ·

b1h1(cn) + · · ·+ bnhn(cn) = 0.

By Lemma 6.2, the determinant of this system is positive, and hence the unique possible
solution is ~0. This proves the first assertion.

Assume that S~b has precisely (n−1) distinct zeros, c1 < . . . cn−1, in I. By Lemma 6.2, the

vectors ~h(c1), . . . ,~h(cn−1), are linearly independent. The function x 7→ Sn(c1, . . . , cn−1, x)

can be written as the linear combination S
~s(

⇀
c )
, where the vector ~s(

⇀
c ) is given by (45). It

follows that the vectors ~b and ~s(
⇀
c ) are both orthogonal to the family ~h(c1), . . . ,~h(cn−1),

and must therefore be proportional. This proves the second assertion.

Assume that x 7→ Sn(c1, . . . , cn−1, x) vanishes at order at least 2 at c1. Then

d

dx

∣∣∣
x=c1

Sn(c1, . . . , cn−1, x) = 0.

This implies that ∂Sn

∂x2
(c1, c1, c2, . . . , cn−1) = 0, and hence that ∂Sn

∂ν
(c1, c1, c2, . . . , cn−1),

where ν is the unit normal to the boundary ∂ΩI
n, which contradicts Hopf’s lemma. This

proves the last assertion, as well as the corollary.

For completeness, we state the following immediate corollaries.

Corollary 6.4. Given c1 < · · · < cn−1 in I, the function

x 7→ Sn(c1, . . . , cn−1, x) ,

vanishes exactly at order 1, changes sign at each cj, and does not vanish elsewhere in I.

Corollary 6.5. Let ~b ∈ R
n\{0}. If the linear combination S~b has k distinct zeros, and

if one of the zeros has order at least 2, then k ≤ n− 2.

Remark 6.6. Note that for x ∈]cj , cj+1[, 1 ≤ j ≤ n− 1,

Sn(c1, . . . , cn−1, x) = (−1)n−1−j Sn(c1, . . . , cj, x, cj+1, . . . , cn−1) ,

so that, according to Lemma 6.2, it has the sign of (−1)n−1−j . This also shows that this
function of x changes sign when x passes one of the cj’s.
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Definition 6.7. Let S be a continuous function in I. Let c ∈ I be a zero of S. Following
[11, Chap. III.5], call c a node of S, if for any ε > 0 small enough, there exists some x±

ε

such that c− ε < x−
ε < c < x+

ε < c+ ε, with S(x−
ε )S(x

+
ε ) < 0; call c an antinode of S, if

for any ε > 0, small enough, S does not change sign in ]c− ε, c+ ε[, and does not vanish
identically in ]c− ε, c[ and in ]c, c+ ε[.

This definition applies to any continuous function S. An isolated zero of S is either a
node or and antinode. In our case, according to Lemma 2.2, any zero of a nontrivial S~b
is isolated, and one can determine whether this is a node or an antinode by looking at
the first nonzero coefficient in its Taylor series at c . The following result appears in [11,
Chap. III.5] in the more general framework of Chebyshev systems of continuous functions.
We sketch the proof for completeness.

Proposition 6.8. Let ~b ∈ R
n\{0}. Let N~b

be the number of nodes of S~b, resp. A~b
the

number of antinodes. Then,
N~b

+ 2A~b
≤ n− 1 .

Proof. In this proof, we use the notation S for S~b. We already know, Proposition 6.3,
that S has at most (n− 1) distinct zeros.

We say that a set z1 < z2 < · · · < zs has the property A with respect to S (alternating
property) if there exists κ ∈ {0, 1} such that for any k ∈ {1, . . . , s}, (−1)k+κ S(zk) ≥ 0.

Lemma 6.9. Assume that {z1 < z2 < · · · < zs} has the property A with respect to S. If
ξ 6∈ {z1 < z2 < · · · < zs} is an antinode of S, then, for ε small enough, one of the sets
{z1 < z2 < · · · < zs} ∪ {ξ − ε, ξ} or {z1 < z2 < · · · < zs} ∪ {ξ, ξ + ε}, properly reordered,
has the property A, with S(ξ − ε)S(ξ + ε) > 0.

Proof of the lemma. We examine the case in which there exists 1 < j < s− 1, such that
zj < ξ < zj+1. We choose ε such that

zj < ξ − ε < ξ < ξ + ε < zj+1 ,

with S(ξ ± ε) 6= 0.

We know that (−1)κ+jS(zj) ≥ 0. We have two cases,

• if (−1)κ+j+1S(ξ − ε) > 0, then (−1)κ+j+2S(ξ) ≥ 0, and (−1)κ+j+3S(zj+1) ≥ 0,

• if (−1)κ+j+1S(ξ − ε) < 0, then (−1)κ+j+1S(ξ) ≥ 0, and (−1)κ+j+2S(ξ + ε) ≥ 0,

From the set {z1, . . . , zs, ξ− ε, ξ, ξ+ ε}, we construct an ordered list {z′1 < · · · < z′s+2} as
follows

• for k ≤ j, z′k = zk, and for k ≥ j + 3, z′k = zk+2, and we choose z′j+1 < z′j+2 in the
interval ]zj , zj+1[, as follows:

• if (−1)κ+j+1S(ξ − ε) > 0, we choose

{
z′j+1 = ξ − ε , so that (−1)κ+j+1S(z′j+1) > 0,
z′j+2 = ξ , so that (−1)κ+j+2S(z′j+2) = 0,
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• if (−1)κ+j+1S(ξ − ε) < 0, then (−1)κ+j+2S(ξ + ε) > 0, and we choose
{

z′j+1 = ξ , so that (−1)κ+j+1S(z′j+1) = 0 ,
z′j+2 = ξ + ε , so that (−1)κ+j+2S(z′j+2) > 0 .

The case ξ < z1 or ξ > zs are dealt with similarly. This proves the lemma.

Proof of the proposition continued. Call z1 < · · · < zp, p = N~b
, the nodes of S. Then,

one can choose numbers αj such that,

α1 < z1 < α2 < z2 < · · · < αp < zp < αp+1 ,

and some κ ∈ {0, 1} such that (−1)κ+jS(αj) > 0 .

By applying Lemma 6.9 recursively for the q = A~b
antinodes, we obtain a set

β1 < β2 < · · · < βp+2q+1

such that (−1)κ+jS(βj) ≥ 0 (Property A).

Assume that p+2q > n−1, i.e. p+2q+1 ≥ n+1. Consider the vector ~H = (h1, . . . , hn, S).
Then, the determinant

| ~H(β1) . . . ~H(βn+1)| is identically 0,

because S is a linear combination of h1, . . . , hn. Developing this determinant with respect
to the last row, we find that

0 ≡
n∑

k=1

(−1)n+1+kS(βk) |~h(β1) . . .~h(βk − 1)~h(βk + 1) . . .~h(βn)| .

For each k, we have (−1)n+1+kS(βk) ≥ 0 by construction of the set {βj, 1 ≤ j ≤ n + 1},
and

|~h(β1) . . .~h(βk−1)~h(βk+1) . . .~h(βn)| = Sn(β1 . . . βk−1, βk+1, . . . , βn+1) > 0

according to Lemma 6.2 . This implies that S has a least n distinct zeros, a contradiction
with Proposition 6.3.

6.3 Local behaviour of Sn near a zero

We begin by treating two particular examples which are similar to Examples 4.3 and 4.4.
We then deal with the general case.

Consider S5. Let ~c ∈ ∂ΩI
5 be a boundary point. Write ~x = ~c + ~ξ, with ~ξ close to 0. The

function S5 is an eigenfunction of the operator −∆+Q, and vanishes at the point ~c ∈ In.
By Bers’ theorem [8], there exists a harmonic homogeneous polynomial P̂k, of degree k,
such that

(46) S5(~c+ ~ξ ) = P̂k(~ξ ) + ωk+1(~ξ) ,

where ωk+1(t~ξ) = O(tk+1). Note that, for the time being, we have no a priori information
on k.
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6.3.1 Example 1

In this example, we take ~c = (c̄1, c̄1, c̄2, c̄2, c5), with c̄1 < c̄2 < c5. Call P̂k the polynomial
given by (46) for this particular case.

Lemma 6.10. The polynomial P̂k satisfies

(47) P̂k(~ξ ) = ρ (ξ1 − ξ2)(ξ3 − ξ4) ,

where ρ is a nonzero constant, and

(48) S5(~c+ ~ξ ) = ρP2(ξ1, ξ2)P2(ξ3, ξ4)
(
1 + ω(~ξ )

)
.

Proof. According to (46), we have

S5(c̄1 + ξ1, c̄1 + ξ2, c̄2 + ξ3, c̄2 + ξ4, c5 + ξ5) = P̂k(ξ1, ξ2, ξ3, ξ4, ξ5) + ωk+1(~ξ ) .

Using the anti-symmetry of S5, taking ~ξ = t ~η, using the fact that ωk+1(t ~η ) is of order

k + 1, and letting t tend to zero, we see that P̂k is anti-symmetric with respect to the
pair (ξ1, ξ2). A similar argument applies to the pair (ξ3, ξ4). This proves that

(49) P̂k(ξ1, ξ2, ξ3, ξ4, ξ5) = −P̂k(ξ2, ξ1, ξ3, ξ4, ξ5) = −P̂k(ξ1, ξ2, ξ4, ξ3, ξ5) ,

and hence, that P̂k(ξ1, ξ2, ξ3, ξ4, ξ5) = 0 when (ξ1 − ξ2)(ξ3 − ξ4) = 0.

We claim that the converse statement is true in a neighborhood of 0. Indeed, assume
that P̂k(~η ) = 0, where η1 6= η2 and η3 6= η4. Using (49), we can assume that η1 < η2
and η3 < η4. Because P̂k is a nonzero harmonic polynomial which vanishes at ~η, in any
neighborhood of ~η, there exist points ~η± such that P̂k(~η

+ )P̂k(~η
− ) < 0. For t positive

small enough, the function Sn(~c+ t ~η± ) has the sign of P̂k(~c+ t ~η± ), and this contradicts
the fact that the function S5 is positive in ΩI

n.

We have just proved that, in a neighborhood of zero, P̂k vanishes if and only if (ξ1 −

ξ2)(ξ3 − ξ4) vanishes. The polynomials P̂k and (ξ1 − ξ2)(ξ3 − ξ4) are both harmonic and
homogeneous, and they have the same zero set in some neighborhood of zero. According
to [17, Lemma 2.1], they divide each other, so that there exists a nonzero constant ρ such

that P̂k = ρ (ξ1 − ξ2)(ξ3 − ξ4).

6.3.2 Example 2

In this example, we choose ~c = (c̄1, c̄1, c̄1, c4, c5), with c̄1 < c4 < c5. Call P̂k the polynomial
given by (46).

Lemma 6.11. The polynomial P̂k has the following properties. For any permutation
σ ∈ s3(ξ1, ξ2, ξ3), of the first three variables,

(50)





P̂k(ξ1, ξ2, ξ3, ξ4, ξ5) = ε(σ)P̂k(ξσ(1), ξσ(2), ξσ(3), ξ4, ξ5) ,

P̂k = 0 ⇔ ξ1 = ξ2 or ξ1 = ξ3 or ξ2 = ξ3 ,

P̂k(~ξ ) = ρP3(ξ1, ξ2, ξ3) ,

where ρ is a nonzero constant. This means that P̂k has degree 3, and that

(51) S5(~c+ ~ξ ) = ρP3(ξ1, ξ2, ξ3)
(
1 + ω(~ξ )

)
.

Proof. Similar to the previous one.
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6.3.3 General case

Let ~c ∈ ∂ΩI
n be a boundary point, i.e. a point of the form ~c = (c̄1, . . . , c̄1, . . . , c̄p, . . . , c̄p),

where p is a positive integer, where c̄1 < c̄2 < · · · < c̄p, are points in I, and where ~c is
such that c̄j is repeated kj times, with k1 + · · ·+ kn = n.

We write ~x = ~c+~ξ, with ~ξ close to 0. The function Sn is an eigenfunction of the operator
−∆+Q, and vanishes at the point ~c ∈ In. By Bers’s theorem [8], there exists a harmonic

homogeneous polynomial P̂k, of degree k, such that

(52) Sn(~c+ ~ξ ) = P̂k(~ξ ) + ωk+1(~ξ) ,

where ωk+1(t~ξ) = O(tk+1). Note that, for the time being, we have no a priori information
on k.

We relabel the coordinates ~ξ, according to (7) – (9), and we write this vector as

(53) ~ξ =
(
ξ(1), . . . , ξ(p)

)
,

where ξ(j) = (ξj,1, . . . , ξj,kj).

The permutation group skj acts by permuting the entries of ξ(j). Given σj ∈ skj , 1 ≤ j ≤
p, we denote by σ = (σ1, . . . , σp) ∈ sk1 × · · · × skp the permutation in sn which permutes
the entries of ξ(j) by σj .

For the same vector ~c, we look at the local behavior of Pn, and we rewrite (19) as

(54) Pn(~c+ ~ξ ) = ρ1(~c )Pk1

(
ξ(1)
)
· · ·Pkp

(
ξ(p)
) (

1 + ω(~c, ~ξ )
)
.

Lemma 6.12. The polynomial P̂k given by (52) has the following properties.

1. For any permutation σ = (σ1, . . . , σp) ∈ sk1 × · · · × skp ⊂ sn,

(55) P̂k(σ ·~ξ ) = ε(σ) P̂k(~ξ ) .

2. The zero set of P̂k is characterized by

(56) P̂k(~ξ ) = 0 ⇔

p∏

j=1

Pkj

(
ξ(j)
)
= 0 .

3. There exists a nonzero constant ρ(~c ) such that

(57) P̂k(~ξ ) = ρ(~c)Pk1(ξ
(1)) . . . Pkp(ξ

(p)) .

This means that P̂k has degree k =
∑

j

kj(kj−1)

2
, and that

(58) Sn(~c+ ~ξ ) = ρ(~c )Pk1(ξ
(1)) . . . Pkp(ξ

(p))
(
1 + ω(~ξ )

)
.
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Proof. Assertion 1. From the form of ~c, and the definition of σ = (σ1, . . . , σp), we have
the relations,

ε(σ)Sn(~c + t~ξ ) = Sn(σ ·(~c+ t~ξ )) = Sn(~c+ tσ ·~ξ ) .

It follows that

P̂k(tσ ·~ξ ) + ωk+1(tσ ·~ξ ) = ε(σ)
(
P̂k(t~ξ ) + ωk+1(t~ξ )

)
.

The assertion follows by dividing by t and letting t tend to zero.

Assertion 2. The first assertion implies that the polynomial P̂k vanishes whenever the
polynomial

∏p

j=1 Pkj

(
ξ(j)
)
vanishes. Part (⇐) of the second assertion follows.

Assume that there exists some ~η = (η(1), . . . , η(p)) such that

P̂k(~η ) = 0 and

p∏

j=1

Pkj

(
η(j)
)
6= 0.

Since P̂k is harmonic, nonconstant, and vanishes at ~η, it must change sign, and there
exist ~η± such that P̂k(~η

+)P̂k(~η
−) < 0. Using the first assertion and the properties of the

Vandermonde polynomials, we see that one can choose ~η± ∈ Ωn, with Ωn as in (32). It
follows that for t small enough, the vectors ~c+ t~η± are in ΩI

n, defined in (42). For these
vectors, one has

Sn(~c+ t~η± ) = P̂k(~c+ t~η±) + ω(~c+ t~η±) .

This equality contradicts the fact that Sn is positive in ΩI
n.

Assertion 3. Notice that the polynomials P̂k(ξ) and
∏p

j=1 Pkj

(
ξ(j)
)
are both harmonic

and homogeneous, with the same zero set in a neighborhood of 0. We can then apply [17,
Lemma 2.1], which implies that they divide each other, so that these polynomials must
be proportional. The lemma is proved.

As a consequence of the preceding lemma, we have,

Corollary 6.13. Let ~c ∈ ∂ΩI
n be as above. with the notation (14), we have the relations,

(59) Dk1(∂x(1)) · · ·Dkp(∂x(p))Sn(~x )
∣∣∣
~x=~c

= Dk1(∂ξ(1)) · · ·Dkp(∂ξ(p))Sn(~c+ ~ξ )
∣∣∣
~ξ=0

6= 0 .

6.4 Strong upper bound

We can now prove Assertion 3a in Theorem 1.1, using Gelfand’s strategy, as explained in
Section 5.

Proposition 6.14. Let ~b ∈ R
n\{0}. Call c̄1 < · · · < c̄p the zeros of the linear combination

S~b of the first n eigenfunctions of problem (38). Call kj the order of vanishing of S~b at
c̄j. Call ~c the vector (c̄1, . . . , c̄1, . . . , c̄p, . . . , c̄p), where cj , 1 ≤ j ≤ p is repeated kj times.
Then,

1. k1 + · · ·+ kp ≤ (n− 1),
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2. If k1 + · · ·+ kp = (n− 1), then there exists a nonzero constant C such that

S~b = C S~s(~c) ,

where the linear combination S~s(~c) is given by developing the determinant

(60)
∣∣∣~h(c1) . . .~h(k1−1)(c1) . . . ~h(cp) . . .~h

(kp−1)(c1)~h(x)
∣∣∣ ,

and where ~h(m)(a) is the vector
(
h
(m)
1 (a), . . . , h

(m)
n (a)

)
of the mth derivatives of the

hj’s evaluated at the point a.

Proof. Assertion 1. Assume that k1 + · · · + kp ≥ n. Without loss of generality, one
can assume that k1 + · · · + kp = n. The coefficients b1, . . . , bn, satisfy the system of n
equations,

(b1, . . . , bn)
(
~h(c1) . . .~h

(k1−1)(c1) . . . ~h(cp) . . .~h
(kp−1)(cp)

)
= 0

where the left hand side is the product of the row matrix (b1, . . . , bn) by the n×n matrix

(
~h(c1) . . .~h

(k1−1)(c1) . . . ~h(cp) . . .~h
(kp−1)(cp)

)
.

Using (59), we see that the determinant of the latter matrix is nonzero. This implies that
~b = 0, a contradiction.

Assertion 2. Using (59) again (with n−1 instead of n), we see that the coefficient of hn(x)
in the linear combination S~s(~c) is nonzero, so that S~s(~c) is not identically zero. It follows

that the family of (n−1) vectors F :=
{
~h(c1), . . . ,~h

(k1−1)(c1), . . . ,~h(cp), . . . ,~h
(kp−1)(cp)

}

is free. Both functions S~b and S~s(~c) vanish at order kj at c̄j , for 1 ≤ j ≤ p. This means that

the vectors~b and ~s(~c) are both orthogonal to F , which implies that they are proportional.
The proposition is proved.
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1

[20] C. Sturm. Monsieur Sturm nous prie d’insérer la note suivante. L’institut. Journal
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