Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation

Abstract : We give the asymptotics of the Fourier transform of self-similar solutions to the modified Korteweg-de Vries equation, through a fixed point argument in weighted W^{1,\infty} around a carefully chosen, two term ansatz. Such knowledge is crucial in the study of stability properties of the self-similar solutions for the modified Korteweg-de Vries flow. In the defocusing case, the self-similar profiles are solutions to the Painlevé II equation. Although they were extensively studied in physical space, no result to our knowledge describe their behavior in Fourier space. We are able to relate the constants involved in the description in Fourier space with those involved in the description in physical space.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01830857
Contributeur : Raphaël Côte <>
Soumis le : jeudi 5 juillet 2018 - 13:58:25
Dernière modification le : samedi 7 juillet 2018 - 01:17:50

Fichiers

mkdv_vortex_arxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01830857, version 1
  • ARXIV : 1807.02302

Collections

Citation

Simão Correia, Raphaël Côte, Luis Vega. Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation. 2018. 〈hal-01830857〉

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

6