The maximal flow from a compact convex subset to infinity in first passage percolation on Z^d

Abstract : We consider the standard first passage percolation model on Z^d with a distribution G on R+ that admits an exponential moment. We study the maximal flow between a compact convex subset A of R^d and infinity. The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA and infinity φ(nA)/n^ (d−1) almost surely converges towards a deterministic constant depending on A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher dimensions by Garet in [6].
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01831419
Contributeur : Barbara Dembin <>
Soumis le : jeudi 22 novembre 2018 - 14:02:19
Dernière modification le : vendredi 4 janvier 2019 - 17:33:38

Fichiers

flow to infinity.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01831419, version 2
  • ARXIV : 1807.02316

Collections

Citation

Barbara Dembin. The maximal flow from a compact convex subset to infinity in first passage percolation on Z^d. 2018. 〈hal-01831419v2〉

Partager

Métriques

Consultations de la notice

17

Téléchargements de fichiers

26