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Abstract Constrained clustering is becoming an increasingly popular approach in data mining.
It offers a balance between the complexity of producing a formal definition of thematic classes—
required by supervised methods—and unsupervised approaches, which ignore expert knowledge and
intuition. Nevertheless, the application of constrained clustering to time-series analysis is relatively
unknown. This is partly due to the unsuitability of the Euclidean distance metric, which is typically
used in data mining, to time-series data. This article addresses this divide by presenting an exhaustive
review of constrained clustering algorithms and by modifying publicly available implementations to
use a more appropriate distance measure—dynamic time warping. It presents a comparative study,
in which their performance is evaluated when applied to time-series. It is found that k-Means based
algorithms become computationally expensive and unstable under these modifications. Spectral
approaches are easily applied and offer state-of-the-art performance, whereas declarative approaches
are also easily applied and guarantee constraint satisfaction. An analysis of the results raises several
influencing factors to an algorithm’s performance when constraints are introduced.

1 Introduction

Time-series are becoming more readily available with the introduction of mobile sensing devices,
satellite constellations, wearable devices, and health monitors, to name but a few. Contemporary
time-series data mining problems are therefore characterised by increasingly large volumes of data.

This complicates time-series classification because of the complexity of collecting reliable ground
truth (or reference) data and the definition of thematic classes. As such, unsupervised clustering
is often employed, which offers a solution based upon the data alone. These approaches, however,
ignore expert knowledge and intuition (that is to say to the potential thematic classes), and do not
offer the possibility for an expert to propose modifications to the clustering.
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Constrained clustering (also known as semi-supervised clustering) is the process of introducing
background knowledge (also known as side information) to guide a clustering algorithm. The
background knowledge takes the form of constraints that supplement the information derived from
the data through a distance metric, for a (generally small) subset of the data. A constrained
algorithm attempts to find a solution that balances the data derived information with that derived
from the user constraints. As such these approaches offer a new tool for time-series clustering which,
to the best of our knowledge, has not been applied to the domain.

This paper addresses this through the following three contributions.

– A review of constrained clustering methods, including single algorithm approaches and collabo-
rative and ensemble approaches, which define an interaction between algorithms.

– Adapting a sample of these algorithms for use in time-series analysis and describes the properties
of others which prevents their adaptation to time-series analysis.

– An evaluation of these adapted methods on publicly available time-series data (Chen et al, 2015),
which gives insight into the factors that influence their performance in constrained clustering.

As such, this article offers insight into the different formulations of constrained clustering algorithms
and how they can be adapted to be used in time-series clustering. The algorithms are selected from
implementations that are publicly available. Some algorithms can be directly applied by inputting a
dissimilarity/similarity matrix calculated using an appropriate dissimilarity measure, others require
modification of the algorithm itself to integrate the measure. The evaluation is performed using
nine different datasets and forty constraint cases for each dataset.

The remainder of this paper is organised as follows. Section 2 presents some background on
clustering, user-constraints, and time-series clustering. Section 3 presents a comprehensive review
of the literature on constrained clustering. Section 4 describes the modification of publicly available
implementations for use in time-series clustering, and a comparative study of these algorithms using
standard datasets. Section 5 analyses and discusses these results and discusses the limitations of
existing approaches when applied to time-series data. Finally the conclusions of the study are drawn
in Section 6.

2 Background

2.1 Cluster Analysis

Let O be a set of instances (data points) {o1, . . . , on} and d(oi, oj) a dissimilarity (or a similarity)
measure between any two instances oi and oj . The similarity or dissimilarity between instances
can be computed from their features or given by a similarity graph. Partition clustering involves
finding a partition of O into K non-empty and disjoint groups called clusters, C1, . . . , CK , such that
instances in the same cluster are very similar and instances in different clusters are different. The
homogeneity of the clusters is usually formalised by a optimisation criterion, and clustering aims
at finding a partition that optimises the given objective. For distance-based clustering, different
optimisation criteria exist, the most popular are (Hansen and Jaumard, 1997):

– minimising the maximal diameter of the clusters,
– minimising the maximal radius of the clusters,
– maximising the minimal split between clusters,
– minimising the sum of stars,
– minimising the within-cluster sum of dissimilarities (WCSD),
– minimising the within-cluster sum of squares (WCSS).



Constrained Distance Based Clustering for Time-Series 3

All of these criteria, except the minimal split, are NP-Hard. Finding a partition by maximising the
minimal split between clusters is polynomial (Delattre and Hansen, 1980) but becomes NP-Hard
under user constraints (Davidson and Ravi, 2007). As for the maximal diameter criterion, the
problem is polynomial with 2 clusters (K = 2), but is NP-Hard with more than 3 clusters (K ≥ 3)
(Hansen and Delattre, 1978). The NP-Hardness of the WCSS criterion in general dimensions when
K = 2 is proved in (Aloise et al, 2009).

Similarity-based clustering uses data in the form of an undirected and weighted similarity graph,
G = (V,E), where each vertex, v ∈ V , represents a data point and each edge between two vertices,
vi and vj , has a non-negative weight wij . Spectral clustering aims to find a partition of the graph
such that the edges between different groups have a very low weight and the edges within a group
have high weight. Given a cluster Ci, a cut measure is defined by the sum of the weights of the
edges that link an instance in Ci and an instance not in Ci. The two most common optimisation
criteria are (Luxburg, 2007):

– minimising the ratio cut, which is defined by the sum of cut(Ci)
|Ci| ,

– minimising the normalised cut, which is defined by the sum of cut(Ci)
vol(Ci)

, where vol(Ci) measures
the degrees of the nodes belonging to Ci.

These criteria are also NP-Hard. Spectral clustering algorithms solve relaxed versions of those
problems: relaxing the normalised cut leads to normalised spectral clustering and relaxing the ratio
cut leads to unnormalised spectral clustering.

2.2 User Constraints

In practice, a user may have some requirements for, or prior knowledge about, the final solution.
For instance, the user can have some information on the label of a subset of objects (Wagstaff
and Cardie, 2000). Because of the inherent complexity of clustering optimisation criteria, classic
algorithms always find a local optimum. Several optima may exist, some of which may be closer
to the user requirement. It is therefore important to integrate prior knowledge into the clustering
process and several studies have demonstrated the importance of this kind of domain knowledge in
data mining processes (Anand et al, 1995). Prior knowledge is expressed by user constraints to be
satisfied by the clustering solution. The subject of these user constraints can be the instances or
the clusters (Basu et al, 2008).

Instance-level constraints are the most widely used type of constraint and were first introduced
by Wagstaff and Cardie (2000). Two kinds of instance-level constraints exist: must-link (ML) and
cannot-link (CL). An ML constraint between two instances oi and oj states that they must be in the
same cluster: ∀k ∈ {1, . . . ,K}, oi ∈ Ck ⇔ oj ∈ Ck. A CL constraint on two instances oi and oj states
that they cannot be in the same cluster: ∀k ∈ {1, . . . ,K}, ¬(oi ∈ Ck ∧ oj ∈ Ck). In semi-supervised
clustering, this information is available to aid the clustering process and can be inferred from class
labels: if two objects have the same label then they are linked by an ML constraint, otherwise by a
CL constraint. Supervision by instance-level constraints is, however, more general and more realistic
than class labels. Using knowledge, even when class labels may be unknown, a user can specify
whether pairs of points belong to the same cluster or not (Wagstaff et al, 2001).

Cluster-level constraints define requirements on the clusters, for example:

– the number of clusters K;
– their absolute or relative maximal or minimal size;
– their maximum diameter, i.e. clusters must have a diameter of at most γ;
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Fig. 1 Examples of ML, CL, δ, γ, and ε constraints.

– their split, i.e. clusters must be separated by at least δ (note that although the diameter or
split constraints state requirements on the clusters, they can be expressed by a conjunction of
cannot-link constraints or must-link constraints, respectively (Davidson and Ravi, 2005));

– the ε-constraint, introduced in (Davidson and Ravi, 2005), demands that each object oi has in
its neighborhood of radius ε at least one other object in the same cluster.

See Figure 1 for an example of these constraints.

Mechanisms to integrate these constraints into the clustering process can be categorised into
three different approaches:

– enforcing constraints by guiding clustering algorithms during their process or by modifying the
objective function;

– learning the distance function using metric learning;
– declarative and generative methods.

By far the most common constraints to be used in clustering are must-link and cannot-link
constraints. This is because they can be intuitively derived from user inputs without in-depth
knowledge of the underlying clustering process and feature space. As such, the review will focus on
algorithms that explicitly model these constraints.

2.3 Time-Series Clustering

Time-series increase the complexity of clustering due to the properties of the data. Almost all
clustering algorithms use a distance function based upon the norm of two vectors Lp (Manhattan,
L1; Euclidean, L2; and Maximum, L∞). This implies a fixed mapping between points in two time-
series and as such, norm based distances are sensitive to noise, misalignment in time (however
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small) (Keogh and Kasetty, 2003), and are unable to correct for sub-sequence, i.e. non-linear, time
shifts (Wang et al, 2013). Dynamic Time Warping (DTW) (Sakoe and Chiba, 1971, 1978) on the
other hand is a dissimilarity measure that finds an optimal alignment between two time series by
non-linearly warping them. As such, it overcomes the limitations of norm based distances when
applied to time-series. Furthermore, certain types of clustering algorithms, for example k-Means,
calculate centroids during their optimisation, which is not a trivial task in the case of time-series
due to the misalignments discussed previously. The DTW Barycenter Averaging (DBA) algorithm
(Petitjean et al, 2011) overcomes this limitation by iteratively refining an initial estimate of the
average sequence (usually taken to be a random sample of the time-series being averaged), in
order to minimise its squared DTW measure to the sequences being averaged. As such, classical
constrained clustering implementations require modification to use the DTW measure and DBA
averaging (if required) before being applied to time-series. Other considerations when working with
time-series are that the dimensionality of the data can be very large, which means that the sampling
of the input space can be sparse.

For an in-depth background on time-series clustering the following reviews are recommended:
(Keogh and Kasetty, 2003; Laxman and Sastry, 2006; Kavitha and Punithavalli, 2010; Antunes and
Oliveira, 2001; Liao, 2005; Rani and Sikka, 2012; Aghabozorgi et al, 2015). Keogh and Lin (2005)
define two categories of time-series clustering:

– Whole Clustering: “The notion of clustering here is similar to that of conventional clustering of
discrete objects. Given a set of individual time series data, the objective is to group similar time
series into the same cluster” (Keogh and Lin, 2005).

– Subsequence Clustering: “Given a single time series, sometimes in the form of streaming time
series, individual time series (subsequences) are extracted with a sliding window. Clustering is
then performed on the extracted time series subsequences” (Keogh and Lin, 2005).

They then proceed to demonstrate that subsequence clustering is “meaningless” because “clusters
extracted from these time series are forced to obey a certain constraints that are pathologically
unlikely to be satisfied by any dataset, and because of this, the clusters extracted by any clustering
algorithm are essentially random” (Keogh and Lin, 2005). A typical goal in time-series analysis
is to cluster the data using the full time-series and this is the most direct application of existing
constrained clustering approaches. Therefore this review will focus on ‘Whole Clustering’.

It should be noted that DTW is not the only available method for measuring dissimilarity
between time-series. It is, nevertheless, often found that alternative dissimilarity measures are not
significantly better than DTW in real-world datasets (Ding et al, 2008; Wang et al, 2013; Lines and
Bagnall, 2015; Bagnall et al, 2017) (the reader is referred to these references for a comprehensive
review and comparison of the alternatives). To simplify the presented work we will therefore focus
on DTW.

3 Constrained Clustering Methods

This section presents a review of partitional constrained clustering methods. These range from
algorithmic approaches to declarative approaches, from using the constraints to guide the search
process to using them to learn a metric before and/or during searching, and from constructing a
clustering directly from the dataset to constructing a clustering from a set of given clusterings. The
algorithms that exist in the literature, and which are reviewed herein, are summarised in Table
1. The methods that are used in the experimental section of this paper will be discussed in more
depth in Section 4.
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Category Method

k-Means COP-COBWEB (Wagstaff and Cardie, 2000)
COP-KMeans (Wagstaff et al, 2001)
Seed-KMeans (Basu et al, 2002)
Constrained-KMeans (Basu et al, 2002)
ICOP-KMeans (Tan et al, 2010)
Sequenced Assignment COP-KMeans (Rutayisire et al, 2011)
MLC-KMeans (Huang et al, 2008)
SCREEN (Tang et al, 2007)
GA Dispersion & Impurity (Demiriz et al, 1999)
CVQE (Davidson and Ravi, 2005)
LCVQE (Pelleg and Baras, 2007)
PCK-Means (Basu et al, 2004b)
Lagrangian Relaxation (Ganji et al, 2016)
Tabu Search (Hiep et al, 2016)
Fuzzy CMeans (Grira et al, 2006)
Non-Negative Matrix Factorisation (Li et al, 2007)
Mathematical Program (Ng, 2000)
Minimal Capacity Constraints (Bradley et al, 2000)
Balanced Clustering (Banerjee and Ghosh, 2006)
Minimal Size (Demiriz et al, 2008)
Minimal Size & Balanced Clustering (Ge et al, 2007)

Metric Learning Euclidean (Klein et al, 2002)
Mahanalobis (Bar-Hillel et al, 2003, 2005; Xing et al, 2002)
Kullback-Leibler Divergence (Cohn et al, 2003)
String-Edit Distance (Bilenko and Mooney, 2003)
LRML (Hoi et al, 2008, 2010)
Partially Observed Constraints (Yi et al, 2012)

k-Means & Metric Learning MPCK-Means (Bilenko et al, 2004)
HMRF-KMeans (Basu et al, 2004b)
Semi-Supervised Kernel k-Means (Kulis et al, 2005, 2009)
CLWC (Cheng et al, 2008)

Spectral Graph Theory Adjacency Matrix Modification (Kamvar et al, 2003)
Out-Of-Sample Adjacency Matrix Modification (Alzate and Suykens, 2009)
CSP (Wang and Davidson, 2010a; Wang et al, 2014)
Constraint Satisfaction Lower Bound (Wang et al, 2010)
Spectral Regularisation (CCSR) (Li et al, 2009)
C1-SC (Rangapuram and Hein, 2012)
Logical Constraint Combinations (Zhi et al, 2013)
Distance Modification (Anand and Reddy, 2011)
Constraint Propagation Binary Class (Lu and Carreira-Perpiñán, 2008)
Constraint Propagation Multi-Class (Lu and Ip, 2010; Chen and Feng, 2012;
Ding et al, 2013)
Kernel Matrix Learning (Zhang and Ando, 2006; Hoi et al, 2007; Li and
Ding, 2008; Li and Liu, 2009)
Guaranteed Quality Clustering (Cucuringu et al, 2016)

Ensemble Clustering SCEV (Iqbal et al, 2012)
Consensus Function (Al-Razgan and Domeniconi, 2009; Xiao et al, 2016;
Dimitriadou et al, 2002)

Collaborative Clustering Samarah (Forestier et al, 2010a)
Penta-Training (Domeniconi and Al-Razgan, 2008)

Declarative Approaches SAT (Davidson et al, 2010)
CP (Dao et al, 2013, 2016, 2017; Guns et al, 2016)
ILP Column Generation (Merle et al, 1999; Aloise et al, 2012; Babaki et al,
2014)
Restricted Cluster Candidates (Mueller and Kramer, 2010; Ouali et al, 2016)

Miscellaneous Constrained EM (Shental et al, 2013)
Evolutionary Algorithm (Handl and Knowles, 2006)
Random Forest (Zhu et al, 2016)

Table 1 Categorisation of methods found in the literature.
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3.1 k-Means

In this type of approach, the clustering algorithm or the objective function is modified so that user
constraints are used to guide the algorithm towards a more appropriate data partitioning. Most of
these works consider instance-level must-link and cannot-link constraints. The extension is done
either by enforcing pairwise constraints or by using pairwise constraints to define penalties in the
objective function. A survey on partitional and hierarchical clustering with instance level constraints
can be found in (Davidson and Basu, 2007).

In the category of enforcing pairwise constraints, the first work proposed a modified version of
COBWEB (Fisher, 1987) that tends to satisfy all the pairwise constraints, named COP-COBWEB
(Wagstaff and Cardie, 2000). Subsequent work extended the k-Means algorithm to instance-level
constraints. The k-Means algorithm starts with initial assignment seeds and assigns objects to
clusters in several iterations. At each iteration, the centroids of the clusters are computed and
the objects are reassigned to the closest centroid. The algorithm converges and finds a solution
which is a local optimum of the within-cluster sum of squares (WCSS or distortion). To integrate
must-link and cannot-link constraints, the COP-KMeans algorithm by Wagstaff et al (2001) extends
the k-Means algorithm by choosing a reassignment that does not violate any constraints at each
iteration1. This greedy behavior without backtracking means that COP-KMeans may fail to find a
solution that satisfies all the constraints even when such a solution exists. Basu et al (2002) propose
two variants of k-Means, the Seed-KMeans and Constrained-KMeans algorithms, which allow the
use of objects labeled as seeds: the difference between the two being the possibility of changing the
class centers or not. In both approaches, it is assumed that there is at least one seed for each cluster
and that the number of clusters is known. The seeds are used to overcome the sensitivity of the
k-Means approaches to the initial parameterisation.

Incorporating must-link and cannot-link constraints makes clustering algorithms sensitive to the
assignment order of instances and therefore results in consequent constraint-violation. To address
the issue of constraint violation in COP-KMeans, Tan et al (2010) (ICOP-KMeans) and Rutayisire
et al (2011) propose a modified version with an assignment order, which is either based on a measure
of certainty computed for each instance or a sequenced assignment of cannot-linked instances. MLC-
KMeans (Huang et al, 2008) takes an alternative approach by introducing assistant centroids, which
are calculated using the points implicated by must-link constraints for each cluster, and which are
used to calculate the similarity of instances and clusters.

For high-dimensional sparse data, the SCREEN method (Tang et al, 2007) for constraint-guided
feature projection was developed, which can be used with a semi-supervised clustering algorithm.
This method considers an objective function to learn the projection matrix, which can project the
original high-dimensional dataset into a low-dimensional space such that the distance between any
pair of instances involved in the cannot-link constraints are maximised while the distance between
any pair of instances involved in the must-link constrains are minimised. A spherical k-Means
algorithm is then used to try to avoid violating cannot-link constraints.

Other methods uses penalties as a trade-off between finding the best clustering and satisfying
as many constraints as possible. Considering a subset of instances whose label is known, Demiriz
et al (1999) modifies the clustering objective function to incorporate a dispersion measure and an
impurity measure. The impurity measure is based on Gini Index to measure misplaced known labels.
The CVQE (constrained vector quantization error) method (Davidson and Ravi, 2005) penalizes
constraint violations using distance. If a must-link constraint is violated then the penalty is the
distance between the two centroids of the clusters containing the two instances that should be

1 COP-KMeans is presented in more detail in Section 4.2.1.
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together. If a cannot-link constraint is violated then the penalty is the distance between the cluster
centroid the two instances are assigned to and the distance to the nearest cluster centroid. These two
penalty types together with the distortion measure define a new differentiable objective function. An
improved version, linear-time CVQE (LCVQE) (Pelleg and Baras, 2007), avoids checking all possible
assignments for cannot-link constraints and its penalty calculations takes into account coordinates
of the involved instances in the violated constraint. The method PCK-Means (Basu et al, 2004a)
formulated the goal of pairwise constrained clustering as minimising a combined objective function,
defined as the sum of the total squared distances between the points and their cluster centroids
WCSS, and the cost incurred by violating any pairwise constraints. The cost can be uniform but
can also take into account the metric of the clusters, as in the MPCK-Means version that integrates
both constraints and metric learning. Lagrangian constrained clustering (Ganji et al, 2016) also
formulates the objective function as a sum of distortion and the penalty of violating cannot-link
constraints (must-link constraints are used to aggregate instances into super-instances so they are all
satisfied). This method uses a Lagrangian relaxation strategy of increasing penalties for constraints
which remain unsatisfied in subsequent clustering iterations. A local search approach using Tabu
search was developed to optimise the objective function, which is the sum of the distortion and
the weighted cost incurred by violating pairwise constraints (Hiep et al, 2016). Grira et al (2006)
introduced the cost of violating pairwise constraints into the objective function of Fuzzy CMeans
algorithm. Li et al (2007) use non-negative matrix factorisation to perform centroid-less constrained
k-Means clustering (Zha et al, 2001).

Hybrid approaches integrate both constraint enforcing and metric learning (see Subsection
3.2) into a single framework: MPCK-Means (Bilenko et al, 2004), HMRF-KMeans (Basu et al,
2004b), semi-supervised kernel k-Means (Kulis et al, 2005), and CLWC (Cheng et al, 2008). Bilenko
et al (2004) define an uniform framework that integrates both constraint-based and metric-based
methods. This framework represents PCK-Means when considering a constraint-based factor and
MPCK-Means when considering both constraint-based and metric-based factors. Semi-supervised
HMRF k-Means (Basu et al, 2004b) is a probabilistic framework based on Hidden Markov Random
Fields, where the semi-supervised clustering objective minimises both the overall distortion measure
of the clusters and the number of violated must-link and cannot-link constraints. A k-Means like
iterative algorithm is used for optimising the objective, where at each step the distortion measure is
re-estimated to respect user-constraints. Semi-supervised kernel k-Means (Kulis et al, 2005, 2009) is
a weighted kernel-based approach, that generalises HMRF k-Means. The method can perform semi-
supervised clustering on data given either as vectors or as a graph. It can be used on a wide class of
graph clustering objectives such as minimising the normalised cut or ratio cut. The framework can
be therefore applied on semi-supervised spectral clustering. Constrained locally weighted clustering
(CLWC) (Cheng et al, 2008) integrates the local distance metric learning with constrained learning.
Each cluster is assigned to its own local weighting vector in a different subspace. The data points
in the constraint set are arranged into disjoint groups (chunklets), and the chunklets are assigned
entirely in each assignment and weight update step.

Beyond pairwise constraints, Ng (2000) adds suitable constraints into the mathematical program
formulation of the k-Means algorithm to extend the algorithm to the problem of partitioning objects
into clusters where the number of elements in each cluster is fixed. Bradley et al (2000) avoid local
solution with empty clusters or clusters having very few points by explicitly adding k minimal
capacity constraints to the formulation of the clustering optimisation problem. This work considers
that the k-Means algorithm and the constraints are enforced during the assignment step at each
iteration. Banerjee and Ghosh (2006) proposed a framework to generate balanced clusters, i.e.
clusters of comparable sizes. Demiriz et al (2008) integrated a minimal size constraint to k-Means
algorithm. Considering two types of constraints, the minimum number of objects in a cluster and
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minimum variance of a cluster, Ge et al (2007) proposed an algorithm that generates clusters
satisfying them both. This algorithm is based on a CD-Tree data structure, which organizes data
points in leaf nodes such that each leaf node approximately satisfies the significance and variance
constraint and minimises the sum of squared distances.

3.2 Metric Learning

Metric learning aims to automatically learn a metric measure from training data that best dis-
criminates the comprising samples according to a given criterion. In general, this metric is either a
similarity or a distance (Klein et al, 2002). Many machine learning approaches rely on the learned
metric; thus metric learning is usually a preprocessing step for such approaches.

In the context of clustering, the metric can be defined as the Mahalanobis distance parameterised
by a matrix M , i.e. dM(oi, oj) = ||oi − oj ||M (Bellet et al, 2015). Unlike the Euclidean distance,
which assumes that attributes are independent of one another, the Mahalanobis distance enables
the similarity measure to take into account correlations between attributes. Learning the distance
dM is equivalent to learning the matrix M . For dM to satisfy distance proprieties (non-negativity,
identity, symmetry, and the triangle inequality) M should be a positive semi-definite real-valued
matrix.

To guide the learning process, two sets are constructed from the ML and CL constraints: the
set of supposedly similar—must-link—pairs Sim, and the supposedly dissimilar—cannot-link—pairs
Dis, such that

– Sim = {(oi, oj) | oi and oj should be as similar as possible},
– Dis = {(oi, oj) | oi and oj should be as dissimilar as possible}.

It is also possible to introduce unlabeled data along with the constraints to prevent over-fitting.
The ways of using cannot-link constraints in [11, 13] are not well justified too, because a similarity

of 0 between two cannot-link objects in the input space does not mean that the two objects tend
to belong to different categories

Several proposals have been made to modify (learn) a distance (or metric) taking into account
this principle. We can cite works on the Euclidean distance and shortest path (Klein et al, 2002),
Mahanalobis distance (Bar-Hillel et al, 2005, 2003; Xing et al, 2002), Kullback-Leibler divergence
(Cohn et al, 2003), string-edit distance (Bilenko and Mooney, 2003), and the Laplacian regularizer
metric learning (LRML) method for clustering and imagery (Hoi et al, 2008, 2010).

Yi et al (2012) describe a metric learning algorithm that avoids the high computational cost
implied by the positive semi-definite constraint. Matrix completion is performed on the partially
observed constraints and it is observed that the completed similarity matrix has a high probability
of being positive semi-definite, thus avoiding the explicit constraint.

3.3 Spectral Graph Theory

Spectral clustering is a non-supervised method that takes as input a pre-calculated similarity
matrix (graph) and aims to minimise the ratio cut criterion (Luxburg, 2007) or the normalised
cut criterion (Shi and Malik, 2000). Spectral clustering is often considered superior to classical
clustering algorithms, such as k-Means, because it is capable of extracting clusters of arbitrary
form (Luxburg, 2007). It has also been shown that algorithms that build partitions incrementally
(like k-Means and EM) are prone to be overly constrained (Davidson and Ravi, 2006). Moreover,
spectral clustering has polynomial time complexity. The constraints can be expressed as ML/CL
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constraints or in the form of labels, these can be taken into account either as “hard” (binary)
constraints or “soft” (probabilistic) constraints. The method allows the user to specify a lower
bound on constraint satisfaction and all points are assigned to clusters simultaneously, even if the
constraints are inconsistent.

Kamvar et al (2003) first integrated ML and CL constraints into spectral clustering2. This is
achieved by modifying the affinity matrix by setting ML constrained pairs to maximum similarity,
1, and CL constrained pairs to minimum similarity, 0. This has been extended to out-of-sample
points and soft-constraints through regularisation (Alzate and Suykens, 2009). Li et al (2009) point
out, however, that a similarity of 0 in the affinity matrix does not mean that the two objects tend
to belong to different clusters.

Wang and Davidson (2010a); Wang et al (2014) introduce a framework for integrating constraints
into a spectral clustering. Constraints between N objects are modelled by a matrix Q of size N ×N ,
such that

Qij = Qji =


+1, if ML(i, j),

−1, if CL(i, j),

0, otherwise,

(1)

upon which a constraint satisfaction measure can be defined. Soft constraints can be taken into
account by allowing real values to be assigned to Q or by allowing fuzzy cluster membership values.
Subsequently, the authors introduce a method to integrate a user-defined lower-bound on the level
of constraint satisfaction (Wang and Davidson, 2010b). Work has also been described that allows
for inconsistent constraints (Rangapuram and Hein, 2012).

Based on the Karush-Kuhn-Tucker (Kuhn and Tucker, 1951) conditions, an optimal solution
can then be found by first finding the set of solutions satisfying all constraints and then using a
brute-force approach to find the optimal solution from this set.

These approaches have been extended to integrate logical combinations of constraints (Zhi et al,
2013), which are translated into linear equations or linear inequations. Furthermore, instead of
modifying the affinity matrix using binary values, Anand and Reddy (2011) propose to modify the
distances using an all-pairs-shortest-path algorithm such that the new distance metric is similar to
the original space.

Lu and Carreira-Perpiñán (2008) state that an affinity matrix constructed using constraints is
highly informative but only for a small subset of points. To overcome this limitation they propose
a method to propagate constraints (in a method that is consistent with the measured similarities)
to points that are not directly affected by the original constraint set. These advances are proposed
for the two-class problem (multi-class extension is discussed but is computationally inefficient),
multi-class alternatives have been proposed (Lu and Ip, 2010; Chen and Feng, 2012; Ding et al,
2013).

Several works (Zhang and Ando, 2006; Hoi et al, 2007; Li et al, 2008; Li and Liu, 2009) use the
constraints and point similarities to learn a kernel matrix such that points belonging to the same
cluster are mapped to be close and points from different clusters are mapped to be well-separated2.

Most recently, progress has been made in introducing faster and simpler formulations, while
providing a theoretical guarantee of the quality of the partitioning (Cucuringu et al, 2016).

2 The algorithms developed by Kamvar et al (2003) and Li et al (2009) are presented in more detail in Sections
4.2.2 and 4.2.3 respectively



Constrained Distance Based Clustering for Time-Series 11

3.4 Ensemble Clustering

The abundance of clustering methods presented in this review can be explained by the ill-posed
nature of the problem. Indeed, each clustering algorithm is biased by the objective function used
to build the clusters. Consequently, different methods can produce very different clustering results
from the same data. Furthermore, the same algorithm can produce different results depending
upon its parameters and initialisation. Ensemble clustering methods aim to improve the overall
quality of the clustering by reducing the bias of each single algorithm (Hadjitodorov and Kuncheva,
2007). An ensemble clustering is composed of two steps. First, multiple clusterings are produced
from a set of methods having different points of view. These methods can be different clustering
algorithms (Strehl and Ghosh, 2002) or the same algorithm with different parameter values or
initialisations (Fred and Jain, 2002). The final result is derived from the independently obtained
results by applying a consensus function.

Constraints can be integrated in two manners: each learning agent integrates them in its own
fashion; or applying them in the consensus function. The former approach faces an important
dilemma: either favor diversity or quality. High quality is desired, but the gain of ensemble clustering
is derived from diversity (thus avoiding biased solutions). Clustering from constrained algorithms
tends to have a low variance, which implies low diversity (Yang et al, 2017), especially when using
the same set of constraints. Therefore the advantage of ensemble clustering is limited.

Implementations of the first approach exist (Yu et al, 2011; Yang et al, 2012). For example
Iqbal et al (2012) develop the semi-supervised clustering ensembles by voting (SCEV) algorithm, in
which diversity is balanced by using different types of semi-supervised algorithms (i.e. constrained
k-Means, COP-KMeans, SP-Kmeans, etc.). In the first step each semi-supervised agent computes a
clustering given the data and the set of constraints. It then combines all the results using a voting
algorithm after having relabeled and align the different clustering results. The authors propose
to integrate a weight for each agents’ contributions into the voting algorithm. This weight is a
combination of two sub-weights, the first one is defined a priori, based upon the expert’s trust of
each agent according to the data (i.e. seeded k-Means is more efficient for noise, COP-Means and
constraints are more efficient if the data is noise free), the second is also user defined but based
upon the user’s feedback on the clustering result. As such, the algorithm allows more flexibility and
user control over the clustering.

The second approach focuses on applying constraints in the consensus function (Al-Razgan and
Domeniconi, 2009; Xiao et al, 2016; Dimitriadou et al, 2002). These algorithms start by generating
the set of clusterings from the clustering agents. The constraints are then integrated in the consensus
function, which can be divided into four steps:

1. generate a similarity matrix from the set of clusterings;
2. construct a sparse graph from this similarity matrix using the CHAMELEON algorithm—an

edge is constructed between two vertices if the value in the similarity matrix is greater than zero
for the corresponding elements;

3. partition the graph into a large number of sub-clusters using the METIS method;
4. merge the sub-clusters using an agglomerative hierarchical clustering approach by finding the

most similar pair of sub-clusters.

Constraints are integrated during partitioning. Cannot-link constraints are used as priorities for the
split operation—sub-clusters that contains a CL constraints are partitioned until the two elements
in the constraint are allocated to two different clusters.
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3.5 Collaborative Clustering

Collaborative clustering is similar to ensemble clustering, but considers that the information offered
by different sources and different clusterings are complementary (Kittler, 1998). An important
problem encountered by ensemble clustering is the difficulty of computing a consensual result from
different clusterings that have a wide range of numbers of clusters—the correspondence between
each cluster is not a trivial problem (Forestier et al, 2010a).

Collaborative clustering consists in making multiple clustering methods collaborate to reach an
agreement on a data partitioning. While ensemble clustering (and consensus clustering (Monti et al,
2003; Li and Ding, 2008)) focuses on merging clustering results, collaborative clustering focuses
on iteratively modifying the clustering results by sharing information between them (Wemmert
et al, 2000; Gançarski and Wemmert, 2007; Pedrycz, 2002). In consequence it extends ensemble
clustering by adding a refinement step before the unification of the results. For instance, in Samarah
(Wemmert et al, 2000; Gançarski and Wemmert, 2007) each clustering algorithm modifies its results
according to all the other clusterings until all the clusterings proposed by the different methods are
strongly similar3. Thus, they can be more easily unified through a voting algorithm (for example).

Three stages for integrating user constraints in the collaborative process can be identified
(Forestier et al, 2010a): (1) generation of the final result (by labeling the clusters of the final result
using label constraints); (2) directly in the collaborative clustering (in order to guide the collaborative
process); and (3) using constrained agents. Integrating user constraints into the learning agents (3)
is complex because it requires extensive modification of each of the clustering methods involved.
The complexity of integrating constraints in the collaboration (2) depends on how information is
exchanged between the learning agents. Integrating the constraints after collaboration (1), however,
does not interfere in the collaborative process, which makes it easier to implement.

Samarah (Forestier et al, 2010a) is based on the principle of mutual and iterative refinement of
multiple clustering algorithms. This is achieved by generating a set of initial results (using different
algorithms, or the same but with different parameter values), refining these results according to the
constraints, and combining them. During the refinement stage, each result is compared with the
set of results proposed by the other methods, the goal being to evaluate the similarity between the
different results in order to observe differences in the clusterings. Once these differences (named
conflicts) are identified, the objective is to modify the results to reduce these differences and the
number of constraints violations, i.e. resolving the conflicts (Forestier et al, 2010b). These are
resolved by either merging clusters, splitting clusters, or re-clustering clusters iteratively. This step
can be seen as a questioning each result according to the information provided by the other actors
in the collaboration and the background knowledge. After multiple iterations of refinement (in
which a local similarity criterion is used to evaluate whether the modifications of a pair of results
is relevant (Forestier et al, 2010a)), the results are expected to be more similar than before the
collaboration began. During the third and final step, the refined results are combined to propose a
final and unique result (which is simplified due to the similarity of the results).

At level (3), the background knowledge is not used directly by the collaborative process but by
each collaborative agent. A simple implementation of this approach is to replace the learning agents
by constraints clustering methods. This naive approach results in a loss of diversity (as discussed
in relation to ensemble clustering), making the collaborative process irrelevant and increasing
error rates (Domeniconi and Al-Razgan, 2008). To address this, a hybrid approach, that integrates
constraints in levels (2) and (3), has been proposed by Domeniconi and Al-Razgan (2008).

3 Samarah is discussed in more detail in Section 4.2.4.
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The approach uses a set of constrained learning agents that also collaborate using constraints.
Multiple instances of the constrained locally adaptive clustering (CLAC) algorithm, which is derived
from the LAC method (Domeniconi et al, 2007), are used. Before each iteration, a chunklet graph
is constructed with the constraints. This is achieved by grouping data points according to the ML
constraints and adding edges according to the CL constraints. A new set of centroids is deduced
from this chunklet graph, with a set of associated weights, by assigning vertices in the graph to the
appropriate centroid without violating any ML or CL constraints. These set of new centroids and
associated weights are then used as initialisation parameters for the learning agents.

The exchange of knowledge through the agents is achieved by adding new constraints at the
end of each iteration. These constraints are built to highlight features shared between the majority
of clusterings and by selecting those most relevant.

3.6 Declarative Approaches

These approaches offer the user a general framework to formalise the problem by choosing an
objective function and explicitly stating the constraints. They enable the modeling of different types
of user constraints and the search for an exact solution—a global optimum that satisfies all the user
constraints. The frameworks are usually developed using a general optimisation tool, such as integer
linear programming (ILP), SAT, or constraint programming (CP). While the other approaches
usually focus on instance-level must-link and cannot-link constraints, declarative approaches using
CP or ILP allow direct integration of cluster-level constraints. They also allow for the integration
of different optimisation criteria within the same framework, while other approaches are usually
developed for one particular optimisation criterion.

3.6.1 SAT

Considering constrained clustering problems with K = 2, a SAT based framework has been proposed
(Davidson et al, 2010). Based on K = 2, the assignment of objects into clusters is represented by
a Boolean variable xi for each object i. This framework integrates different constraints such as
must-link, cannot-link, maximum diameter and minimum split. Using binary search, the framework
offers both single objective optimisation and bi-objective optimisation. Several single optimisation
criteria are integrated: minimising the maximal diameter, maximising the minimal split, minimising
the difference between diameters, minimising the sum of diameters.

Optimising multiple objectives, the framework considers minimising the diameter and maximis-
ing the split either in a way such that one objective is used as a constraint and the other is optimised
under that constraint, or by combining them in a single objective which is the ratio of diameter to
split. Approximation schemes are also developed to reduce the number of calls in binary search, in
order to make the framework more efficient.

3.6.2 Constraint Programming

Problem modeling in CP consists in formalizing the problem into a Constraint Satisfaction Problem
(CSP) or a Constraint Optimisation Problem (COP). A CSP is a triple 〈X,Dom, C〉 where X is
a set of variables, Dom(x) for each x ∈ X is the domain of x and C is a set of constraints, each
one expresses a condition on a subset of X. A solution of a CSP is a complete assignment of values
from Dom(x) to each variable x ∈ X that satisfies all the constraints of C. A COP is a CSP with
an objective function to be optimised. An optimal solution of a COP is a solution of the CSP that
optimises the objective function.
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In general, solving a CSP or a COP is NP-Hard. Nevertheless, the methods used by the CP
solvers enable us to efficiently solve a large number of real-world applications. They rely on constraint
propagation and search strategies (Rossi et al, 2006).

A CP-based framework for distance-based constrained clustering has been developed by Dao
et al (2013)4. This framework enables the modeling of different constrained clustering problems, by
specifying an optimisation criterion and by setting the user constraints. The framework is evolved
by improving the model and by developing dedicated propagation algorithms for each optimisation
criterion (Dao et al, 2017). In this model, the number of clusters K does not need to be fixed
beforehand, only bounds are needed Kmin ≤ K ≤ Kmax and the model has three components:
partition constraints, user constraints, and objective function constraints.

In order to improve the performance of CP solvers, different search strategies are elaborated for
each criterion. For example, a CP-based framework using repetitive branch-and-bound search has
been developed (Guns et al, 2016) for the WCSS criterion.

Another interest of the declarative framework is the bi-objective constrained clustering problem.
This problem aims to find clusters that are both compact (minimising the maximal diameter) and
well separated (maximising the split), under user constraints. In (Dao et al, 2017) it is shown that
to solve this problem, the framework can be used by iteratively changing the objective function and
adding constraints on the other objective value. This framework has been extended to integrate
user constraints on properties, in order to make clustering actionable (Dao et al, 2016).

3.6.3 Integer Linear Programming

Different frameworks using Integer Linear Programming (ILP) have been developed for constrained
clustering. Using ILP, constrained clustering problems must be formalized by a linear objective
function subject to linear constraints. In the formulation of clustering such as the one used in
CP-based approaches, a clustering is defined by an assignment of instances to clusters. ILP-based
approaches use a formulation that is orthogonal to this: a clustering is considered to be a subset of
the set of all possible clusters.

In this formulation, the first constraint states that each instance must be covered by exactly
one cluster (the clustering is therefore a partition of the instances) and the second states that
the clustering is formed by K clusters. Deciding whether a cluster is kept in the final solution
is exponential w.r.t. the number of instances. The candidate number of clusters in principle is
exponential w.r.t. the number of instances. As such, two kinds of ILP-based approaches have been
developed for constrained clustering: (1) use a column generation approach, where the master
problem is restricted to a smaller set T ′ ⊆ T , where T is the set of all possibles non-empty clusters,
and columns (clusters) are incrementally added until the optimal solution is proved (Babaki et al,
2014); and (2) restrict the cluster candidates on a subset T ′ ⊆ T and define the clustering problem
on T ′ (Mueller and Kramer, 2010; Ouali et al, 2016).

The first type of approaches use column generation to handle the exponential number of pos-
sible clusters. To handle this aspect, an ILP-based column generation approach for unconstrained
minimum sum of squares clustering was introduced in (Merle et al, 1999) and improved in (Aloise
et al, 2012). Column generation iterates between solving the restricted master problem and adding
one or multiple columns. A column is added to the master problem if it can improve the objective
function. If no such column can be found, one is certain that the optimal solution of the restricted
master problem is also an optimal solution of the full master problem.

The column generation approach has been extended to integrate anti-monotone user constraints
in (Babaki et al, 2014). A constraint is anti-monotone if it is satisfied on a set of instances S and

4 CPClustering is discussed in more detail in Section 4.2.5.
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satisfied on all subsets S′ ⊆ S. For instance maximal capacity constraints are anti-monotone but
minimal capacity constraints are not.

Another approach to handle the exponential number of cluster candidates is to restrict them
on a smaller subset. In some clustering settings such as conceptual clustering, the candidates can
usually be taken in a smaller subset T ′. Considering a constrained clustering problem on a restricted
subset T ′, Mueller and Kramer (2010) and Ouali et al (2016) develop ILP-based frameworks that
can integrate different kinds of user constraints.

3.7 Miscellaneous

Shental et al (2013) argue that the EM procedure allows for constraints to be integrated in a
principled way, instead of heuristically, and present a Gaussian mixture model approach. Lu and
Leen (2005) extend this by relaxing the requirement for hard constraints.

Handl and Knowles (2006) address the difficulty of selecting a single clustering objective function
and therefore propose a multi-objective evolutionary algorithm to optimise compactness, connect-
edness, and constraint satisfaction.

Zhu et al (2016) modify the split function of random forests to include constraints and therefore
introduce the constraint propagation random forest, which can deal with noisy constraints.

4 Constrained Clustering for Time-Series

General constrained clustering algorithms have been reviewed in the previous section, and what now
remains is to describe their application to time-series. In most cases, this involves modifying the
algorithm to use an alternative dissimilarity measure. The modified algorithms are then evaluated
by applying them to several publicly available datasets.

4.1 Algorithm Adaptation

A subset of the reviewed algorithms were chosen based upon the public availability of implemen-
tations and their ability to be modified to use the DTW measure, enabling them to be applied to
time-series analysis. Where possible, the initial implementations were taken from, and all modifica-
tions were validated with, the originating authors.

Spectral clustering algorithms take as their input a similarity matrix. This simplifies their
application to time-series data as the similarity matrix can be pre-computed using DTW and
the methods require no, or little, modification. In the case of spectral methods, the form of the
Laplacian matrix needs consideration. In the presented evaluation, fully connected graphs were used
and similarity was calculated using the Gaussian function, such that

sij = exp

(
−dij
2σ2

)
, (2)

where dij is the DTW dissimilarity between points i and j and σ controls the widths of the
neighbourhoods, its value was optimised on each training set using a grid search (as were the
number of principal components). The algorithms modified using this methodology were: Adjacency
Matrix Modification (Kamvar et al, 2003), Constrained 1-Spectral Clustering (Rangapuram and
Hein, 2012), Constrained Clustering via Spectral Regularization (CCSR) (Li et al, 2009), CSP
(Wang et al, 2014), and Guaranteed Quality Clustering (Cucuringu et al, 2016).
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Declarative approaches can take as their input either the data points or a dissimilarity matrix,
depending upon the objective function used. The declarative approach found for this study is
CPClustering (Dao et al, 2017), which takes the pre-computed DTW dissimilarity matrix and
therefore does not need modification.

k-Means based algorithms are more involved to apply to time-series as they iteratively calculate
distances to cluster centroids and update these centroids. This implies that the algorithm itself needs
to be modified to integrate the DTW measure and to use DBA to calculate the cluster centroids.
The COP-KMeans (Wagstaff et al, 2001), LCVQE (Pelleg and Baras, 2007), MPCK-Means (Bilenko
et al, 2004), Tabu search (Hiep et al, 2016), and MIP-KMeans (Babaki, 2017) were modified to
incorporate these changes.

Metric learning approaches are inherently tied to the distance metric upon which they are based.
Therefore, modifying them for use with time-series (i.e. difference distance measures) implies the
development of novel algorithms to tackle the problem. This was deemed outside the scope of this
study. Similarly, it is unclear how probabilistic methods such as the Constrained EM algorithm
(Shental et al, 2013) could be modified to use alternative distance measures and averaging techniques
as it is not obvious how these would affect the probability estimates needed for their application.

Collaborative approaches offer several means to integrate constraints. In this study the Samarah
(Forestier et al, 2010a) algorithm was modified to use pairwise constraints in the collaborative process
(detailed in the following subsection) and DTW based k-Means agents.

Of these modified implementations, only a few were found to be suitable to include in the
study due to various reasons. The implementation by Wang et al (2014) is formulated for two class
problems (although authors describe how the method can be extended to multi-class problems in
their article). That by Cucuringu et al (2016) was modified but did not converge on all the datasets.
Constrained 1-Spectral Clustering (Rangapuram and Hein, 2012) and MIP-KMeans (Babaki, 2017)
were too slow once modified to use DTW and DBA. The implementation of Tabu search is heavily
optimised for the Euclidean distance to make it computationally feasible (Hiep et al, 2016) and
these efficiencies do not hold when using a similarity measure such as DTW. LCVQE Pelleg and
Baras (2007) updates the centroids heuristically using a formulation which does not have an obvious
extension to DTW. MPCK-Means (Bilenko et al, 2004) implements metric learning, as such it is
intrinsically tied to norm based distance metrics. A declarative approach using ILP (Babaki et al,
2014) is publicly available and was modified, however, it was either too slow (even though it does
not require repetitive distance calculations and averaging) or did not converge.

Implementations of these modified algorithms are available from https://sites.google.com/

site/tomalampert/code.

4.2 Evaluated Algorithms

After modification and initial evaluation, the following algorithms were used in the remainder of this
study: COP-KMeans (Wagstaff et al, 2001) (k-Means), Spec (Kamvar et al, 2003) (spectral), CCSR
(Li et al, 2009) (spectral), CPClustering (Dao et al, 2017) (declarative), and Samarah (using three
k-Means agents) (Forestier et al, 2010a) (collaborative).

These have been reviewed in the previous section but before proceeding to analysing their
performance, the manner in which each algorithm uses constraints will first be analysed. This is
summarised in Figures 2a and 2b. At one end of the spectrum of constraint use (Figure 2a) is
COP-KMeans, which uses constraints to validate assignments, at the other end is CPClustering,
which explicitly forms the clusters according to the constraints, and between these two extremes
are Spec, CCSR, and Samarah, which determine the assignment of points according to a balance

https://sites.google.com/site/tomalampert/code
https://sites.google.com/site/tomalampert/code


Constrained Distance Based Clustering for Time-Series 17

COP-Kmeans

Clustering validated with
constraints

Spec
CCSR

Samarah CPClustering

Constraints guide
clustering

(a) Constraint use

CPClustering
COP-Kmeans

Guaranteed

Spec
CCSR

Samarah

Not Guaranteed

(b) Constraint satisfaction

Fig. 2 Spectra describing the evaluated algorithms.

of the information derived from the constraints and the distance measure. From the point of view
of constraint satisfaction (Figure 2b), CPClustering and COP-KMeans are found at the end of the
spectrum where constraints are guaranteed to be satisfied, and Spec, CCSR, and Samarah are
found at the other end, where there is no guarantee of constraint satisfaction.

4.2.1 COP-KMeans

COP-KMeans represents the simplest approach for using constraints in the spectrum and is described
in Algorithm 1. As with the (unconstrained) k-means algorithm, clustering is performed according to
the distance function. The algorithm tries to extend the partial assignment in such a way that all the
constraints are satisfied. If the partial assignment cannot be extended, and without a backtracking
mechanism, the algorithm fails. In this way COP-KMeans can be considered a heuristic method that
tries to enforce the constraints. COP-KMeans is the most involved of the evaluated algorithms to
adapt to time-series clustering. It is necessary to integrate the DTW measure in line 4 of Algorithm
1 to calculate the closest clusters for each point, i.e. the cluster centroid with the smallest distance
to the point. In addition to this, it is necessary to integrate the DBA algorithm in line 7 to calculate
the updated cluster centroids. DBA is a heuristic which aims to minimise the sum of squared
DTW distances of the set of time-series and the resulting average sequence. It should be noted that
the convergence of k-Means is only guaranteed with the Euclidean distance metric. Since DBA is
non-deterministic, this guarantee does not hold, nevertheless, the effects of the non-deterministic
averaging process are minimal and therefore on average the cost function decreases at each iteration.

4.2.2 Spec

On the other hand, spectral clustering methods form a balance between the information derived
from the distance function and the constraint set, and therefore do not impose a hard requirement
for constraints to be fulfilled. The most basic method is that presented by Kamvar et al (2003),
which is described in Algorithm 2. The goal of spectral clustering is to find a partition of the graph
defined by the Laplacian matrix (line 6) such that the edges between different groups have very low
weights (which means that points in different clusters are dissimilar from each other) and the edges
within a group have high weights (which means that points within the same cluster are similar to
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Algorithm 1 COP-KMeans

1: procedure COP-KMEANS(data-set O, must-link constraints ML ⊆ O × O, cannot-link constraints
CL ⊆ O ×O)

2: Let C1, . . . , CK be the initial cluster centres
3: for each point oi in O do
4: Assign oi to the closest cluster Cj such that VIOLATE CONSTRAINTS(oi, Cj , ML, CL) is false.
5: if no such cluster exists then return ∅
6: for each cluster Ci do
7: Update its centre by averaging all of the points oj that have been assigned to it.

8: Iterate between 2 and 3 until convergence.
9: return {C1, . . . , Ck}

10: procedure VIOLATE CONSTRAINTS(data point o, cluster C, must-link constraints ML ⊆ O ×O,
cannot-link constraints CL ⊆ O ×O)

11: for (o, oML) ∈ ML do
12: if oML /∈ C then return true

13: for (o, oCL) ∈ CL do
14: if oCL /∈ C then return true

each other), this is achieved by taking the eigenvalue decomposition of the Laplacian and clustering
the rows into ‘blocks’, or clusters, (line 9) (Luxburg, 2007). Constraints are integrated by modifying
the affinity matrix (lines 3 and 4). As such must-linked points are made more similar than any other
pair of points in the data set and therefore their graph edges are weighted maximally, increasing
the probability for them to be within the same partition of the graph. Conversely, cannot-linked
points are made more dissimilar than any pair of points in the data set and therefore their graph
edges are weighted minimally, decreasing the probability for them to be within the same partition
of the graph.

The Spec algorithm is adapted for use with the DTW dissimilarity measure by simply con-
structing the distance matrix (B in Algorithm 2) from the output of the the DTW algorithm, such
that

Bij = DTW(oi, oj). (3)

Algorithm 2 Spec

1: procedure Spec(distance matrix B, must-link constraints ML ⊆ O ×O, cannot-link constraints CL ⊆
O ×O)

2: Form the affinity matrix Aij = exp
(
−Bij/2σ

2
)

3: For each pair of must-linked points (i, j) ∈ML assign the values Aij = Aji = 1
4: For each pair of cannot-linked points (i, j) ∈ CL, assign the values Aij = Aji = 0
5: Define D to be the diagonal matrix with Dii =

∑
j Aij

6: Calculate the normalised Laplacian N = D−1/2(D −A)D−1/2

7: Find v1 . . .vm, the m largest eigenvectors of N and form X = [v1, . . . ,vm] ∈ Rn×m−1

8: Normalise the rows of X to be unit length
9: Treating each row of X as a point in Rk, cluster into k clusters using k-means

10: Assign the original point oi to cluster Cj iff row i of X was assigned to Cj

4.2.3 CCSR

Rather than modifying the affinity matrix to integrate ML and CL constraints, Li et al (2009) propose
to bias the spectral embedding towards one that is as consistent with the pairwise constraints as
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possible. This is inspired by the observation that “the spectral embedding consists of the smoothest
eigenvectors of the normalised Laplacian on the graph, and adapting it to accord with pairwise
constraints will in effect propagate the pairwise constraints to unconstrained objects” (Li et al,
2009). Algorithm 3 describes this process, which constructs a spectral embedding that minimises
the cost function

L(F ) =

n∑
i=1

(
yT
i yi − 1

)2
+

∑
(i,j)∈ML

(
yT
i yj − 1

)2
+

∑
(i,j)∈CL

(
yT
i yj − 0

)2
(4)

via semidefinite programming (SDP), where F = (y1, . . . ,yn)T is the data representation. The
minimum of L should result in a representation in which objects are close to the unit sphere (the
first term), i.e. data is normalised; must-link constrained objects are close to each other (the second
term); and cannot-link constrained objects are far apart (the second term).

As with the Spec algorithm, the only change necessary for the algorithm’s application to time-
series is to construct the distance matrix B using the DTW measure, Equation 3.

Algorithm 3 CCSR

1: procedure CCSR(distance matrix B, must-link constraints ML ⊆ O × O, cannot-link constraints
CL ⊆ O ×O)

2: Form the affinity matrix Aij = exp
(
−Bij/2σ

2
)

3: Form the normalised graph Laplacian L̄ = I −D−1/2AD−1/2, where In is the identity matrix and
Dii =

∑
j Aij

4: Compute the m eigenvectors v1, . . . ,vm of L̄ corresponding to the first m smallest eigenvalues, denote
F = v1, . . . ,vm

5: Solve the SDP problem derived from Equation 4, obtaining M
6: Apply k-means to the rows of FM

1
2 to form k clusters

4.2.4 Samarah

Samarah (Forestier et al, 2010a) iteratively refines the output of multiple clustering agents to
promote agreement on their solutions. This process is described in Algorithm 4.

At its core, the algorithm finds conflicts (differences between the output of two agents) and
attempts to resolve them. A quality criterion is used to evaluate whether the modifications are
relevant or not (line 8 of Algorithm 4). In unsupervised clustering, this criterion is a combination
of the similarity between the clusterings and the quality of each clustering, e.g. inertia, the number
of clusters, or the cluster size ratio. For semi-supervised clustering, this criterion is extended to
ensure that constraints are represented when resolving conflicts and in this way a wide range of
background knowledge can be integrated.

It requires a function to be defined that measures the satisfaction of the prior knowledge in
agent n’s solution (Rn) on the range [0, 1]. In the case of must-link and cannot-link constraints, the
criterion measures the fraction of respected constraints, such that

Q(Rn) =
1

|ML|+ |CL|

 ∑
(i,j)∈ML

vML(Rc, i, j) +
∑

(i,j)∈CL

vCL(Rc, i, j)

 ,

where

vML(Rc, i, j) =

{
1, if oi ∈ Cc

k and oj ∈ Cc
k,

0, otherwise,



20 Thomas Lampert1 et al.

and

vCL(Rc, i, j) =

{
1, if oi ∈ Cc

k and oj /∈ Cc
k,

0, otherwise.

This modification causes a balance between the background knowledge and the distance metric to
be sought during conflict resolution, for example a modification that causes a large improvement in
either the similarity or the overall quality can be approved even if the fraction of satisfied constraints
decreases.

For use in time-series clustering, it is necessary to modify each agent to use the DTW measure.
In the case of k-Means agents, the same modifications as those described for the COP-KMeans
algorithm are required.

Algorithm 4 SAMARAH

1: procedure SAMARAH(data-set O, set of learning agents A, must-link constraints ML ⊆ O × O,
cannot-link constraints CL ⊆ O ×O)

2: for each agent ai in A, do
3: Compute clustering of O with method ai
4: Create the set of all conflicts C, by evaluating the dissimilarities between pairs of results
5: Let E be the evaluation of the initial results according to the collaborative criterion
6: while C not empty do
7: Choose a conflict to solve from C
8: Local resolution of the conflict with the involved agents
9: Let E ′ be the evaluation of the updated results according to the collaborative criterion

10: if E ′ > E then
11: E = E ′
12: Apply modifications to the learning agents
13: Compute the new set of conflicts C
14: Remove unsolved conflicts from C
15: Compute the final result from the agents with an adapted voting algorithm

4.2.5 CPClustering

Different from the other methods which are algorithmic, CPClustering is a declarative approach,
where problem and constraints are expressed as a constraint optimisation problem (COP). The
COP, which can be viewed as the definition of the search space, is then solved using a constraint
programming solver. The main principle of constraint programming is to explore the search space
using constraint propagation and search. Propagating a constraint c means removing from the
domain of the variables involved by c some or all of the values that cannot be part of a solution
of c. In this way constraints are used to prune the search space. All the constraints of the COP
are propagated until a stable state if found. If in this state, the domain of one variable becomes
empty, then the state is a failure and the solver backtracks. If the domain of each variable becomes
a singleton, then a solution is reached. Otherwise the solver takes one variables whose domain is not
singleton, split its domain to create subproblems and continues proceeding on each subproblem. The
choice of variables and the way to create as well as to order subproblems can be defined by a search
strategy. For instance, for an optimisation problem with an objective function F to be minimised,
a branch-and-bound mechanism is integrated: each time a solution is reached, its objective value
f is computed, and the solver backtracks with a new added constraint F < f , which enforces that
next solution must be better than the current. The last solution found is therefore the best one.
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UCR dataset # classes # test data points Length

ECG5000 5 4500 140
ElectricDevices 7 7711 96
FacesUCR 14 2050 131
InsectWingbeatSound 11 1980 256
MALLAT 8 2345 1024
StarLightCurves 3 8236 1024
TwoPatterns 4 4000 128
UWaveGestureLibraryAll 8 3582 945
UWaveGestureLibraryX 8 3582 315

Table 2 Subset of the UCR repository used for experimentation.

Using constraint programming, CPClustering models a constrained clustering problem as a
constraint optimisation problem. The assignment of objects to clusters is modeled by a variable
Gi for each object oi. The domain of each variable Gi is the set {1, . . . ,K}, so an assignment
Gi = c means that object oi is grouped into cluster c. A complete assignment of all the variables Gi

therefore defines a partition. To break symmetries between partitions, other conditions are imposed
using CP constraints:

– the first object must be in the first cluster,
– an object oi is assigned to a new cluster c iff cluster c− 1 contains an object oj such that j < i.

In this model, must-link and cannot-link constraints are expressed in a natural way. A must-link
constraint on two objects oi, oj is expressed by the constraint Gi = Gj , a cannot-link constraint is
expressed by Gi 6= Gj . CP solvers are extendable, which means new constraints along with their
propagation algorithm can be added. Exploiting this advantage, CPClustering is reinforced with
new and dedicated constraints for the principal clustering objective function (Dao et al, 2017). For
instance, for a clustering problem that minimises the maximal diameter of the clusters, a variable D
is introduced in the model. This variable represents the maximal diameter of the clusters. Therefore,
any two objects oi, oj whose distance is larger than D must be in different clusters. This is expressed
by the relation

∀i, j ∈ {1, . . . , N}, d(oi, oj) > D −→ Gi 6= Gj ,

which is encapsulated by a new constraint diameter(D,G, d). In this relation, the distance measure
between objects are represented by d. This distance measure can be either Euclidean or DTW,
therefore CPClustering can be used with both without modification (by pre-computing the distance
matrix, e.g. Equation 3).

By the principle of constraint programming, all the must-link and cannot-link constraints are
satisfied by the returned solution.

4.3 Methodology

Several datasets were chosen to evaluate the algorithms so that they represent typical time-series
clustering problems. The UCR repository (Chen et al, 2015) is a standard repository that enables
comparative results to be published. A subset of the repository that have a large number of samples
and a moderate number of classes were chosen to reflect the characteristics of challenging problems
and are described in Table 2.
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Constraints were generated by taking pairs of points randomly and generating a must-link or
cannot-link constraint depending upon whether they belonged to the same class or not. Different
sizes of constraint sets were considered: 5%, 10%, 15%, and 50% of the number of points N in the
dataset (they represent a very small fraction of the total number of possible constraints, which is
1
2N(N −1)). Ten repetitions of each constraint set size were generated, as such each experiment was
repeated ten times, each with a different random subset of constraints (all algorithms are evaluated
using the same random constraint sets). Finally, the algorithms were executed with no constraints
for comparison.

Because these algorithms are applied as semi-supervised approaches, reference data in the
form of training or validation sets do not exist and therefore optimising parameter values proves
difficult. This does not pose too much of a problem for k-Means based algorithms (COP-KMeans
and Samarah’s agents) because the cost function under DBA globally decreases (or remains the
same) at each iteration, and therefore choosing a sufficiently large number of iterations mitigates
the problem (in these experiments a value of 100 was taken). The same approach cannot be taken
for spectral approaches (Spec and CCSR), however, as their parameters (σ in Equation (2) and the
number of eigenvectors) need to be specifically chosen for each problem. Unfortunately, these cannot
be intuitively selected and the algorithm’s performance is highly dependent upon these values (Ng
et al, 2001). To enable the spectral methods to be included in the study, the unrealistic use case
was chosen in which these parameters were optimsed by grid search on the training sets included
in the UCR datasets with 5% constraints. To determine the value of the constraints the same
parameter values were used for each constraint size (including unconstrained). Being parameter
free, the CPClustering is the only method that can be applied without these considerations.

All samples were normalised to have unit length. The adjusted Rand index (ARI) (Hubert and
Arabie, 1985) and constraint satisfaction (Sat.) metrics are used to evaluate performance. The
presented results represent the mean of ten repetitions of each experiment (each with a different
random set of constraints) and are rounded to three decimal places.

Finally, to measure the amount of agreement between the underlying objective function and
search bias of the algorithms and the constraints, the algorithms were evaluated with no constraints
(i.e. unconstrained) and then the fraction of satisfied constraints was determined using the 50%
constraint sets. This is referred to as consistency or Con.—the inverse of inconsistency (Wagstaff
et al, 2006) or informativeness (Davidson et al, 2006)—and measures the constraints that an
algorithm is able to correctly determine using its default bias.

4.4 Results

As a sanity check, the effect of the distance measure on cluster (as defined by the ground truth)
distribution was evaluated using the mean silhouette score (Rousseeuw, 1987). This score varies
between −1 and 1 and evaluates cluster overlap such that

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (5)

where a(i) is the average dissimilarity of point i with all other points within the same cluster and b(i)
is the lowest average dissimilarity of point i to each of the clusters to which it is not assigned. This
can be averaged over all points in a dataset to calculate its silhouette score. Higher scores indicate
that points belong to clusters in which the other points are similar, and are dissimilar to the points
in the next closest cluster. The results, which are presented in Table 3, show that the DTW measure
results in clusters that are more distinct than those obtained when using the Euclidean distance
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UCR dataset Eucliean DTW

ECG5000 0.325 0.329
ElectricDevices −0.002 −0.008
FacesUCR 0.018 0.124
InsectWingbeatSound 0.042 −0.011
MALLAT 0.258 0.209
StarLightCurves 0.186 0.256
TwoPatterns 0.000 0.378
UWaveGestureLibraryAll 0.125 0.103
UWaveGestureLibraryX 0.070 0.122

Table 3 Silhouette scores of the time-series datasets (test sets). Bold indicates the highest score in each
dataset.

measure in five out of the nine datasets. The mean difference in scores when DTW results in more
separated clusters is 0.122, compared to 0.027 with Euclidean. Therefore DTW, in general, results
in more separated clusters. It should be noted that DTW was used without a locality constraint,
which can speed up its calculation and increase performance on unseen data (Lines and Bagnall,
2015); however, adding this constraint introduces an additional parameter.

The unconstrained performance of the algorithms is presented first to determine a baseline.
These results are presented in Appendix A, Table 8, in addition to their consistencies, in Table 9. It
is seen that Spec outperforms all other algorithms in most datasets, sometimes by large margins, e.g.
ECG5000 and UWaveGestureLibraryAll. The overall ranking of algorithms in terms of how many
datasets (in parentheses) in which they achieved the highest ARI is: Spec (7), COP-KMeans (2),
CCSR (0), Samarah (0), and CPClustering (0). It is also found that it is the most consistent of all
the algorithms. The overall ranking of algorithms in terms of how many datasets (in parentheses)
they achieved the highest consistency is: Spec (6), COP-KMeans (2), CCSR (1), Samarah (0), and
CPClustering (0).

Due to the added computational complexity of integrating DTW and DBA into COP-KMeans
and Samarah’s underlying k-Means algorithms, not all of the experiments completed within a
reasonable amount of time, the absence of these results are marked by a dash in the tables. These
datasets represent the longest of the evaluated time-series. Furthermore, several constraint sets
iterations resulted in a constraint violations during the COP-KMeans clustering process and these
results are marked in the tables (with the number of completed iterations mentioned in the table
caption).

The mean ARIs and Constraint Satisfaction results for the constrained clustering experiments
are presented in Appendix A, Tables 10–18 and are summarised in Tables 4 and 5.

The Spec algorithm outperforms all other algorithms in 5 of the datasets in each constraint
fraction. This is unsurprising because it outperforms all other algorithms in 5 datasets in the
unsupervised setting, indicating that it has a strong baseline performance. Analysing the average
ARI changes (Constrained ARI−Unconstrained ARI) for each algorithm for each constraint fraction
(Table 4) reveals that not all algorithms benefit from the introduction of constraints. CCSR benefits
the most, resulting in an ∼0.262 increase in ARI performance. Interestingly, adding more constraints
does not directly result in an increase in average ARI. In some cases (Spec and CPClustering),
adding constraints leads to a small decrease in ARI; however, all of the standard deviations are
greater than the change in ARI. Taking CCSR as an example, in six of the datasets (ECG5000,
FacesUCR, MALLAT, TwoPatterns, UWaveGestureLibraryX, and UWaveGestureLibraryAll) a
large increase in ARI and an associated increase in constraint satisfaction is observed, indicating
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Method 5% 10% 15% 50%

COP-KMeans 0.001 (0.048) 0.008 (0.055) −0.003 (0.047) 0.006 (0.064)
Spec −0.034 (0.068) −0.030 (0.062) −0.043 (0.078) −0.049 (0.101)
CCSR 0.262 (0.298) 0.263 (0.297) 0.263 (0.296) 0.261 (0.296)
CPClustering* −0.029 (0.089) −0.023 (0.067) −0.021 (0.076) −0.036 (0.085)
Samarah 0.067 (0.087) 0.076 (0.080) 0.063 (0.081) 0.079 (0.089)

Table 4 ARI difference between unconstrained clustering and constrained clustering (Constrained ARI −
Unconstrained ARI) for each constraint fraction averaged over all datasets, standard deviations in parentheses:
*Unparameterised therefore no optimisation on training sets has been performed.

Method 5% 10% 15% 50%

COP-KMeans 0.141 (0.074) 0.141 (0.074) 0.140 (0.073) 0.134 (0.070)
Spec −0.006 (0.063) 0.001 (0.037) −0.011 (0.052) −0.012 (0.050)
CCSR 0.099 (0.129) 0.100 (0.125) 0.104 (0.123) 0.099 (0.124)
CPClustering* 0.215 (0.063) 0.215 (0.063) 0.215 (0.063) 0.215 (0.063)
Samarah 0.053 (0.041) 0.048 (0.035) 0.041 (0.033) 0.039 (0.032)

Table 5 Constraint satisfaction difference between unconstrained clustering and constrained clustering
(Satisfaction−Mean Consistency) for each constraint fraction averaged over all datasets, standard deviations
in parentheses: *Unparameterised therefore no optimisation on training sets has been performed.

that the algorithm has benefited from the additional information. In the remaining datasets, however,
either no increase or a decrease is observed. CPClustering and COP-KMeans, on the other hand,
guarantee full constraint satisfaction, resulting in a large increase in constraint satisfaction from the
unconstrained case, however, this is not associated with significant increases in ARI and in some
cases a decrease. This indicates that these algorithms focus on correctly clustering the points bound
by constraints at the expense of correctly clustering the remaining data. It is therefore clear that
simply adding constraints does not always lead to an increase in performance for all algorithms and
all datasets, instead several influencing factors seem to be at play.

5 Discussion

This section offers further analysis of the results and discusses implications that arise from them.

5.1 Analysis of the Results

A multiple linear regression analysis was performed to uncover the factors that influence the change
in clustering performance when constraints are introduced. Several parameters that could influence
the change in clustering performance were identified:

Consistency when an algorithm tends to satisfy constraints using its default bias (i.e. uncon-
strained clustering), adding constraints should not considerably affect clustering performance;

Silhouette Score when the clusters in a dataset overlap, adding constraints should lead to an
increase in clustering performance;

Unconstrained ARI when an algorithm has a high baseline performance in unconstrained clus-
tering, the benefit of constraints should be diminished;
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Algorithm certain algorithms may benefit from the introduction of constraints more than others.

Each algorithm’s mean unconstrained ARI performance was subtracted from its constrained ARI
performance samples, which formed the dependent variable of the analysis (1782 samples in total).
The categorical predictor representing the algorithms was encoded by dummy variables and the
remaining predictors were mean centred to allow interpretation of the intercept as the base group
(the Spec algorithm). An initial correlation analysis revealed that Consistency and Unconstrained
ARI are strongly correlated (r = 0.724 and p = 6.533e−289, the significance threshold was set at
0.01). As Consistency is a pairwise measure of the performance in a subset of the data, while ARI
is a pointwise measure of performance for the whole dataset they both capture similar information
and therefore Unconstrained ARI was removed from the analysis.

The result of the regression analysis is presented in Table 6 and the added variable plot for
the model is presented in Figure 3. The model has a root-mean-squared error (RMSE) of 0.125,
R2 = 0.549, Adjusted R2 = 0.548, F -Statistic = 360, and p = 1.020e−302 (significance threshold
was set at 0.01). As is intuitive, consistency has a large negative influence on ARI difference,
indicating that, when all other factors remain constant, the higher consistency an algorithm has
in an unsupervised setting, the less increase in ARI will result when adding constraints. This
corroborates that which was found by Wagstaff et al (2006). This analysis, however, uncovers
additional facets to the problem. It was found earlier that certain algorithms react more favourably
to the introduction of constraints, Spec and CPClustering negatively and CCSR and Samarah
positively. Unexpectedly, however, the dataset’s silhouette score has a moderate positive correlation
with ARI difference. This may be explained by considering what happens when a point that is
subject to an ML constraint is surrounded by points belonging to another cluster (i.e. has a low, or
negative, silhouette score). An algorithm is biased to cluster the ML constrained points together.
This may, however, also have the effect of biasing any points similar to (therefore close to) a point
linked by an ML constraint to be assigned to the same cluster, which in a dataset with a low
silhouette score is more likely to be an incorrect assignment.

Predictor Estimate p-value

Consistency −0.694 1.537e−87
Silhouette Score 0.408 9.346e−71
COP-KMeans 0.031 0.100e−2
Spec −0.056 1.876e−16
CCSR 0.226 4.284e−100
CPClustering −0.054 4.274e−8
Samarah 0.078 1.260e−16

Table 6 ARI difference multiple linear regression coefficients (significance threshold was set at 0.01).

5.2 Constraint Influence

It has been discussed that adding the maximum number of constraints does not necessarily lead to
an increase in clustering accuracy. This implies that it is necessary to consider methods to measure
the usefulness of constraints to determine whether they should be included or not. These measures
fall into two categories, those that are dependent upon the clustering algorithm, and those that are
not.

Davidson et al (2006) demonstrate that constraints improve performance when they are both
informative (algorithm dependent) and coherent (algorithm independent).
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Fig. 3 Added variable plot for the whole model.

5.2.1 Algorithm Dependent Measures

In the case of algorithm dependent measures, Wagstaff et al (2006) show that there is a strong
negative correlation between inconsistency (also referred to as informativeness (Davidson et al,
2006)) and accuracy. Inconsistency is defined as “amount of information in the constraint set that
the algorithm cannot determine on its own” (Davidson et al, 2006) and has been measured in this
study as consistency (the inverse of inconsistency). In the experiments presented herein a negative
correlation between ARI difference and consistency has been found and it is true that, in general,
when a high consistency is found, adding constraints does not improve performance (or sometimes
decreases performance)—for example, see Table 10 Spec; Table 11 Spec, CCSR, and Samarah;
Table 12 Spec, CCSR, and Samarah—and when a low consistency if measured, performance
increases—for example, see Tables 10, 15, and 16 CCSR.

5.2.2 Algorithm Independent Measures

Measures in the second category attempt to quantify the amount of information contained within
a set of constraints independent of the clustering algorithm and are therefore dependent upon the
distance measure used. Coherence is one such measure, which quantifies “the amount of agreement
between the constraints themselves, given a metric that specifies the distance between points”
(Davidson et al, 2006).

To measure coherence, vectors are constructed between two points that are joined by ML and CL
constraints. The constraints are coherent if the vectors are orthogonal to each other, and incoherent
if they are parallel (and overlap). This is a useful measure when considering the Euclidean distance
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UCR dataset ML/CL Dist. Ratio MDS Coherence

Eucliean DTW Eucliean DTW

ECG5000 0.547 0.551 0.172 0.181
ElectricDevices 0.978 0.815 0.171 0.203
FacesUCR 0.862 0.694 0.138 0.287
InsectWingbeatSound 0.701 0.726 0.206 0.167
MALLAT 0.461 0.461 0.335 0.305
StarLightCurves 0.715 0.269 0.127 0.254
TwoPatterns 0.978 0.512 0.107 0.199
UWaveGestureLibraryAll 0.791 0.750 0.195 0.212
UWaveGestureLibraryX 0.714 0.649 0.162 0.221

Table 7 Average ML distance to average CL distance ratio and constraint coherence measured in 2D
multi-dimensional scaling representations. Bold indicates the best score in each dataset, for each test.

metric, however, it is not obvious how this concept can be extended to DTW, which does not define
vector projection, and therefore new measures to quantify the usefulness of constraints should be
developed and is an open research question.

We must instead indirectly measure some of the properties of the constraint set in order to gain
some insight into the effect of using DTW. Table 7 presents the following measures, taken when
using Euclidean distance and DTW dissimilarity:

ML/CL Dist. Ratio — the ratio of the average distance between must-link pairs and cannot-link
pairs, a value less-then one means that ML pairs are closer together then CL pairs;

MDS Coherence — the constraint coherence (Davidson et al, 2006) measured within a two dimen-
sional multidimensional scaling (MDS) (Kruskal, 1964) representation of the distance matrix.

It is unlikely that the MDS representations of the distance matrices capture the necessary aspects of
the original space in which the time-series exist (vector angles, exact point distances, etc.) to directly
measure constraint coherence. These measurements should therefore only be used to observe any
trends that become apparent in order to understand the dissimilarity measure’s effect on constraints.
Furthermore, embedding DTW dissimilarities into a Euclidean space will be less accurate than
when embedding Euclidean distances. The figures in Table 7 represent the average of the measures
taken over all 40 constraints sets generated in the previous section.

The method for calculating constraint coherence that exists in the literature (Davidson et al,
2006) was found to miss some of the cases when constraints overlap, and therefore a new formulation
was developed. This is presented in Appendix B and follows the principle of the original description
(Davidson et al, 2006).

It is clear that in five out of the nine datasets, the ML/CL distance ratio is lower when using
DTW than when using Euclidean distance, in one dataset it is the same, and in three datasets
Euclidean is lower but the differences are very small in comparison. This trend is mirrored when
analysing the MDS coherences, the DTW measure increases constraint coherence when compared
to the Euclidean distance in all but two of the datasets. In addition to the 2D MDS results
presented in Table 7, the experiments were repeated using 3 to 10 dimensional representations
and the same relative results were found in all cases except that DTW resulted in the highest
coherence in the InsectWingbeatSound dataset when more than three dimensions were used. The
trend of these results is in line with the silhouette scores presented in Table 3: the datasets with the
largest differences in DTW’s favour are those in which the constraints appear to be most faithfully
represented.
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To illustrate the data behind these figures, the dataset in which DTW has the most effect on
the constrained points is presented in Figure 4. It clearly shows that when using the DTW distance,
points under must-link constraints are more clustered (Figure 4a) when compared to the Euclidean
embedding (Figure 4b), in fact in the Euclidean embedding there is no distinction between clusters
of points having the same label. This is confirmed when analysing the cannot-link constraints, they
clearly define separate clusters when using the DTW similarity measure (Figure 4c) and when using
the Euclidean distance they are randomly distributed (Figure 4d).

(a) DTW: must-link constraints (b) Euclidean: must-link constraints

(c) DTW: cannot-link constraints (d) Euclidean: cannot-link constraints

Fig. 4 Constraints represented by the point distances embedded in 2D space using multidimensional scaling.
The original distance matrices were calculated using DTW (a) and (c), and Euclidean (b) and (d).
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5.3 Challenges

This study has focused on using constraints in time-series clustering, however, there exists numerous
challenges related to capturing these constraints. For example, it is necessary to study and detail
the thematic constraints (i.e. the opinions of the expert) that have to be captured to guide the
process.

These thematic constraints can be extremely broad and have to be translated into actionable
constraints. In the current state of knowledge, a limited number of actionable constraints into which
thematic constraints can be translated exist: ML, CL, label, number of clusters k, and size. The
following observations are therefore translatable: “these two objects seem to be of the same nature”;
“these two ensembles of objects are of the same nature” (ML constraints between all the pairs of
objects of the two sets); “these three sets are completely different” (CL constraint on all the pairs of
objects from the three sets); “this object is of type X” (labeling constraint); and “a cluster cannot
represent more than 20% of the data” (cluster size constraint).

Nevertheless, generating actionable constraints from a set of data points can rapidly lead to a
significant increase in both combinatorial complexity and the scope of the constraints. For example,
a constraint “of the same nature” on two sets of size N1 and N2, will generate 1

2(N1(N1 − 1) +
N2(N2 − 1) +N1N2) ML constraints. Resulting in a very large number of constraints, which could
prevent the use of declarative methods. Another example is a constraint that states two sets of size
N1 and N2 are “of different nature”. Depending on the context this constraint can correspond to a
disjunction of several sets of constraints.

The following two problems are therefore identified. For each problem we give some direction
on how it can be tackled.

– How should algorithms be modified to enable them to deal with large constraint sets?

– Reduce the size of the model by limiting the number of considered objects, for example by
sampling and/or by identifying irrelevant objects.

– Relax the optimality of the solution using a threshold on the execution time (with no guar-
antees of the quality of the final result).

– Using local search instead of global search.

– How can the number of constraints be reduced or limited without loss of quality (i.e. define a
minimal set of constraints)?

– Sample the constraints and/or sample the objects under constraint.
– Identify informative constraints (some progress has been made in this direction, as discussed

in the previous subsection).

6 Conclusions

To recapitulate, this manuscript has presented a background of constrained clustering in relation to
time-series clustering. A comprehensive review of general constrained clustering algorithms has been
presented and several publicly available implementations were modified to use the DTW dissimilarity
measure and DBA averaging method. A comparative study of these approaches applied to publicly
available data has been conducted and the results analysed. This investigation has been concluded
by a discussion of the issues raised.

It has been shown that integrating DTW and DBA averaging method allows classic constrained
clustering algorithms to be effectively used for time-series. Nevertheless, the lack of backtracking
in COP-KMeans means that if a constraint violation is unavoidable in the current iteration the
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algorithm fails, a problem that becomes more pronounced as more constraints are added. Further-
more, when iterative algorithms are in question, the execution time can become prohibitive when
long time-series are to be analysed. Methods that take a distance-matrix as their input (such as
spectral clustering and declarative approaches) are more effective in this case. Within these methods,
spectral algorithms offer superior performance, however, this is dependent upon the correct choice
of parameter values, which is not possible in a semi-supervised setting. Declarative approaches are
easier still, having no parameters and omit the need of calculating cluster centers, and therefore
expensive averaging computations, however, performance is lacking. In terms of constraint satisfac-
tion, both COP-KMeans (if a solution is returned) and CPClustering guarantee to fulfill all the
constraints.

By analysing the results of applying the modified algorithms to time-series datasets, several
factors that influence the effectiveness of constraints have been identified, namely coherence and
cluster overlap. These results have highlighted the need for measures of constraint usefulness. The
current definition of constraint coherence, which may indicate whether a constraint set will increase
performance or not, is dependent of the distance measure used and cannot be extended to metrics
without a definition of orthogonality (e.g. DTW). Furthermore, links between cluster overlap and
ARI offer new directions of research.
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COP-KMeans 0.433 0.337 0.485 0.057 0.750 0.541 0.933 0.439 0.447
Spec 0.816 0.231 0.556 0.151 0.931 0.678 1.000 0.270 0.495
CCSR 0.029 0.328 0.410 0.125 0.861 0.231 0.000 0.260 0.291
CPClustering* 0.455 0.180 0.188 0.098 0.642 0.616 0.257 0.223 0.178
Samarah 0.531 0.312 0.424 0.043 0.792 0.506 0.868 0.382 0.356

Table 8 Unconstrained Mean ARI. Bold indicates the highest score in each dataset. *Unparameterised
therefore no optimisation on training sets has been performed.

B Constraint Coherence

As described in (Davidson et al, 2006): “We consider all constraint pairs composed of an ML and a
CL constraint (pairs composed of the same constraint type cannot be contradictory). To determine
the coherence of two constraints, a and b, we compute the projected overlap of each constraint on
the other”.

Let a and b be vectors connecting the points constrained by a, i.e. (a1, a2), and b, i.e. (b1, b2),
respectively. We first project the points bound by constraint a onto the line that is defined by the
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COP-KMeans 0.732 0.812 0.915 0.830 0.936 0.779 0.977 0.870 0.879
Spec 0.829 0.763 0.926 0.847 0.983 0.833 1.000 0.776 0.881
CCSR 0.525 0.796 0.906 0.850 0.970 0.615 0.617 0.828 0.834
CPClustering* 0.730 0.703 0.827 0.773 0.916 0.806 0.717 0.821 0.773
Samarah 0.774 0.784 0.894 0.808 0.887 0.761 0.950 0.847 0.843

Table 9 Mean consistency (measured using 50% constraint sets). Bold indicates the highest score in each
dataset. *Unparameterised therefore no optimisation on training sets has been performed.

Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.410 1.000 0.412 1.000 0.411 1.000 0.377† 1.000
Spec 0.818 0.926 0.819 0.926 0.804 0.910 0.826 0.926
CCSR 0.497 0.752 0.491 0.754 0.487 0.754 0.483 0.750
CPClustering* 0.245 1.000 0.345 1.000 0.297 1.000 0.247 1.000
Samarah 0.760 0.890 0.754 0.884 0.748 0.872 0.759 0.878

Table 10 Performance on ECG5000. Bold indicates the highest score in each constraint fraction. *Unpa-
rameterised therefore no optimisation on training sets has been performed; †9 samples.

Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.327 1.000 0.347 1.000 0.343 1.000 0.351 1.000
Spec 0.231 0.769 0.231 0.754 0.231 0.764 0.231 0.764
CCSR 0.328 0.779 0.328 0.794 0.328 0.792 0.328 0.796
CPClustering* 0.199 1.000 0.194 1.000 0.185 1.000 0.099 1.000
Samarah 0.329 0.816 0.335 0.813 0.312 0.799 0.329 0.805

Table 11 Performance on ElectricDevices. Bold indicates the highest score in each constraint fraction.
*Unparameterised therefore no optimisation on training sets has been performed.

Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.494 1.000 0.478 1.000 0.466 1.000 0.495 1.000
Spec 0.463 0.948 0.427 0.935 0.405 0.914 0.299 0.874
CCSR 0.328 0.943 0.619 0.945 0.614 0.942 0.610 0.940
CPClustering* 0.146 1.000 0.158 1.000 0.156 1.000 0.168 1.000
Samarah 0.541 0.952 0.540 0.944 0.529 0.937 0.584 0.943

Table 12 Performance on FacesUCR. Bold indicates the highest score in each constraint fraction. *Unpa-
rameterised therefore no optimisation on training sets has been performed.

points bound by constraint b, such that

a′1 = ((a1 − b1) · e)e + b1,
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Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.060 1.000 0.059 1.000 0.060 1.000 0.058 1.000
Spec 0.148 0.863 0.147 0.862 0.150 0.873 0.153 0.862
CCSR 0.135 0.845 0.134 0.849 0.133 0.864 0.135 0.853
CPClustering* 0.073 1.000 0.080 1.000 0.077 1.000 0.075 1.000
Samarah 0.048 0.875 0.056 0.872 0.052 0.876 0.146 0.845

Table 13 Performance on InsectWingbeatSound. Bold indicates the highest score in each constraint fraction.
*Unparameterised therefore no optimisation on training sets has been performed.

Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.823 1.000 0.831 1.000 0.791 1.000 0.858 1.000
Spec 0.931 0.982 0.931 0.987 0.931 0.986 0.931 0.984
CCSR 0.934 0.980 0.934 0.987 0.933 0.985 0.931 0.983
CPClustering* 0.624 1.000 0.627 1.000 0.638 1.000 0.614 1.000
Samarah 0.864 0.971 0.898 0.979 0.848 0.966 0.887 0.975

Table 14 Performance on MALLAT. Bold indicates the highest score in each constraint fraction. *Unpa-
rameterised therefore no optimisation on training sets has been performed.

Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.534 1.000 0.536 1.000 0.526† 1.000† - -
Spec 0.678 0.828 0.678 0.834 0.678 0.834 0.678 0.834
CCSR 0.537 0.780 0.537 0.765 0.538 0.775 0.538 0.772
CPClustering* 0.619 1.000 0.581 1.000 0.635 1.000 0.685 1.000
Samarah 0.566 0.795 0.608 0.807 0.577 0.792 0.586 0.789

Table 15 Performance on StarLightCurves. Bold indicates the highest score in each constraint fraction.
*Unparameterised therefore no optimisation on training sets has been performed; †7 samples.

Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.908 1.000 0.934 1.000 0.914† 1.000† 0.913‡ 1.000‡

Spec 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CCSR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CPClustering* 0.269 1.000 0.233 1.000 0.228 1.000 0.235 1.000
Samarah 0.867 0.948 0.881 0.958 0.881 0.958 0.870 0.951

Table 16 Performance on TwoPatterns. Bold indicates the highest score in each constraint fraction. *
Unparameterised therefore no optimisation on training sets has been performed; †9 samples; ‡7 samples.

a′2 = ((a2 − b1) · e)e + b1,

where

e =
b

|b|
.

The points a′1, a′2, b1, and b2 now all exist in the 1D space described by the basis vector e, and as
such are projected into this 1D space, such that

a′′i = a′ie, b′′i = bie, where i ∈ {1, 2}.
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Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.439 1.000 0.450 1.000 0.438 1.000 0.441 1.000
Spec 0.103 0.659 0.142 0.738 0.078 0.663 0.066 0.677
CCSR 0.405 0.870 0.407 0.862 0.407 0.875 0.406 0.862
CPClustering* 0.220 1.000 0.250 1.000 0.250 1.000 0.212 1.000
Samarah 0.409 0.898 0.416 0.882 0.420 0.876 0.420 0.870

Table 17 Performance on uWaveGestureLibraryX. Bold indicates the highest score in each constraint
fraction. *Unparameterised therefore no optimisation on training sets has been performed.

Method 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans 0.431 1.000 0.440 1.000 0.435 1.000 0.422 1.000
Spec 0.463 0.892 0.482 0.894 0.466 0.878 0.502 0.892
CCSR 0.439 0.878 0.450 0.886 0.458 0.886 0.457 0.881
CPClustering* 0.187 1.000 0.184 1.000 0.182 1.000 0.180 1.000
Samarah 0.386 0.885 0.370 0.873 0.376 0.867 0.384 0.855

Table 18 Performance on UWaveGestureLibraryAll. Bold indicates the highest score in each constraint
fraction. *Unparameterised therefore no optimisation on training sets has been performed.

The 1D points of each constraint are then sorted such that a′′1 ≤ a′′2 and b′′1 ≤ b′′2. With this
assumption satisfied, the overlap of constraint a on constraint b becomes

oba = max
{

0,min{a′′2, b′′2} −max{a′′1, b′′1}
}
.

Two constraints are coherent if there is no overlap between them, such that

cohcm =

{
1, if omc = 0 and ocm = 0,

0, otherwise,

and the coherence of a set of constraints is defined to be the fraction of coherent constraints within
the set, such that

COH(C) =

∑
c∈CCL,m∈CML

cohcm

|CCL||CML|
.
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