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Close evaluation of layer potentials in three dimensions

Camille Carvalho∗ Shilpa Khatri ∗ Arnold D. Kim ∗

July 6, 2018

Abstract

We present a simple and effective method for computing double- and single-layer potentials
for Laplace’s equation in three dimensions close to the boundary. The close evaluation of these
layer potentials is challenging because they are nearly singular integrals. The method is comprised
of three steps: (i) rotate the spherical coordinate system so that the peak of the kernel in the
nearly-singular integral is aligned with its north pole; (ii) integrate first with respect to azimuth
using the Periodic Trapezoid Rule, which is a natural averaging operation yielding a relatively
smooth function of the polar angle; and (iii) integrate with respect to the polar angle (rather
than the cosine of the polar angle) using an open, Gauss-Legendre quadrature rule mapped to
[0, π]. We find that the asymptotic behavior of the error for this method in the limit of small
evaluation distance from the boundary is quadratic for the modified double-layer potential after
applying a subtraction method to it, and linear for the single-layer potential. Additionally, we
use this method for computing the matrix entries of the Galerkin method to solve the underlying
boundary integral equations. We illustrate the accuracy and utility of this method through several
numerical examples.

Keywords: Nearly singular integrals, close evaluation problem, potential theory, boundary inte-
gral equations, numerical quadrature.

1 Introduction

The close evaluation problem arises in boundary integral methods for numerically solving boundary
value problems for linear, elliptic partial differential equations. In boundary integral equation methods,
the solution of the boundary value problem is given in terms of double- and single-layer potentials,
which are integrals of a kernel multiplied by a density over the boundary of the domain. The kernel for
the single-layer potential is the fundamental solution of the elliptic, partial differential equation and the
kernel for the double-layer potential is the normal derivative of that fundamental solution. As a result,
each of these kernels has an isolated singularity at a known point on the boundary. When evaluating
double- and single-layer potentials at points close to the boundary, the associated kernel is regular,
but is sharply peaked because the evaluation point is close to its singular point on the boundary. For
this reason, we say that double- and single-layer potentials evaluated close to the boundary are nearly
singular integrals.

Nearly singular integrals are more challenging to compute numerically than weakly singular ones.
When computing weakly singular integrals, one must explicitly address the singularity in the kernel.
For example, weakly singular integrals can be computed accurately using high-order product Nyström
methods [7, 14]. These product Nyström methods are often used to solve the boundary integral
equations for the density. However, for a nearly singular integral, there is no singularity to address.
Nonetheless, without effectively addressing the peak in a nearly singular integral, one must increase
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Figure 1: The point y? on the boundary surface denoted by B, indicated by the outward, unit normal,
n(y?). Even though the fundamental solution for Laplace’s equation and its normal derivative are
singular at y?, integration over B includes a natural averaging operation about y? indicated by the
dashed closed curve. This averaging operation is important for computing the close evaluation of
double- and single-layer potentials in three dimensions.

the order of the quadrature rule to obtain accuracy commensurate with evaluation points that are far
from the boundary.

The close evaluation problem has been studied extensively. Schwab and Wendland [20] have devel-
oped a boundary extraction method based on a Taylor series expansion of the layer potentials. Beale
and Lai [9] have developed a method that first regularizes the nearly singular kernel and then adds
corrections for both the discretization and the regularization. The result of this approach is a uniform
error in space. Helsing and Ojala [17] developed a method that combines a globally compensated
quadrature rule and interpolation to achieve very accurate results over all regions of the domain. Bar-
nett [8] has used surrogate local expansions with centers placed near, but not on, the boundary. This
work led to the work by Klöckner et al. [18] that introduces Quadrature By Expansion (QBX). QBX
uses expansions about accurate evaluation points far away from the boundary to compute accurate
evaluations close to it. The convergence of QBX has been studied in [15]. Moreover, fast implementa-
tions of QBX have since been developed [1, 19, 21], and rigorous error estimates have been derived for
the method [2]. Recently, the authors developed a method that involved matched asymptotic expan-
sions for the kernel [12]. In that method, the asymptotic expansion that captures the peaked behavior
of the kernel can be integrated exactly and the relatively smooth remainder is integrated numerically,
resulting in a highly accurate method.

Most of these aforementioned studies are for two-dimensional problems. There are fewer results
for three-dimensional problems. Beale et al. [10] have extended the regularization method to three-
dimensional problems. Additionally, QBX has been used for three-dimensional problems [1, 21]. In
principle, the matched asymptotic expansion method by the authors can be extended to three dimen-
sional problems. However, we do not pursue that approach because the method we present here is
more direct and simpler to implement.

We study the close evaluation of double- and single-layer potentials in the context of the interior
Dirichlet and exterior Neumann problems for Laplace’s equation in three dimensions, respectively.
Compared to the close evaluation of layer potentials in two dimensions, we find that layer potentials in
three dimensions are actually better behaved because the double integral over the boundary naturally
includes an averaging operation about y?, the point on the boundary at which the kernels have a sin-
gularity (see Fig. 1). This averaging operation is a crucial aspect of the layer potential’s representation
of a harmonic function that smoothly approaches its boundary data. To find this inherent averaging
operation, we perform a local analysis of the contribution of the layer potentials in the vicinity of y?.
This local analysis provides valuable insight into the close evaluation problem and suggests a natu-
ral method for numerically computing nearly singular layer potentials in three dimensions. We also
find that this method can be used to compute weakly singular integrals, in particular for numerically
solving the boundary integral equation for densities.
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The remainder of this paper is as follows. We precisely define the close evaluation problem for the
double- and single-layer potentials in Section 2. In Section 3, we compute the asymptotic behavior
of the contributions to these layer potentials made by a small region containing the point where the
kernels are peaked. By doing so, we find a natural numerical method to evaluate these nearly singular
integrals. This numerical method is detailed in Section 4. We discuss in Section 5 how this method can
also be used to compute matrix entries in the Galerkin method to solve the boundary integral equations
for the densities. We give several examples demonstrating the accuracy of this numerical method in
Section 6. Section 7 gives our conclusions. A gives details of how we rotate spherical integrals in the
results presented in this paper, and B gives a useful derivation of the spherical Laplacian.

2 Close evaluation of double- and single-layer potentials

Consider a simply connected, open set denoted by D ⊂ R3 with boundary, B, and let D̄ = D∪B. For
some given smooth data f , we write the function u ∈ C2(D) ∩ C1(D̄) satisfying the interior Dirichlet
problem,

∆u = 0 in D,

u = f on B,
(2.1)

as the double-layer potential,

u(x) =
1

4π

∫
B

n(y) · (x− y)

|x− y|3
µ(y)dσy, x ∈ D, (2.2)

with n(y) denoting the unit, outward normal at y ∈ B, and dσy denoting the surface element. Here,
µ is the density for the double-layer potential satisfying

−1

2
µ(y?) +

1

4π

∫
B

n(y) · (y? − y)

|y? − y|3
µ(y)dσy = f(y?), y? ∈ B. (2.3)

Let E = R3\D̄, and Ē = E ∪B. Let n still denote the unit normal pointing outward from D. For
some given smooth data g, we write the function v ∈ C2(E)∩C1(Ē) satisfying the exterior Neumann
problem,

∆v = 0 in E,

−∂nu = g on B,
(2.4)

as the single-layer potential,

v(x) =
1

4π

∫
B

ρ(y)

|x− y|
dσy, x ∈ E. (2.5)

Here, ρ(y) is the density for the single-layer potential satisfying

1

2
ρ(y?)− 1

4π

∫
B

n(y?) · (y? − y)

|y? − y|3
ρ(y)dσy = g(y?), y? ∈ B, (2.6)

Boundary integral equation methods involve solving (2.3) and (2.6) for µ and ρ, respectively. These
results are then used to compute u using (2.2) for any desired point in D and v using (2.5) for any
desired point in E. Boundary integral equations (2.3) and (2.6) can be solved to very high accuracy
using Nyström methods [7, 14]. Thus, the focus turns to accurately computing the double- and single-
layer potentials, (2.2) and (2.5), respectively. The high accuracy of Nyström methods transfers over
to the evaluation of these layer potentials except for close evaluation points.

To define a close evaluation point precisely, let 0 < ε� 1 denote a small, dimensionless parameter,
and consider

x = y? ∓ ε`n?, (2.7)
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for x ∈ D and x ∈ E, respectively, with y? ∈ B denoting a point on the boundary, n? = n(y?) denoting
the unit, outward normal from D at y?, and ` denoting a characteristic length of B, e.g. its radius of
curvature at y?. Before substituting (2.7) into (2.2), we first make use of Gauss’ law [16],

1

4π

∫
∂D

n(y) · (x− y)

|x− y|3
dσy =


−1 x ∈ D,
− 1

2 x ∈ B,
0 x ∈ E,

(2.8)

to write the double-layer potential evaluated at the close evaluation point given in (2.7) as

u(y? − ε`n?) = −µ(y?) +
1

4π

∫
B

n(y) · (y? − y − ε`n?)
|y? − y − ε`n?|3

[µ(y)− µ(y?)] dσy. (2.9)

We call (2.9) the modified double-layer potential resulting from applying a subtraction method [14].
For the close evaluation of the single-layer potential, we substitute (2.7) into (2.5) and obtain

v(y? + ε`n?) =
1

4π

∫
B

ρ(y)

|y? − y + ε`n?|
dσy. (2.10)

Our objective here is the accurate and efficient numerical evaluation of (2.9) and (2.10). The
challenge in this problem is that in the asymptotic limit as ε→ 0, those integrals are nearly singular.
Setting ε = 0 yields weakly singular integrals which can be numerically evaluated accurately. In fact,
this is what is done in the Nyström method to solve boundary integral equations (2.3) and (2.6).
However, when ε is small, but finite, the functions to be integrated are not singular, but they are
sharply peaked about y = y? which makes computing (2.9) and (2.10) challenging.

3 Motivation: local analysis of the double- and single-layer
potentials at a close evaluation point

The nearly singular behavior of (2.9) and (2.10) about y = y? is the major cause for error in their
evaluation. For this reason, we analyze the contribution made by a small region about y = y?. By
doing so, we motivate the method that we use to evaluate (2.9) and (2.10). In general, it is more
challenging to evaluate the double-layer potential than the single-layer potential because the kernel
in (2.9) is more peaked than that in (2.10). However, we show below that the modified double-layer
potential given in (2.9) will have a more accurate evaluation than (2.10) due to the subtraction method
that has been used.

For simplicity, suppose that B is an analytic, closed, and oriented surface. This assumption can
be relaxed to just local smoothness about y? with appropriate technical modifications. We introduce
the parameters s ∈ [0, π] and t ∈ [−π, π] for a rotated spherical coordinate system that parametrizes
B such that y?/|y?| corresponds to the north pole, i.e. y = y(s, t) and y? = y(0, ·). Details about this
rotated coordinate system can be found in A. In terms of this parameterization, (2.9) is given by

u(y? − ε`n?) = −µ̃(0, ·) +
1

4π

∫ π

−π

∫ π

0

K(s, t; ε) [µ̃(s, t)− µ̃(0, ·)] sin(s) dsdt, (3.1)

with µ̃(s, t) = µ(y(s, t)), µ̃(0, ·) = µ(y(0, ·)), and

K(s, t; ε) =
ñ(s, t) · (yd(s, t)− ε`n?)
|yd(s, t)− ε`n?|3

J(s, t), (3.2)

with ñ(s, t) = n(y(s, t)), yd(s, t) = y(0, ·)− y(s, t), and J(s, t) = |ys(s, t)× yt(s, t)|/ sin(s). In the limit
as ε → 0, this kernel becomes sharply peaked for yd = O(ε) leading to K = O(ε−2). This behavior
characterizes this nearly singular integral.
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We consider the contribution to u made by a small portion of B about y = y?, which we denote
by U . To do so, we introduce the parameter δ > 0 and define

U(y?; ε, δ) =
1

4π

∫ π

−π

∫ δ

0

K(s, t; ε) [µ̃(s, t)− µ̃(0, ·)] sin(s) dsdt. (3.3)

Next, we substitute s = εS in (3.3), and find

U(y?; ε, δ) =
1

4π

∫ π

−π

∫ δ/ε

0

K(εS, t; ε) [µ̃(εS, t)− µ̃(0, ·)] sin(εS)εdSdt. (3.4)

Recognizing that ñ(εS, t) = n? + O(ε), and yd(εS, t) = −εSys(0, ·) + O(ε2) with ys(0, ·) 6= 0 lying on
the plane tangent to B at y?, we find by expanding K(εS, t; ε) about ε = 0 that

K(εS, t; ε) = −`J(0, ·)
ε2

1

(S2|ys(0, ·)|2 + `2)3/2
+O(ε−1). (3.5)

Substituting this leading-order behavior into (3.4) along with sin(εS) = εS +O(ε3), we obtain

U(y?; ε, δ) = −`J(0, ·)
4π

∫ π

−π

∫ δ/ε

0

[
S

(S2|ys(0, ·)|2 + `2)3/2
+O(ε)

]
[µ̃(εS, t)− µ̃(0, ·)] dSdt. (3.6)

Since the leading-order asymptotic behavior given in (3.5) is independent of t, we use the 2π-periodicity
of µ̃ with respect to t to write

U(y?; ε, δ) = −`J(0, ·)
4π

∫ δ/ε

0

{[
S

(S2|ys(0, ·)|2 + `2)3/2
+O(ε)

] [∫ π

0

µ̃(εS, t) + µ̃(εS, t− π)− 2µ̃(0, ·)dt
]}

dS.

(3.7)
Next, we use the regularity of µ̃ over the north pole to substitute µ̃(εS, t − π) = µ̃(−εS, t), and find
that

U(y?; ε, δ) = −`J(0, ·)
4π

∫ δ/ε

0

{[
S

(S2|ys(0, ·)|2 + `2)3/2
+O(ε)

] [∫ π

0

µ̃(εS, t) + µ̃(−εS, t)− 2µ̃(0, ·)dt
]}

dS,

= −`J(0, ·)
4π

∫ δ/ε

0

{[
S

(S2|ys(0, ·)|2 + `2)3/2
+O(ε)

] [∫ π

0

ε2S2µ̃ss(0, ·) +O(ε4)dt

]}
dS,

= −`J(0, ·)
4

∫ δ/ε

0

{
ε2S3

(S2|ys(0, ·)|2 + `2)3/2

[
1

π

∫ π

0

µ̃ss(0, ·)dt
]}

dS +O(ε2).

(3.8)
We find that in the asymptotic limit corresponding to 0 < ε� δ � 1 that∫ δ/ε

0

ε2S3

(S2|ys(0, ·)|2 + `2)3/2
dS = δ

ε

|ys(0, ·)|3
+O(ε2), (3.9)

(recall that |ys(0, ·)| 6= 0), and in B, we show that

1

π

∫ π

0

µ̃ss(0, ·)dt =
1

2
∆S2µ(y?), (3.10)

with ∆S2µ(y?) denoting the spherical Laplacian of µ evaluated at y?. Thus, we have found that

U(y?; ε, δ) = −δ ε`J(0, ·)
8|ys(0, ·)|3

∆S2µ(y?) +O(ε2). (3.11)

This result gives the leading-order asymptotic behavior for U . The results (3.9) and (3.11) provide the
following insights about the close evaluation problem.
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• The function that is integrated in (3.9) has a smooth limit to a finite value at the north pole.
In other words, despite the sharply peaked behavior of the kernel, the leading-order asymptotic
behavior of the integrand is smooth.

• Working in a rotated spherical coordinate system in which y?/|y?| serves as the north pole effec-
tively removes the dependence with respect to the azimuthal angle, denoted here by t, through
an averaging about the north pole.

• The above procedure provides a way to rewrite the layer potential that avoids the close-evaluation
problem.

Similar conclusions can be drawn for the single-layer potential. Using the same parameterization
as above, we write (2.10) as

v(y? + ε`n?) =
1

4π

∫ π

−π

∫ π

0

G(s, t; ε)ρ̃(s, t) sin(s)dsdt, (3.12)

with ρ̃(s, t) = ρ(y(s, t)), and

G(s, t; ε) =
J(s, t)

|yd(s, t) + ε`n?|
. (3.13)

Just as we have done for u, we consider the contribution to v made by a small portion of B about
y = y?, which we denote by V , defined with the parameter δ as

V (y?; ε, δ) =
1

4π

∫ π

−π

∫ δ

0

G(s, t; ε)ρ̃(s, t) sin(s)dsdt. (3.14)

Next, we substitute s = εS and obtain

V (y?; ε, δ) =
1

4π

∫ π

−π

∫ δ/ε

0

G(εS, t; ε)ρ̃(εS, t) sin(εS)εdSdt. (3.15)

By expanding G about ε = 0, we find that that

G(εS, t; ε) =
1

ε

J(0, ·)
(S2|ys(0, ·)|2 + `2)

1/2
+O(1). (3.16)

Substituting this leading-order behavior into (3.15) along with sin(εS) = εS + O(ε3), and ρ̃(εS, t) =
ρ̃(0, ·) +O(ε), and then integrating that result with respect to t, we obtain

V (y?; ε, δ) =
J(0, ·)ρ̃(0, ·)

2

∫ δ/ε

0

[
εS

(S2|ys(0, ·)|2 + `2)
1/2

+O(ε2)

]
dS. (3.17)

In the asymptotic limit in which 0 < ε� δ � 1, we find that

V (y?; ε, δ) = δ
J(0, ·)

2|ys(0, ·)|
ρ̃(0, ·) +O(ε). (3.18)

This result gives the leading-order asymptotic behavior for V .
In light of the asymptotic analysis given above, we have found a natural procedure to compute

the close evaluation of layer potentials that avoids the challenges associated with evaluating nearly
singular integrals. There are three, crucial steps in this procedure.

1. Rotate the spherical coordinate system so that y?/|y?| serves as the north pole where y? denotes
the boundary point at which the kernel for the layer potential is peaked.
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2. Integrate first with respect to the azimuthal angle to average the function about the north pole.

3. Integrate the remaining function with respect to the polar angle.

It is important in the third step to integrate with respect to s rather than z = cos(s), which is often
done, because the asymptotic analysis above is explicitly aided by sin(s) term inherent in the spherical
integral.

These results suggest that following these three steps leads to a natural numerical method to
evaluate double- and single-layer potentials close to the boundary. The leading-order asymptotic
behaviors given by (3.11) and (3.18) show that this method yields an O(ε2) error for the modified
double-layer potential and an O(ε) error for the single-layer potential. The smaller error with the
modified double-layer potential is due to the subtraction of µ(y?) in conjunction with the azimuthal
averaging step. Additionally (3.11) and (3.18) provide explicit expressions for the limiting behavior
of the double- and single-layer potentials, respectively, as s → 0. These results may be used in the
computation of the integral with respect to the polar angle in the third step. However, we avoid
needing these results in the specific method we give below by choosing an open quadrature rule for s
that does not require evaluation at the end points of the interval.

4 Numerical method for the close evaluation of double- and
single-layer potentials

We now give a numerical method for computing the close evaluation of double- and single-layer po-
tentials by following the three-step procedure given above. Suppose we have parameterized B by
y = y(θ, ϕ) with θ ∈ [0, π] and ϕ ∈ [−π, π] where y? = y(θ?, ϕ?). We seek to compute

I3D(y?) =
1

4π

∫ π

−π

∫ π

0

F (θ, ϕ; θ?, ϕ?) sin(θ) dθdϕ, (4.1)

where F is nearly singular at (θ, ϕ) = (θ?, ϕ?). For the modified double-layer potential resulting from
applying a subtraction method, we have

F (θ, ϕ; θ?, ϕ?) =
ñ(θ, ϕ) · [y(θ?, ϕ?)− y(θ, ϕ)− ε`ñ(θ?, ϕ?)]

|y(θ?, ϕ?)− y(θ, ϕ)− ε`ñ(θ?, ϕ?)|3
J(θ, ϕ) [µ̃(θ, ϕ)− µ̃(θ?, ϕ?)] , (4.2)

and for the single-layer potential, we have

F (θ, ϕ; θ?, ϕ?) =
J(θ, ϕ)

|y(θ?, ϕ?)− y(θ, ϕ) + ε`ñ(θ?, ϕ?)|
ρ̃(θ, ϕ), (4.3)

where J(θ, ϕ) = |yθ(θ, ϕ)× yϕ(θ, ϕ)|/ sin θ.
Motivated by the local analysis leading to (3.11) and (3.18) above, we perform the following three-

step procedure to numerically evaluate I3D(y?).

1. Rotate this integral to another spherical coordinate system whose north pole is aligned with
y?/|y?|. The details of this rotation are given in A, and lead to θ = θ(s, t) and ϕ = ϕ(s, t) with
s ∈ [0, π] and t ∈ [−π, π] where θ(0, ·) = θ? and ϕ(0, ·) = ϕ?. Upon applying this rotation, we
obtain the spherical integral

I3D(y?) =
1

4π

∫ π

−π

∫ π

0

F̃ (s, t) sin(s) dsdt, (4.4)

with F̃ (s, t) = F (θ(s, t), ϕ(s, t); θ?, ϕ?).
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2. Use the 2N -point Periodic Trapezoid Rule to compute

1

2π

∫ π

−π
F̃ (s, t)dt = F̄ (s) ≈ F̄N (s) =

1

2N

2N∑
j=1

F̃ (s, tj), (4.5)

with tj = −π + π(j − 1)/N for j = 1, . . . , 2N .

3. Use the N -point Gauss-Legendre quadrature rule to compute the integral in s. Let zi ∈ (−1, 1)
for i = 1, · · · , N denote the Gauss-Legendre quadrature points with corresponding weights wi.
We map the quadrature points according to si = π(zi + 1)/2 to the interval (0, π) and compute
the numerical approximation,

I3D ≈ IN3D =
π

4

N∑
i=1

F̄N (si) sin(si)wi. (4.6)

In the first step of the procedure, the coordinate system is rotated so that (θ?, ϕ?) corresponds
to the north pole of the spherical coordinate system. This rotation sets up the second step, which
computes the azimuthal average of the function with respect to t about the north pole. The factor of
1/(2π) is incorporated into this step to explicitly obtain an averaging operation yielding F̄N (s), which
is a smooth function in the polar angle, s. For the third step, we have chosen to use the Gauss-Legendre
quadrature rule for which the quadrature points satisfy 0 < s1 < s2 < · · · < sN < π. Consequently,
we do not need to explicitly evaluate F̄N (0). Alternatively, we could have chosen a closed rule that
includes the end points. For that case, we would use (3.11) and (3.18) to explicitly prescribe the needed
values in the limit as s→ 0.

This numerical method is based on the product Gaussian quadrature rule for spherical integrals [3].
That quadrature rule uses a 2N -point Periodic Trapezoid Rule in the azimuthal angle and N -point
Gauss-Legendre quadrature rule in the cosine of the polar angle, z = cos(s) ∈ [−1, 1]. However,
the results of the local analysis above show that integrating with respect to the polar angle, s, is
better since the factor of sin(s) plays an important role in the asymptotic behavior. Thus, rather than
transforming (4.1) by substituting z = cos(s), we map the Gauss-Legendre quadrature rule from [−1, 1]
to [0, π] using si = π(zi + 1)/2 for i = 1, · · · , N . Consequently, the mapped quadrature weights are
πwj/2, which is accounted for in (4.6) by the π/4 factor. We show in the numerical results presented
in Section 6 that this subtle and seemingly small change to the product Gaussian quadrature rule is
significant and yields substantially better results.

Provided that the densities, µ and ρ, for the double- and single-layer potentials, respectively, are
known to very high accuracy, the main cause of numerical error for the close evaluation problem is due
to the sharp peak of the kernels about y = y?. For that case, the leading-order asymptotic expansions
given by (3.11) and (3.18) indicate that this numerical method yields an O(ε2) error for the modified
double-layer potential and an O(ε) error for the single-layer potential, respectively. These asymptotic
error estimates are valid only when the value of N used in this numerical method is sufficiently large
to resolve the density and the boundary. Otherwise, errors introduced by inaccuracy of the density
and/or under-resolution of the boundary will dominate over these asymptotic error estimates.

5 Numerical solution of the boundary integral equations

The numerical method described above can also be used to solve the boundary integral equations for
the densities, (2.3) and (2.6). We describe its use in the context of the Galerkin method [4, 5, 6, 7].
As we have done above, we suppose that we have parameterized B by y = y(θ, ϕ) with θ ∈ [0, π] and
ϕ ∈ [−π, π].

To compute the density, µ, for the double-layer potential, we write (2.3) compactly as

−1

2
µ+ KD[µ] = f. (5.1)
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We introduce the approximation for µ,

µ(y(θ, ϕ)) = µ̃(θ, ϕ) ≈
N−1∑
n=0

n∑
m=−n

Ynm(θ, ϕ)µ̂nm, (5.2)

with {Ynm(θ, ϕ)} denoting the orthonormal set of spherical harmonics. Note that N in (5.2) cor-
responds also to the order of the quadrature rule detailed in Section 4 so that the order of this
approximation is commensurate with the order of the quadrature rule to be used. Substituting (5.2)
into (5.1) and taking the inner product with Yn′m′(θ?, ϕ?), we obtain the Galerkin equations,

−1

2
µ̂n′m′ +

N−1∑
n=0

n∑
m=−n

〈Yn′m′ ,KD[Ynm]〉µ̂nm = 〈Yn′m′ , f〉, (5.3)

with

KD[Ynm](θ?, ϕ?) =
1

4π

∫ π

−π

∫ π

0

[
ñ(θ, ϕ) · (y(θ?, ϕ?)− y(θ, ϕ))

|y(θ?, ϕ?)− y(θ, ϕ)|3
J(θ, ϕ) sin(θ)

]
Ynm(θ, ϕ)dθdϕ. (5.4)

We construct the N2 × N2 linear system for the unknown coefficients, µ̂n′m′ resulting from (5.3)
evaluated for n′ = 0, · · · , N − 1 with corresponding values of m′. To evaluate (5.4), we use (2.8) to
rewrite it as

KD[Ynm](θ?, ϕ?) = −1

2
Ynm(θ?, ϕ?)

+
1

4π

∫ π

−π

∫ π

0

[
ñ(θ, ϕ) · (y(θ?, ϕ?)− y(θ, ϕ))

|y(θ?, ϕ?)− y(θ, ϕ)|3
J(θ, ϕ) sin(θ)

]
[Ynm(θ, ϕ)− Ynm(θ?, ϕ?)] dθdϕ, (5.5)

and evaluate the integral in this expression using the numerical method described above. To compute
the inner products, 〈Yn′m′ ,KD[Ynm]〉 and 〈Yn′m′ , f〉, we use the product Gaussian quadrature rule
for spherical integrals [3] with N Gauss-Legendre quadrature points and 2N Periodic Trapezoid Rule
points.

To compute the density ρ for the single-layer potential, we write (2.6) compactly as

1

2
ρ−KS [ρ] = g. (5.6)

We introduce the approximation for ρ,

ρ(y(θ, ϕ)) = ρ̃(θ, ϕ) ≈
N−1∑
n=0

n∑
m=−n

Ynm(θ, ϕ)ρ̂nm. (5.7)

Performing the same calculations as above, we find that ρ̂nm satisfies the Galerkin equations,

1

2
ρ̂n′m′ −

N−1∑
n=0

n∑
m=−n

〈K †
S [Yn′m′ ], Ynm〉ρ̂nm = 〈Yn′m′ , g〉, (5.8)

where K †
S denotes the adjoint of KS defined according to

K †
S [Yn′m′ ](θ, ϕ) =

1

4π

∫ π

−π

∫ π

0

[
ñ(θ?, ϕ?) · (y(θ?, ϕ?)− y(θ, ϕ))

|y(θ?, ϕ?)− y(θ, ϕ)|3
J(θ?, ϕ?) sin(θ?)

]
Yn′m′(θ?, ϕ?)dθ?dϕ?.

(5.9)
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Recall that ñ(θ?, ϕ?) is the unit normal pointing out of D. For this integral, we use (2.8) to write

K †
S [Yn′m′ ](θ, ϕ) = −1

2
Yn′m′(θ, ϕ)

+
1

4π

∫ π

−π

∫ π

0

[
ñ(θ?, ϕ?) · (y(θ?, ϕ?)− y(θ, ϕ))

|y(θ?, ϕ?)− y(θ, ϕ)|3
J(θ?, ϕ?) sin(θ?)

]
[Yn′m′(θ?, ϕ?)− Yn′m′(θ, ϕ)] dθ?dϕ?,

(5.10)

which we then compute using the numerical method described above. We use the product Gaussian
quadrature rule with N Gauss-Legendre quadrature points and 2N Periodic Trapezoid Rule points to
compute the remaining inner products, 〈K †

S Yn′m′ , Ynm〉 and 〈Yn′m′ , g〉, needed to form the N2 ×N2

linear system for the unknown coefficients, ρ̂n′m′ for n′ = 0, · · · , N −1 and corresponding values of m′.

6 Numerical results

We present numerical results for computing the close evaluation of double- and single-layer potentials
using the method detailed in Section 4. For the double-layer potential examples discussed in Section
6.1 below, we have computed the density, µ̃, by solving boundary integral equation (5.1) using the
Galerkin method discussed in Section 5. Then, we compute the double-layer potential using that
density for two ellipsoids and study the error. In Section 6.2 below, we compute the representation
formula for a harmonic function given as the difference between the double- and single-layer potentials
using densities that are known exactly. We study the error in computing this representation formula
in two different domains and evaluate those results.

6.1 Double-layer potential

We present results in computing the solution of the interior Dirichlet problem (2.1) for two different
ellipsoids. For all of these examples, we set the harmonic function,

uex(x) = |x− x0|−1, x ∈ D, (6.1)

with x0 ∈ E to be the exact solution. Therefore, we prescribe

f(y) = |y − x0|−1, y ∈ B, (6.2)

as the Dirichlet boundary data.
With the boundary data given in (6.2), we first use the Galerkin method described in Section 5

to solve for µ̂nm, the expansion coefficients for the density introduced in (5.2). We then use (5.2) to
evaluate the density, µ̃, that is needed for computing the double-layer potential. To test our method for
close evaluation points, we evaluate the double-layer potential at the points x = y?− εn? (we have set
` = 1) for various points y? on the boundary of the domain and for various ε. The error is determined
by computing the absolute value of the difference between the double-layer potential result and the
exact harmonic function, uex(y?− εn?) = |y?− εn?−x0|−1. We show error results for computing u(x)
over a range of ε values spanning several orders of magnitude using four different methods listed below
using the kernel, K defined in (3.2).

Method 1: Compute

u(y? − εn?) =
1

4π

∫ π

−π

∫ 1

−1
K(cos−1(z), t; ε)µ̃(cos−1(z), t)dzdt

using an N -point Gauss-Legendre quadrature rule for z ∈ [−1, 1] and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].
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Method 2: Compute

u(y? − εn?) =
1

4π

∫ π

−π

∫ π

0

K(s, t; ε)µ̃(s, t) sin(s)dsdt

using an N -point Gauss-Legendre quadrature rule for s ∈ [0, π] and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].

Method 3: Compute

u(y? − εn?) = −µ̃(0, ·) +
1

4π

∫ π

−π

∫ 1

−1
K(cos−1(z), t; ε)

[
µ̃(cos−1(z), t)− µ̃(0, ·)

]
dzdt

using an N -point Gauss-Legendre quadrature rule for z ∈ [−1, 1] and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].

Method 4: Compute

u(y? − εn?) = −µ̃(0, ·) +
1

4π

∫ π

−π

∫ π

0

K(s, t; ε) [µ̃(s, t)− µ̃(0, ·)] sin(s)dsdt

using an N -point Gauss-Legendre quadrature rule for s ∈ [0, π] and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].

For each of these methods, we have applied the rotation of the coordinate system described as the
first step in the procedure detailed in Section 4. Methods 1 and 2 compute the double-layer potential
given by (2.2) directly and integrate with respect to z = cos(s) and s, respectively. Methods 3 and
4 use the subtraction method, so they compute the modified double-layer potential given in (2.9).
Method 3 integrates with respect to z = cos(s) and Method 4 integrates with respect to s. Method 4
is the one we have proposed here to compute the close-evaluation of the double-layer potential.

In the examples that follow, we consider two different ellipsoids used by Atkinson [4]. Let (x1, x2, x3)
denote an ordered triple in a Cartesian coordinate system. The boundaries for these ellipsoids are given
by

y(θ, ϕ) = (α sin θ cosϕ, β sin θ sinϕ, γ cos θ), θ ∈ [0, π], ϕ ∈ [−π, π]. (6.3)

For the first example, we set α = 1, β = 1.5, and γ = 2, and for the second example, we set α = 1,
β = 2, and γ = 5. These two ellipsoids, which we call Ellipsoids 1 and 2, are shown as the left and
right plots in Fig. 2, respectively. For both of these examples, we have set x0 = (5, 4, 3) ∈ E in (6.1)
and (6.2). In Fig. 2 we also identify two boundary points, labeled A and B, lying on the x1x3-plane
and the x1x2-plane, respectively, which we will refer to below when we discuss the error results. The
coordinates for these points are A = (−1.16,−0.64, 0) and B = (−0.72, 0, 1.75) for Ellipsoid 1, and A
= (−0.74,−0.93, 0) and B = (−1.81, 0, 2.13) for Ellipsoid 2.

We have used the Galerkin method with N = 48 to compute the density, µ̃. For Ellipsoid 1 shown
in the left plot of Fig. 2, we find that this order resolves µ̃ with an estimated truncation error on the
order of 10−15. Ellipsoid 2 shown in the right plot of Fig. 2 is more elongated along the x3 axis, so it
deviates farther from a sphere than Ellipsoid 1. As a result, we find that the Galerkin method with
N = 48 yields a larger estimated truncation error for µ̃ on the order of 10−12. We have subsequently
used N = 48 in the quadrature rules for the four methods given above.

6.1.1 Results for Ellipsoid 1

In the top row of Fig. 3, we plot log10 of the error made using Method 1. The left two plots show
the error over the vertical x1x3-plane and a close-up of the small region near the boundary point, A
= (−1.16,−0.64, 0). The right two plots show the error over the horizontal x1x2-plane and a close-up
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Figure 2: (Left) Boundary surface of the ellipsoid given by (6.3) with α = 1, β = 1.5, and γ = 2 which
we call Ellipsoid 1. (Right) Boundary surface of the ellipsoid given by (6.3) with α = 1, β = 2, and
γ = 5, which we call Ellipsoid 2. In each figure, the two black curves indicate where the boundary
of the ellipsoid intersects with the vertical x1x3-plane, and the horizontal x1x2-plane, and the black
arrows give the unit outward normal vectors on those curves. The two boundary points labeled A and
B lying on the x1x3-plane and x1x2-plane, respectively, give the locations where we investigate the
error made by four different methods. The coordinates for these points are A = (−1.16,−0.64, 0) and
B = (−0.72, 0, 1.75) in the left plot, and A = (−0.74,−0.93, 0) and B = (−1.81, 0, 2.13) in the right
plot.

of the small region near the boundary point, B = (−0.72, 0, 1.75). The bottom row of Fig. 3 shows the
same plots for Method 4.

These results show that using Method 1 leads to an O(1) error close to the boundary which is
symptomatic of the close evaluation problem. In contrast, the results using Method 4 show an error
that is several orders of magnitude smaller. To examine this error more closely, we show in Fig. 4
errors using Methods 1, 2, 3, and 4 evaluated along the normal at point A = (−1.16,−0.64, 0) on the
boundary and the x1x3-plane, and at point B = (−0.72, 0, 1.75) on the boundary and the x1x2-plane.
In this way, we clearly observe that the subtraction method used in Method 3 and Method 4 leads to
substantially smaller errors compared with those made using Method 1 and Method 2. The error for
Methods 1, 2, and 3 all appear to asymptote to a fixed value as ε → 0. In contrast, we see that the
error for Method 4 decreases as ε → 0. To study the asymptotic behavior of the error for Method 4,
we compute the best linear fit to the error (see dashed black lines in Fig. 4) for the four smallest ε
values. These linear fits have slopes of 1.73 for point A and 1.83 for point B consistent with the O(ε2)
error estimate from the asymptotic analysis in (3.11).

6.1.2 Results for Ellipsoid 2

The error results for Ellipsoid 2 plotted in Figs. 5 and 6 are of the same format as those for Ellipsoid
1 in Figs. 3 and 4, respectively. The close-ups in Fig. 5 show small regions near the boundary points
A = (−0.74,−0.93, 0) and B = (−1.81, 0, 2.13).

Figure 5 shows that the error for Method 4 is again several orders of magnitude smaller than that
for Method 1. However, the magnitude of the errors appears to be larger for both methods than the
previous example. This is due to the larger truncation error associated with the Galerkin method.
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Figure 3: The errors made by Method 1 (top row) and Method 4 (bottom row) for Ellipsoid 1. The
first and second columns show log10 of the errors made by these two methods in the x1x3-plane, with
the plots in the second column showing a close-up in the vicinity of point A = (−1.16,−0.64, 0). The
third and fourth columns show log10 of the errors made by these two methods in the x1x2-plane, with
the plots in the fourth column showing a close-up in the vicinity of point B = (−0.72, 0, 1.75).

Figure 4: Comparison of errors made by Methods 1 – 4 for Ellipsoid 1 for evaluation points along the
normal at distance ε from point A = (−1.16,−0.64, 0) on the boundary and in the x1x3-plane (left
plot) and for evaluation points along the normal at distance ε from point B = (−0.72, 0, 1.75) on the
boundary and in the x1x2-plane (right plot). The dashed black lines show the best linear fit through
the Method 4 errors for the four smallest ε values. Both fits are consistent with the O(ε2) asymptotic
error estimate given by (3.11).

In Fig. 6, we see that Method 4 clearly has the smallest error. The dashed black lines show the best
linear fit to the errors for the four smallest ε values. These linear fits have slopes of 1.83 for point A
and 1.92 for point B consistent with O(ε2) error estimate in (3.11).
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Figure 5: The errors made by Method 1 (top row) and Method 4 (bottom row) for Ellipsoid 2. The
first and second columns show log10 of the errors made by these two methods in the x1x3-plane with
the plots in the second column showing a close-up in the vicinity of point A = (−0.74,−0.93, 0). The
third and fourth columns show log10 of the errors made by these two methods in the x1x2-plane with
the plots in the fourth column showing a close-up in the vicinity of point B = (−1.81, 0, 2.13).

Figure 6: Comparison of errors made by Methods 1 – 4 for Ellipsoid 2 for evaluation points along the
normal at distance ε from point A = (−0.74,−0.93, 0) on the boundary and in the x1x3-plane (left
plot) and for evaluation points along the normal at distance ε from point B = (−1.81, 0, 2.13) on the
boundary and in the x1x2-plane (right plot). The dashed, black lines show the best linear fit through
the Method 4 errors for the four smallest ε values. Both fits are consistent with the O(ε2) asymptotic
error estimate given by (3.11).
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6.1.3 Summary of double-layer potential results

For both Ellipsoids 1 and 2, we have observed that Method 4 provides the most accurate evaluation of
the double-layer potential for close evaluation points. Method 3 is the next most accurate. However,
the errors for Methods 1, 2, and 3 all appear to asymptote to a finite value rather than decay to zero
as the error for Method 4 does. For this reason, we conclude that Method 4 is an effective method for
the close evaluation of the double-layer potential.

The errors for Method 4 plotted in Figs. 4 and 6 show a characteristic behavior. For very small
values of ε corresponding to points very close to the boundary, Method 4 is highly accurate with an
error approaching machine precision. For intermediate values of ε, the error obtained with Method
4 increases as the value of ε starts to coincide with the spacing of the Gauss-Legendre quadrature
points in the polar angle s. For bigger values of ε, Methods 1, 2, 3, and 4 have errors of a similar
order of magnitude because the evaluation point is far enough from the boundary that the double-layer
potential is no longer nearly singular.

6.2 The representation formula

When the truncation error for the Galerkin method is not sufficiently small, it dominates over the
asymptotic error for the close evaluation of the double-layer potential given by (3.11) and the single-
layer potential given by (3.18). For the exterior Neumann problem, (2.4), boundary data are in terms
of the gradient of a harmonic function. Consequently, those boundary data tend to be less smooth
than those for the interior Dirichlet problem. Because of this, the Galerkin method to solve boundary
integral equation (5.6) for a boundary that deviates significantly from a sphere requires N in (5.7) to be
sufficiently large that the truncation error does not interfere with the O(ε) asymptotic error estimate
for the single-layer potential. It is in this way that the Galerkin method is a limitation and another
high-order method can be used to compute the densities for the double- and single-layer potentials for
more general domains [11].

The focus of this paper is in the close evaluation problem. Thus, we consider an alternate example
to test the asymptotic error estimates for the double- and single-layer potentials rather than consider
another high-order method to solve weakly singular boundary integral equations for the densities.
Consider the representation formula for a harmonic function in domain D with boundary B,

u(x) =
1

4π

∫
B

[
1

|x− y|
n(y) · ∇u(y)− n(y) · (x− y)

|x− y|3
u(y)

]
dσy, x ∈ D. (6.4)

Given a prescribed harmonic function u and its normal derivative on B, (6.4) gives a formula for
computing u(x) for any x ∈ D in terms of the difference between the single- and double-layer potentials,
where the prescribed boundary data can be interpreted as the corresponding densities, ρ and µ. For
this case there is no boundary integral equation to solve since the densities are known exactly.

For the following examples, we have set the harmonic function

uex(x1, x2, x3) = ex3(sinx1 + sinx2), (6.5)

following Beale et al. [10], to be the exact solution. We set (6.5) on the boundary to be µ and its
normal derivative on the boundary to be ρ, which are used in the double- and single-layer potentials,
respectively, to evaluate (6.4). For the following examples, we use the four methods described below.

Method 1: Compute

u(y? − εn?) =
1

4π

∫ π

−π

∫ 1

−1

[
G(cos−1(z), t; ε)ρ̃(cos−1(z), t)−K(cos−1(z), t; ε)µ̃(cos−1(z), t)

]
dzdt

using an N -point Gauss-Legendre quadrature rule for z ∈ [−1, 1], and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].
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Method 2: Compute

u(y? − εn?) =
1

4π

∫ π

−π

∫ π

0

[G(s, t; ε)ρ̃(s, t)−K(s, t; ε)µ̃(s, t)] sin(s)dsdt

using an N -point Gauss-Legendre quadrature rule for s ∈ [0, π], and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].

Method 3: Compute

u(y?−εn?) = µ̃(0, ·)+ 1

4π

∫ π

−π

∫ 1

−1

[
G(s, t; ε)ρ̃(cos−1(z), t)−K(cos−1(z), t; ε)

[
µ̃(cos−1(z), t)− µ̃(0, ·)

]]
dzdt

using an N -point Gauss-Legendre quadrature rule for z ∈ [−1, 1], and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].

Method 4: Compute

u(y? − εn?) = µ̃(0, ·) +
1

4π

∫ π

−π

∫ π

0

[G(s, t; ε)ρ̃(s, t)−K(s, t; ε) [µ̃(s, t)− µ̃(0, ·)]] sin(s)dsdt

using an N -point Gauss-Legendre quadrature rule for s ∈ [0, π], and a 2N Periodic Trapezoid
Rule for t ∈ [−π, π].

Here, K is the kernel defined in (3.2) and G is the kernel defined in (3.13).
Those four methods are a combination of the four methods used in Section 6.1 for the double-layer

potential, and the corresponding evaluation of the single-layer potential. Methods 1 and 2 do not
use the subtraction method for the double-layer potential, and Methods 3 and 4 use the subtraction
method. Methods 1 and 3 integrate with respect to z = cos(s), and Methods 2 and 4 integrate with
respect to s. According to the asymptotic error estimates given by (3.11) and (3.18), we expect Method
4 to exhibit an O(ε) error in evaluating (6.4).

A

B
A

B

Figure 7: (Left) Boundary surface of the peanut-shaped domain given by (6.6) with R(θ) given by
(6.7). (Right) Boundary surface of the inverted mushroom cap domain given by (6.6) with R(θ) given
by (6.8). In both domains, the two black curves indicate where the boundary intersects with the
vertical x1x3-plane, and the horizontal x1x2-plane, and the black arrows give the unit outward normal
vectors on those curves. The two boundary points labeled A and B lying on the x1x3-plane and x1x2-
plane, respectively, give the locations where we investigate the error made by four different methods.
For the peanut-shaped domain, A = (−0.16,−0.21, 0) and B = (−1.04, 0, 0.94), and for the inverted
mushroom cap, A = (−3.07,−1.27, 0) and B = (−1.55, 0, 1.41).
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In the examples that follow, we consider two domains used by Atkinson [4, 5]. The boundaries for
these two domains are given by

y(θ, ϕ) = R(θ)(sin θ cosϕ, 2 sin θ sinϕ, cos θ), θ ∈ [0, π], ϕ ∈ [−π, π]. (6.6)

For the first example, which resembles a peanut, we have set

R(θ) =

√
cos 2θ +

√
1.1− sin2 2θ. (6.7)

For the second example, which resembles an inverted mushroom cap, we have set

R(θ) = 2− 1

1 + 100(1− cos θ)
. (6.8)

The peanut and inverted mushroom cap domains are shown as the left and right plots in Fig. 7,
respectively. In Fig. 7, we identify two boundary points, labeled A and B, lying on the x1x3-plane
and the x1x2-plane, respectively. For the peanut, A = (−0.16,−0.21, 0) and B = (−1.04, 0, 0.94). For
the inverted mushroom cap, A = (−3.07,−1.27, 0) and B = (−1.55, 0, 1.41). We refer to these points
below when we discuss the error results.

Since we use exact densities, we are more easily able to use highly resolved computations for these
two examples. For the peanut domain, we have set N = 120 and for the inverted mushroom cap, we
have set N = 80.

6.2.1 Results for peanut-shaped domain

The error results plotted in Figs. 8 and 9 are the same format as those in Figs. 3 and 4, respectively.
Just like those for the double-layer potential, the results in Fig. 8 clearly show that the error for Method
4 is several orders of magnitude smaller than that for Method 1. Moreover, Fig. 9 shows that Methods
3 and 4 have significantly smaller errors than Methods 1 and 2 demonstrating that using the modified
double-layer potential resulting from applying the subtraction method is effective. These errors show
that Methods 1, 2, and 3 asymptote to a fixed value as ε → 0. In contrast, the error for Method 4
decreases as ε→ 0. To study the asymptotic behavior of the error for Method 4, we compute the best
linear fit to the error (see dashed black lines in Fig. 9) for the four smallest ε values along the normal
for two chosen points, A and B. These linear fits have slopes of 1.00 for point A and 1.01 for point B
consistent with the expected O(ε) error estimate.

6.2.2 Results for inverted mushroom cap domain

The error results plotted in Figs. 10 and 11 are the same format as those in Figs. 8 and 9, respectively.
Fig. 10 also shows that Method 4 clearly outperforms Method 1. Fig. 11 shows that the subtraction
method used for Methods 3 and 4 yields much better results compared with those for Methods 1 and
2. Again, Methods 1, 2, and 3 all appear to asymptote to a fixed value as ε → 0, where Method 4
decreases. The dashed black lines in Fig. 11 show the best linear fits to the error for Method 4 for
the four smallest ε values. The slopes of these linear fits are 1.01 for point A and 1.00 for point B
consistent with the expected O(ε) error estimate given by (3.18).

6.2.3 Summary of representation formula results

For both the peanut and inverted mushroom cap domains, we have observed that Method 4 provides
the most accurate evaluation of the representation formula for close evaluation points. Method 3 is the
next most accurate due to the use of the subtraction method. The errors of Methods 1, 2, and 3 all
asymptote to a finite value as ε→ 0, whereas the error for Method 4 decays to zero as O(ε). For this
reason, we conclude that Method 4 is effective for the close evaluation of the representation formula.
The error for Method 4 demonstrates the same characteristic behavior discussed for the double-layer
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Figure 8: The errors made by Method 1 (top row) and Method 4 (bottom row) for the peanut-shaped
domain shown on the left plot of Fig. 8. The first and second columns show log10 of the errors made
by these two methods in the x1x3-plane with the plots in the second column showing a close-up in the
vicinity of point A = (−0.16,−0.21, 0). The third and fourth columns show log10 of the errors made
by these two methods in the x1x2-plane with the plots in the fourth column showing a close-up in the
vicinity of point B = (−1.04, 0, 0.94).

Figure 9: Comparison of errors made by Methods 1 – 4 for the peanut-shaped domain for evaluation
points along the normal at distance ε from point A = (−0.16,−0.21, 0) on the boundary and in
the x1x3-plane (left plot) and for evaluation points along the normal at distance ε from point B
= (−1.04, 0, 0.94).on the boundary and in the x1x2-plane (right plot). The dashed, black lines show
the best linear fit through the Method 4 errors for the four smallest ε values. For both fits, the slopes
are consistent with the O(ε) asymptotic error estimate.

potential. Namely, for very small values of ε, the error is O(ε). For intermediate values of ε, the error
increases as the value of ε coincides with the spacing of the Gauss-Legendre quadrature points in the
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Figure 10: The errors made by Method 1 (top row) and Method 4 (bottom row) for the inverted
mushroom cap, see Fig. 8, right. The first and second columns show log10 of the errors made by these
two methods in the x1x3-plane with the plots in the second column showing a close-up in the vicinity
of point A = (−3.07,−1.27, 0) . The third and fourth columns show log10 of the errors made by these
two methods over the x1x2-plane with the plots in the fourth column showing a close-up in the vicinity
of point B = (−1.55, 0, 1.41).

Figure 11: Comparison of errors made by Methods 1 – 4 for the inverted mushroom cap for evaluation
points along the normal at distance ε from point A = (−3.07,−1.27, 0) on the boundary and in
the x1x3-plane (left plot) and for evaluation points along the normal at distance ε from point B
= (−1.55, 0, 1.41) on the boundary and in the x1x2-plane (right plot). The dashed, black lines show
the best linear fit through the Method 4 errors for the four smallest ε values. For both fits, the slopes
are consistent with the O(ε) asymptotic error estimate given by (3.18).

polar angle, s. For bigger values of ε, Methods 1, 2, 3, and 4 are all very accurate.
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7 Conclusions

We have presented a simple and effective numerical method for the close evaluation of double- and
single-layer potentials in three dimensions. The close evaluation of these layer potentials are challenging
to numerically compute because they are nearly singular integrals. Based on a local analysis of these
layer potentials about the point at which their kernel is sharply peaked, we have identified a natural
way to compute those nearly singular integrals. This method consists of three steps:

1. Rotate the coordinate system so that the point at which the integrand is sharply peaked is aligned
with the north pole.

2. Integrate first with respect to the azimuthal angle using the Periodic Trapezoid Rule.

3. Integrate the remaining function with respect to the polar angle using the Gauss-Legendre
Quadrature Rule mapped from [−1, 1] to [0, π].

A key point to Step 3 is that we do not integrate with respect to the cosine of the polar angle because
the factor of sine of the polar angle (the natural Jacobian for the spherical coordinate system) is
important in effectively computing these integrals. Numerical results presented here show that the
last step is essential for accurately computing these integrals. Moreover, the numerical results confirm
the asymptotic analysis results: the error for the modified double-layer potential due to the subtraction
method decreases quadratically with respect to the distance from the boundary and the error for the
single-layer potential decreases linearly with respect to the distance from the boundary.

This method is effective because integration with respect to azimuth in the rotated coordinate sys-
tem is a natural averaging operation leading to a smooth function in the polar angle. This averaging
operation is a feature of the three-dimensional problem. It is not available for two-dimensional prob-
lems. The results from the local analysis given by (3.11) and (3.18) show that this azimuthal averaging
yields a function in the polar angle that has a finite limit at the north pole of the rotated coordinate
system. Rather than use these results in a quadrature rule for the polar angle, we have chosen to
use the Gauss-Legendre Quadrature Rule, which is an open rule, so that the quadrature points never
include the north and south poles. Therefore, these limiting values are not explicitly needed.

The local analysis used here can be extended to compute the full asymptotic expansions for the
close evaluation of double- and single-layer potentials. These asymptotic expansions can be used to
find approximations to a desired order of accuracy. Details of these asymptotic expansions can be
found in [13]. These asymptotic expansions may be useful if one requires more accuracy for the close
evaluation of layer potentials. Nonetheless, we find that O(ε2) asymptotic error estimate for the
modified double-layer potential and the O(ε) asymptotic error estimate for the single-layer potential
to be quite accurate. An asymptotic expansion for the single-layer potential may be useful to obtain
an asymptotic error that matches that of the modified double-layer potential, for example.

We have assumed that the boundary is closed, oriented, and analytic in this paper, but as long as
the surface near the point on the boundary at which the integrand is singular is relatively smooth so
that there exists a natural averaging operation, one can apply this approach. Doing so may require
consideration of different quadrature rules for that specific context.

Finally, the analysis shown here can be extended to other problems. In particular, this method
is broadly applicable to weakly singular and nearly singular integrals over two-dimensional surfaces.
These weakly singular and nearly singular integrals may correspond to solutions of other elliptic partial
differential equations including Helmholtz’s equation and Stokes’ equations.

A Rotations on the sphere

We give the explicit rotation formulas over the sphere used throughout this paper. Consider y, y? ∈ S2,
the unit sphere. We introduce the parameters θ ∈ [0, π] and ϕ ∈ [−π, π] and write

y = y(θ, ϕ) = sin θ cosϕ ı̂ + sin θ sinϕ ̂ + cos θ k̂. (A.1)

20



The specific parameters θ? and ϕ? are set so that y? = y(θ?, ϕ?). We would like to work in the rotated,
uvw-coordinate system in which

û = cos θ? cosϕ? ı̂ + cos θ? sinϕ? ̂− sin θ? k̂,

v̂ = − sinϕ? ı̂ + cosϕ? ̂,

ŵ = sin θ? cosϕ? ı̂ + sin θ? sinϕ? ̂ + cos θ? k̂.

(A.2)

In this rotated system we have ŵ = y?. For this rotated coordinate system, we introduce the parameters
s ∈ [0, π] and t ∈ [−π, π] such that

y = y(s, t) = sin s cos t û + sin s sin t v̂ + cos s ŵ. (A.3)

It follows that ŵ = y? = y(0, ·). This corresponds to setting y? to be the north pole. By equating
(A.1) and (A.3) and substituting (A.2) into that result, we obtainsin θ cosϕ

sin θ sinϕ
cos θ

 =

cos θ? cosϕ? − sinϕ? sin θ? cosϕ?

cos θ? sinϕ? cosϕ? sin θ? sinϕ?

− sin θ? 0 cos θ?

sin s cos t
sin s sin t

cos s

 . (A.4)

Let us rewrite (A.4) compactly as y(θ, ϕ) = R(θ?, ϕ?)y(s, t) with R(θ?, ϕ?) denoting the 3× 3 matrix
given above. It is a rotation matrix. Hence, it is orthogonal.

We now seek to write θ = θ(s, t) and ϕ = ϕ(s, t). To do so, we introduce

ξ(s, t; θ?, ϕ?) = cos θ? cosϕ? sin s cos t− sinϕ? sin s sin t+ sin θ? cosϕ? cos s, (A.5)

η(s, t; θ?, ϕ?) = cos θ? sinϕ? sin s cos t+ cosϕ? sin s sin t+ sin θ? sinϕ? cos s, (A.6)

ζ(s, t; θ?, ϕ?) = − sin θ? sin s cos t+ cos θ? cos s. (A.7)

From (A.5) - (A.7), we find that

θ = arctan

(√
ξ2 + η2

ζ

)
, (A.8)

and

ϕ = arctan

(
η

ξ

)
. (A.9)

B Spherical Laplacian

In this Appendix, we establish the result given in (3.10). We first seek an expression for ∂2s [·]|s=0 in
terms of θ and ϕ. By the chain rule, we find that

∂2

∂s2
[·]
∣∣∣∣
s=0

=

[(
∂θ

∂s

)2
∂2

∂θ2
+

(
∂ϕ

∂s

)2
∂2

∂ϕ2
+ 2

∂θ

∂s

∂ϕ

∂s

∂2

∂θ∂ϕ
+
∂2θ

∂s2
∂

∂θ
+
∂2ϕ

∂s2
∂

∂ϕ

] ∣∣∣∣
s=0

. (B.1)

Using θ defined in (A.8) and ϕ defined in (A.9), we find that

∂θ(s, t)

∂s

∣∣∣∣
s=0

= cos t, (B.2)

∂2θ(s, t)

∂s2

∣∣∣∣
s=0

=
cos θ?

sin θ?
sin2 t, (B.3)

∂ϕ(s, t)

∂s

∣∣∣∣
s=0

=
sin t

sin θ?
, (B.4)

∂2ϕ(s, t)

∂s2

∣∣∣∣
s=0

= − cos θ?

sin2 θ?
sin 2t. (B.5)
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Note that at s = 0, we have θ? = θ.
Substituting (B.2) – (B.5) into (B.1) and replacing θ? by θ, we obtain

∂2

∂s2
[·]
∣∣∣∣
s=0

= cos2 t
∂2

∂θ2
+ sin2 t

1

sin2 θ

∂2

∂ϕ2
+ 2 cos t sin t

1

sin θ

∂2

∂θ∂ϕ
+ sin2 t

cos θ

sin θ

∂

∂θ
− sin 2t

cos θ

sin2 θ

∂

∂ϕ
,

(B.6)
from which it follows that

1

π

∫ π

0

∂2

∂s2
[·]
∣∣∣∣
s=0

dt =
1

2

[
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
=

1

2
∆S2 , (B.7)

which establishes the result.
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