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Abstract— Deep submicron (<90nm) Integrated Circuits (IC) 

suffer from both high static and dynamic power consumption, 

which are caused respectively by the growing leakage currents 

and large capacitance bus traffic. Nanodevice based novel 

computing paradigms are currently under intense investigation 

to overcome these issues and build up the next generation ICs 

performing with higher power efficiency and operating 

performance. In this paper, an overview and current status of 

this field is first presented, and then we focus on the memristive 

nanodevices based neuromorphic approach, which is considered 

as one of the most promising computing paradigms for power 

reduction and process variation or defect tolerance. 

I. INTRODUCTION 

Traditional digital signal processing approaches suffer from 
both high static and dynamic power consumption at deep 
submicron (<90nm) complementary metal oxide semi-
conductor (CMOS) technology and beyond [1]. For instance, 
the dominant computing model of microprocessor based on 
Von-Neumann architecture consumes much more power (e.g. ~ 
1pJ@22nm node) to access the memory for fetching the 
instructions and reading/writing the data, than that of logic 
operation (e.g. ~ 1fJ at the 22nm node) [2-3] (See Fig.1). As 
the silicon memories for computing (e.g. SRAM) are 
intrinsically volatile, data in “idle” state should be always kept 
under the power supply and this leads to high static power, 
which is growing exponentially when scaling down the device 
features and begins to dominate the whole power dissipation of 
digital IC. In order to overcome power bottleneck and build up 
the next generation IC performing ultra low power while 
keeping high performance, research efforts on emerging 
nanodevices based novel computing paradigms has been 
started in early 2000’s [4-5]. They promise to complement or 
replace respectively the CMOS technology and traditional 
computing approaches like multi-core and reconfigurable 
architectures. These fields get more and more attention after 
the rapidly rising of CMOS power wall and some significant 
technological advance of nanodevices [6-9]. 

This paper firstly overviews the emerging nanodevices 
currently under considerable investigation such as spintronics 
[6], memristors [9], graphene-based transistors [7] and 
multiferroic devices [10]. Their novel properties for energy 
saving and innovative computer architecture design are 
particularly addressed. In the following, diverse novel 
computing architectures promising ultra low power such as 
bio-inspired neuromorphic circuit [11], quantum cellular 
automata (QCA) [12] and material implementation logic (IMP) 
[13] and so on are presented, and are compared from the IC 
design point of view. At last a particular emphasis is drawn on 

the memristive nanodevice based neuromorphic approach, 
which promises excellent variation tolerance, ultra low power 
operation and high area efficiency etc. 

 
Figure 1.  Volatile cache memories used for data access accleration leads to 

high static power. Data access between CPU core and main memory 
consumes much higher power than that of MOSFET transistor switching. 

II. EMERGING NANO-DEVICES FOR COMPUTING SYSTEMS 

Nanodevices like nanowires, quantum dots, memristors, 
spintronics and graphene are intensely explored for different 
applications thanks to their advantageous characteristics 
beyond classical silicon devices [6-13]. For power saving 
purposes, the non-volatility and ultra low leakage currents are 
often mentioned as the most outstanding performances. For 
computing speed enhancement, higher electron mobility is the 
most important characteristics to be addressed. Nanodevices 
can be thus classified into the following three categories based 
on the main research interests. 

 
Figure 2.  (a) a non-volatile and memristive nanodevice: magnetic tunnel 
junction composed of ferromagnetic and oxide thin films [6] (b) an  ultra low 

Ioff nanodevice: Si- channel based  tunnel FET [14] (c) a nanodevice with high 

mobility channel: Graphene FEF transistor [7]. 

A. Non-volatile and memristive devices 

 In the next generation IC, non-volatile and memristive 
nanodevices are expected to be used as the data storage to 
provide eventual dark silicon [15]. The static power can be 
particularly reduced as the part of chip in “idle” state can be 
powered completely off [16]. A number of nanodevices have 
been demonstrated to present non-volatility and tunable 
resistance such as memristors, spintronics and multiferroic 
devices [6, 8-10]. These nanodevices attract special interest 
from semiconductor industries as they might be compatible 
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with standard CMOS processes and help relaxing the power 
wall for future feature size scaling [17]. From the 
technological point of view, these devices promise high 
maturity and low cost compared with post-silicon nano-
electronics. In the last year, a number of pre-industrial 
demonstrators have been demonstrated. However all of them 
present lower speed and larger die area than silicon memories. 
For instance, magnetic tunnel junction (MTJ) is one of the 
most fast non-volatile and memristive devices (see Fig.2a), but 
its switching duration is physically limited to some nanosecond 
[6]. Novel computing paradigms are then necessary to integrate 
these devices and to obtain the good tradeoff between low 
power and high performance at the system level.  

B. Low leakage devices  

As mentioned above, traditional silicon transistors suffer 
from the growing leakage currents, which are dominated by I 

off. Efforts to minimize leakage currents include the use of 

high- dielectrics, strained silicon, stronger doping levels and 
new device structures [1]. Si nanowire tunnel field-effect 
transistor (TFET) (see Fig.2b) is for example considered as a 
promising device to respond to the ultra-low leakage challenge 
of future feature sizes [14]. The benefits of the TFET are 
particularly linked to its potential of low sub-threshold slope 
(sub-60mV/dec) for Vdd scaling (see Eq.1 [18]). Furthermore, 
TFET could offer good system level energy efficiency for 
applications up to 1 GHz [14]. However, like other post-
silicon nanodevices, TEFT undergoes important disadvantages 
like low Ion and low technological maturity.  

 dttIVfNE d

T

ddopb  
0

     (1) 

C. High Mobility devices  

For some years, the operating frequency of computing 
systems fop has been saturating to some GHz even though the 
feature size scaling continues. This is due to the limited energy 
budget per chip Eb and exponential increasing of device 
number N (see Eq.1). One solution is to increase the electron 
mobility and then reduce the operating duration T. Graphene-
based FET (GFET) transistors (see Fig.2c) became the 
preferred domain of condensed-matter and electron-device 
physicists in the last years thanks to the excellent mobility of 
graphene channel, which could be in excess of 15,000 
cm2V−1s−1, more than 10 times that of silicon [7]. They are 
considered as a promising option for post-silicon electronics 
[7, 17]. However, the nanofabrication of GFET based on 
bottom-up approaches leads to intrinsic high variation and 
defect rates at the wafer level. As conventional computing 
architectures are often sensitive to device defect and process 
variation, novel computing paradigms are required to integrate 
these nanodevices to perform reliable computing.   

III.   NOVEL COMPUTING PARADIGMS  

Power reduction, area efficiency and speed enhancement 
to continue Moore's law will not only require new device and 
material solutions, but also proper system design based on 
novel architectures. As mentioned in the last section, 
nanodevices need also novel computing systems to benefit at 
most of their advantages and to overcome their shortcomings. 
With the current trends, the novel computing paradigms can be 
also classified into two following categories. 

A. Low power, small footprint or high speed 

As discussed in the previous section, novel computing 
paradigms are necessary to integrate non-volatile (NV) 
memristive nanodevices to lower power and reduce the die 
area. Some computing architectures presented in the past are 
now revisited thanks to the fast progress of NV memristive 
nanodevices beyond classical approach [19]. For instance, the 
architecture called “logic in memory” or “In memory 
processors” distributes the non-volatile memory cell in each 
computing operators (see Fig.3a) and removes the complex 
memory hierarchy for higher area efficiency [20-22]. In the last 
years, a number of new circuits based on “logic in memory” 
have been experimentally demonstrated [20-21]. As the 
memory cells are integrated in the local operators, the part of 
IC in “idle” state can be powered off and restarted 
instantaneously. This function allows zero standby power and a 
non-volatile CPU (NV-CPU) can be expected. The tighter 
integration of memory and CPU would shorten greatly the data 
access time and reduce the dynamic power (see Eq.1).  

More revolutionary computing paradigms for higher power 
and area efficiency are also widely explored. For instance, in 
the multiferroic quantum cellular automata (MQCA) [12], each 
device shows a finite number of states with memristive 
resistance at a discrete time. The state of each cell is 
determined by the state of its adjacent cells at the last discrete 
time (see Fig.3b). Earlier, similar circuits had been proposed 
with coupled quantum dots. Functional cells have been 
demonstrated, but they are limited to extremely low 
temperature (typically in the dozens of mK range) [23]. 
Another example is material implication (IMP) logic (see 
Fig.3c) and the circuits have been recently demonstrated that 
use two or three elements of a one-dimensional memristor 
array [13].   

The main challenge of these approaches is the important 
performance degradation with regards to traditional CMOS, 
which limits their use for wide applications.  

 
Figure 3.  (a) Logic in memory architecture: XOR logic composed of 

magnetic tunnel junction memory cell [21] (b) Multiferroic cell based QCA 
NOT logic [12] (c) Memristor based IMP logic [13]. 

B. High defect and variation tolerance 

Nanoscale devices present high intrinsic defect rate and 
important characteristics variation caused mainly by the nano-
fabrication methods such as self-assembly and nano-imprint 
lithography [7-10]. Their circuit and system-level integration 
with high defect and variation tolerance becomes essential for 
practical applications. Self-adaptive, redundancy and error 
correction circuits have been intensely investigated to tolerate 
the defect and variation of nanodevices. Bio-inspired neural 
network is considered as one of the most promising approaches 
as it presents excellent defect and variation tolerance naturally 
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and also high performance in terms of power and speed 
benefiting from the massive parallelism [24-29]. In the next 
section, we will focus on this computing paradigm and show its 
good defect and variation tolerance through supervised and 
unsupervised learning. 

IV. MEMRISTIVE DEVICE BASED NEUROMORPHIC CIRCUITS  

A. Motivation 
A general difficulty for circuits based on nanodevices is 

the variability and low yield that most nanotechnologies 
possess. Biology can be an original inspiration to deal with 
this issue. Many researchers have stressed that the brain, for 
example, relies on variable and unpredictable neurons and 
synapses [25] and still manages a computational efficiency 
that outperforms our electronic systems. It is thus natural to 
wonder if we could imitate part of its essence to exploit our 
nanodevices. This question leads to novel computational 
paradigms and to a rethinking of how to use nanodevices. It 
has led to a rich literature [26–29], and is particularly explored 
for memristive devices. Being resistors that adjust their 
resistance depending on which voltage is applied to them, they 
are indeed reminiscent of synapses (the connections between 
neurons in the brain), which suggests they could be used as 
such. Additionally, the potentiality to integrate them as 
crossbars offers promises of extremely high integration, and 
thus of massive connectivity. In this paper, we describe two 
major strategies that are currently being explored into that 
direction, and how they deal with the variability issue. 

 
Figure 4.  (a) Architecture of a “neural learning block” with a memristor 
crossbar array and CMOS neuron circuits. (b) Simulation of the system 
trained to learn the 104 linearly-separable digital functions with 3 inputs and 1 
output. Proportion of correct answer of the network for successive 
presentation of a truth table (“epoch”). After 10 presentations, all the 
functions have been trained. 

B. Supervised neuromorphic networks: nano-circuits that can 

be trained 
One first lead is to envision the memristive device-based 

circuit as a reconfigurable unit cell that will not be 
programmed but trained, following ideas coming from the 

neural network field. It is indeed relatively straightforward to 
develop architectures where memristive devices behave as 
synapses of conventional, state-based artificial neural 
networks [28, 30]. Logical functions can then be trained to the 
circuit, in the same way an artificial network is trained with a 
dataset (see Fig.4). The benefit with regards to a traditional 
(lookup table-based) reconfigurable computing scheme is a 
natural high robustness to variability and defects [31]. 
Additionally, it can be further improved by a learning strategy 
that avoids defects – competitive learning – without the actual 
need to identify them. It has been shown that this approach 
increases robustness while requiring limited overhead in 
comparison with, for example, traditional error correction 
schemes [30]. 

The basic algorithm behind this approach already had 
experimental demonstration on the small scale with carbon-
nanotube based devices [28] (the neural network learning rule 
was demonstrated). More works are needed to demonstrate 
real systems. 

 
Figure 5.   (a) Architecture of a spiking neural network for unsupervised 
learning. Circles are CMOS neurons. Squares, are memrsitive devices. The 
waveforms represent voltages pulses that implement STDP (b) The classical 
STDP rule and the simplified rule used in this architecture (c) Simulation 
results: a representation of devcies conductances after learning that shows 
handwritten digits’ categorization. 

C. Unsupervised neuromorphic networks: nano-circuit that 

can infer  
An even more radical approach is to develop models of 

calculation that do not rely on traditional logic, escape usual 
paradigms, and are naturally immune to device variability. 
Unsupervised neural networks constitute a lead of particular 
interest. Such networks are not programmed as usual systems, 
but are instead able to infer regularities in data presented to 
them, and can perform cognitive-type functions. A vision to 
achieve that is the imitation of actual biological synapses. It 
has been suggested [32-33], and shown experimentally [34–
36] that memristive devices could reproduce Spike Timing 
Dependent Plasticity (STDP), a behavior of synapses of the 
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brain [37]. STDP is valuable for synapses in spiking neural 
networks (where neurons communicate by emitting spikes or 
action potentials). Such networks can be implemented with 
asynchronous CMOS [38]. STDP synapses are sensitive to 
events when their pre- and post-synaptic neurons spike at 
close instants in time. If the pre-synaptic neuron spikes first, 
the synapse increases its conductance, if the postsynaptic 
neuron spikes first, the synapse decreases its conductance. 

The possibility to implement STDP with memristive 
devices drives a lot of hope, even if it still raises questions. 
STDP has mostly been explored in computational 
neuroscience; few works have tried to use it for applications 
[39]. However, research is now being pursued in that 
direction. We present one example (see Fig.5). We use a 
highly simplified STDP rule, optimized to be implemented 
with memristive devices [40]. System-level simulations have 
shown that a system based on this rule can learn to categorize 
handwritten digits in an unsupervised way (see Fig.5). A 
striking feature of these simulations is that a device variability 
near-immunity is observed [40]. With standard variations as 
high as 50% of the mean value on all memristive device 
parameters, performance is barely affected. With variations of 
100%, the performance decreases but the system is still 
functional. Indeed, due to the unsupervised nature of learning, 
sub-circuit learn features that they are naturally fit to learn due 
to device variability. In this context; variability is thus no 
longer a challenging issue to be solved, but a full part of the 
circuit functionality, which is the essence of this approach. 

This kind of network has also been shown to be able of 
performing car counting on a video [41]. We hope that by 
scaling it to more devices and more complicated architectures, 
extremely complex tasks could be achieved with limited 
energy budget. We think that this approach is especially fit to 
categorize natural data, and could in particular provide smart 
low power sensors for embedded systems. On the longer term, 
such approaches open the possibility of cognitive computing, 
computer with real intelligence, a goal now pursued by several 
visionary projects [29], [42].  

V. CONCLUSIONS AND PERSPECTIVES 

In this paper, we reviewed firstly the new nanodevices and 
novel computing paradigms under intense investigation. 
According to different research interests, they are classified 
and compared from the IC design point of view. Secondly, 
neuromorphic approach was particularly discussed to tolerate 
the high defect and variation rate of non-volatile memristive 
nanodevices through supervised or unsupervised learning.   
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