Constrained distance based clustering for time-series: a comparative and experimental study

Abstract : Constrained clustering is becoming an increasingly popular approach in data mining. It offers a balance between the complexity of producing a formal definition of thematic classes-required by supervised methods-and unsupervised approaches, which ignore expert knowledge and intuition. Nevertheless, the application of constrained clustering to time-series analysis is relatively unknown. This is partly due to the unsuitability of the Euclidean distance metric, which is typically used in data mining, to time-series data. This article addresses this divide by presenting an exhaustive review of constrained clustering algorithms and by modifying publicly available implementations to use a more appropriate distance measure-dynamic time warping. It presents a comparative study, in which their performance is evaluated when applied to time-series. It is found that k-Means based algorithms become computationally expensive and unstable under these modifications. Spectral approaches are easily applied and offer state-of-the-art performance, whereas declarative approaches are also easily applied and guarantee constraint satisfaction. An analysis of the results raises several influencing factors to an algorithm's performance when constraints are introduced.
Type de document :
Article dans une revue
Data Mining and Knowledge Discovery, Springer, 2018, 32 (6), pp.1663-1707. 〈10.1007/s10618-018-0573-y〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01831637
Contributeur : Thi-Bich-Hanh Dao <>
Soumis le : mardi 18 décembre 2018 - 12:31:14
Dernière modification le : jeudi 7 février 2019 - 14:52:46

Fichier

dmkd2018b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Thomas Lampert, Thi-Bich-Hanh Dao, Baptiste Lafabregue, Nicolas Serrette, Germain Forestier, et al.. Constrained distance based clustering for time-series: a comparative and experimental study. Data Mining and Knowledge Discovery, Springer, 2018, 32 (6), pp.1663-1707. 〈10.1007/s10618-018-0573-y〉. 〈hal-01831637〉

Partager

Métriques

Consultations de la notice

111

Téléchargements de fichiers

12