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ON THE DETERMINATION OF NONLINEAR TERMS APPEARING IN
SEMILINEAR HYPERBOLIC EQUATIONS

YAVAR KIAN

Abstract. We consider the inverse problem of determining a general nonlinear term appearing in a semilin-
ear hyperbolic equation on a Riemannian manifold with boundary (M, g) of dimension n = 2, 3. We prove re-
sults of unique recovery of the nonlinear term F (t, x, u), appearing in the equation ∂2

t u−∆gu+F (t, x, u) = 0
on (0, T ) ×M with T > 0, from some partial knowledge of the solutions u on the boundary of the time-
space cylindrical manifold (0, T )×M or on the lateral boundary (0, T )× ∂M . We determine the expression
F (t, x, u) both on the boundary x ∈ ∂M and inside the manifold x ∈M .
Keywords: Inverse problems, nonlinear wave equation, semilinear equation, equations on manifold.

Mathematics subject classification 2010 : 35R30, 35L71, 35L20.

1. Introduction

1.1. Statement of the problem. Let (M, g) be a smooth compact Riemannian manifold with boundary
and let T > 0. We introduce the Laplace and wave operators

∆gu = |g|−1/2∂xj
(
gjk|g|1/2∂xku

)
, �g = ∂2t −∆g, (1.1)

where |g| and gjk denote the absolute of value of the determinant and the inverse of g in local coordinates,
and consider, for T > 0, the semilinear wave equation

�gu+ F (t, x, u) = 0, (t, x) ∈ (0, T )×M, (1.2)

with a nonlinear term F suitably chosen. In this paper, we consider the inverse problem of determining F
from observations of solutions of (1.2) on the boundary of the manifold (0, T )×M .

1.2. Motivations. Let us first observe that nonlinear wave equations of the form (1.2) can be associated with
different models where the transmission of waves is perturbed by a semilinear expression. Such phenomenon
can occur in many mechanical and electromagnetic models. For instance, we can mention the study of
vibrating systems where the expression F (t, x, u) can be seen as a nonlinear perturbation of the system.
The semilinear term F (t, x, u) can also be associated with other perturbations arising in electronics like in
the telegraph equation of for semi-conductors (see for instance [4]). In this context, the goal of our inverse
problem is to recover the nonlinear expression F (t, x, u) which describes the underlying physical law of the
perturbed system.

Beside these physical motivations, we mention that there is a natural mathematical motivation for the
study of such inverse problems which are highly nonlinear and ill-posed.

1.3. Known results. Let us first mention that, to our best knowledge, there is only a small number of papers
dealing with inverse problems for nonlinear partial differential equations. Among them we can mention the
work [12, 13, 14] of Isakov dedicated to the recovery of nonlinear terms appearing in elliptic or parabolic
equations. The method developed by Isakov is based on a linearization of the inverse problem for nonlinear
equations and results based on recovery of coefficients for linear equations. This approach has been applied in
different other context. For instance, we can mention the work of [15, 33], dealing with the unique recovery of
nonlinear terms appearing in nonlinear elliptic equations and the work of [7] dealing with the stable recovery
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of a semilinear term appearing in a parabolic equation. For more specific nonlinear terms, we can mention
the work of [6, 8, 22], who have considered similar problems with single measurements.

For hyperbolic equations we refer to the work of [29, 30] dealing with the recovery of a conductivity
and quadratic coefficients appearing in a non-linear wave equation of divergence form. We mention also the
recent works of [9, 23, 24], who have considered inverse problems for semilinear hyperbolic equations on a
general Lorentzian manifold. To our best knowledge, beside the present paper, the recovery of a general
nonlinear term appearing in hyperbolic equations has not been addressed so far.

1.4. Preliminary results. Before the statement of our main result let us first state some properties of
solutions of (1.2), that will be required for the statement of our main results. Let us first fix the class of
nonlinear terms under consideration. Let b > 0 be such that, for n = 2, b > 1 and, for n = 3, b ∈

(
1, 133

]
.

For a1 > 0 a fixed constant, we consider A the set of functions F ∈ C3(R+ ×M × R) satisfying

|∂kt ∂αx ∂juF (t, x, u)| 6 a1(1 + |u|b−j), (t, x, u) ∈ R+ ×M × R, k + |α|+ j 6 3. (1.3)

We fix also H the space of elements

G = (f, u0, u1) ∈ H 11
2 ((0, T )× ∂M)×H 11

2 (M)×H 9
2 (M)

satisfying the compatibility conditions

f|t=0 = u0|∂M , ∂tf|t=0 = u1|∂M , ∂2t f|t=0 = ∆gu0|∂M , ∂3t f|t=0 = ∆gu1|∂M , ∂4t f|t=0 = ∆2
gu0|∂M .

(1.4)
Then, for F ∈ A and (f, u0, u1) ∈ H, we consider the following problem ∂2t u−∆gu+ F (t, x, u) = 0, in (0, T )×M,

u = f, on (0, T )× ∂M,
u(0, ·) = u0, ∂tu(0, ·) = u1 in M.

(1.5)

We prove in Section 2 (see Lemma 2.2), that for

‖f‖
H

5
2 ((0,T )×∂M)

+ ‖u0‖
H

5
2 (M)

+ ‖u1‖
H

3
2 (M)

6 L

and for p > b, when n = 2 and p = 5 when n = 3, there exists T∗(2L) ∈ (0,+∞] such that, for all T < T∗(2L)

and all F ∈ A, the problem (1.5) admits a unique solution u ∈W 1, p
b−1 (0, T ;H2(M))∩W 3, p

b−1 (0, T ;L2(M)).
We fix also H∗ the space of elements f ∈ H 11

2 ((0, T )× ∂M) satisfying the compatibility conditions

f|t=0 = ∂tf|t=0 = ∂2t f|t=0 = ∂3t f|t=0 = ∂4t f|t=0 = 0. (1.6)

Then, for G ∈ H we denote by uF,G ∈W 1, p
b−1 (0, T ;H2(M))∩W 3, p

b−1 (0, T ;L2(M)) the solution of (1.5). In
the same way, we denote by uF,f ∈ W 1, p

b−1 (0, T ;H2(M)) ∩W 3, p
b−1 (0, T ;L2(M)) the solution of (1.5) with

u0 = u1 = 0. Then, for some L > 0, ε ∈ (0, 1), fixing T < T∗(2(L+ 3ε)) and the set

KL := {G ∈ H : ‖G‖
H

5
2 ((0,T )×∂M)×H

5
2 (M)×H

3
2 (M)

6 L+ 3ε},

we define the boundary maps

BF,γ1 : KL 3 G 7−→ (∂νuF,G|(0,T )×γ1 , uF,G(T, ·)|M ) ∈ L2((0, T )× γ1)×H1(M),

NF,γ1 : {h ∈ H∗ : ‖h‖
H

5
2 ((0,T )×γ1)

6 L+ ε} 3 f 7−→ ∂νuF,f |(0,T )×γ1 ∈ L
2((0, T )× γ1),

with γ1 an open subset of ∂M and ν the outward unit normal vector to ∂M . We prove in Theorem 2.1
that the maps BF,γ1 and NF,γ1 admit a continuous Fréchet derivative denoted by B′F,γ1 and N ′F,γ1 . The
observation of our inverse problem will be given by some partial information of the Fréchet derivative of the
map BF,γ1 and NF,γ1 .
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1.5. Main results. In our first result we consider the recovery of the nonlinear term F (t, x, u) restricted
to a portion of the lateral boundary (0, T )× ∂M . More precisely, we fix γ an arbitrary open subset of ∂M ,
δ > 0, χ ∈ C∞0 ((0,+∞)× ∂M) satisfying χ = 1 on [δ,+∞)× γ and

H∗,γ := {f ∈ H∗ : supp(f) ⊂ [0, T ]× γ}.
Then, we consider the recovery of F restricted to [δ, T )× γ × [−L,L] from the data

N ′F,γ(λχ)h, h ∈ H∗,γ , λ ∈ I,
with I an interval of R. This result can be stated as follows.

Theorem 1.1. Let n = 2, 3, F1, F2 ∈ A and fix T < T∗(2(L + 3ε)). Consider also δ > 0 and χ ∈
C∞0 ((0,+∞)× ∂M) satisfying χ = 1 on [δ,+∞)× γ, L1 := L

‖χ‖
H

5
2 ((0,T )×∂M)

and T < T∗(2(L+ ε)). Then the

conditions
F1(t, x, 0) = F2(t, x, 0), (t, x) ∈ [δ, T ]× γ, (1.7)

N ′F1,γ(λχ)h = N ′F2,γ(λχ)h, λ ∈ [−L1, L1], h ∈ H∗,γ , (1.8)
imply

F1(t, x, λ) = F2(t, x, λ), (t, x, λ) ∈ [δ, T ]× γ × [−L1, L1]. (1.9)

This first result corresponds to the recovery of the nonlinear term F restricted to a portion γ of the
boundary of M . In order to recover F inside M we will first need additional information about M . Let us
first recall the definition of simple manifold.

Definition 1.1. A compact smooth Riemannian manifold with boundary (M, g) is simple if it is simply
connected, the boundary ∂M is strictly convex in the sense of the second fundamental form, and M has no
conjugate points.

With this additional assumption, we can extend Theorem 1.1 in the following way.

Theorem 1.2. Let n = 2, 3, M be a simple manifold, F1, F2 ∈ A and fix T < T∗(2(L + 3ε)). Then the
conditions

F1(t, x, 0) = F2(t, x, 0), (t, x) ∈ ({0} ×M) ∪ ((0, T )× ∂M), (1.10)

B′F1,∂M (λ, λ, 0)H = B′F2,∂M (λ, λ, 0)H, λ ∈
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
, H ∈ H (1.11)

imply

F1(t, x, λ) = F2(t, x, λ), (t, x, λ) ∈ [0, T ]× ∂M ×
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
, (1.12)

F1(0, x, λ) = F2(0, x, λ), (x, λ) ∈M ×
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
. (1.13)

Here (λ, λ, 0) denotes the element of H corresponding to the different traces of the constant map (t, x) 7→ λ.

In the specific case of a bounded domain of Rn, n = 2, 3, with Euclidean metric, we can give a more
precise result with restriction of the data to some portion of the boundary and solutions with constant values
at t = 0. To state this result which will be our last main result, we consider first the following tools. For
any ω ∈ Sn−1 = {y ∈ Rn : |y| = 1} we consider the ω-shadowed and ω-illuminated faces of ∂Ω

∂Ω+,ω = {x ∈ ∂Ω : ν(x) · ω > 0}, ∂Ω−,ω = {x ∈ ∂Ω : ν(x) · ω 6 0}.
Here, for all k ∈ N∗, · denotes the scalar product in Rk defined by

x · y = x1y1 + . . .+ xkyk, x = (x1, . . . , xk) ∈ Rk, y = (y1, . . . , yk) ∈ Rk.
We fix ω0 ∈ Sn−1 and we consider U = [0, T ] × U ′ (resp V = (0, T ) × V ′) with U ′ (resp V ′) an open
neighborhood of ∂Ω+,ω0

(resp ∂Ω−,ω0
) in ∂Ω. Let us also consider the following restriction of the space H

given by
HU := {H = (h, h0, h1) ∈ H : h0 = 0, supp(h) ⊂ U}.
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Theorem 1.3. Let n = 2, 3, M = Ω with Ω an open connected and smooth domain of Rn with the Euclidean
metric, let F1, F2 ∈ A and fix T < T∗(2(L+ 3ε)). Then the conditions (1.10) and

B′F1,V (λ, λ, 0)H = B′F2,V (λ, λ, 0)H, λ ∈
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
, H ∈ HU (1.14)

imply

F1(t, x, λ) = F2(t, x, λ), (t, x, λ) ∈ [0, T ]× ∂M ×
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
, (1.15)

F1(0, x, λ) = F2(0, x, λ), (x, λ) ∈M ×
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
. (1.16)

1.6. Comments about the main results. To our best knowledge Theorem 1.1, 1.2 and 1.3 are the first
results of recovery of a general semilinear term appearing in a hyperbolic nonlinear equation. Indeed, to
our best knowledge one can only find results dealing with recovery of coefficients, appearing in a nonlinear
hyperbolic equation, in the mathematical literature (see e.g. [29, 30]). It seems that such results have only
been considered for parabolic or elliptic equations (e.g. [7, 12, 13, 14, 15, 33]). It seems also that Theorem
1.1, 1.2 are the first results dealing with the recovery of nonlinear terms appearing in a PDE of order two
with variable second order coefficients that are not analytic in the case n = 3 ([33] considered this situation
for quasilinear elliptic equations in dimension n = 2 but they make the assumption of analyticity for the
dimension n > 3). Note also that like [7, 12, 13], we manage to recover the nonlinear term at the lateral
boundary (0, T )× ∂M , with data restricted to the lateral boundary, but also inside the domain.

The proof of Theorem 1.1, 1.2 and 1.3, are based on a linearization procedure inspired by [7, 12, 13, 14].
The idea consists in transforming the recovery of the nonlinear term F (t, x, u) into the recovery of time-
dependent coefficients q(t, x) = ∂uF (t, x, u(t, x)), where u solves (1.5) with suitable choice of the data
(f, u0, u1), appearing in a linear hyperbolic equation. So far this approach has been considered only with
Hölder continuous solutions of some nonlinear parabolic or elliptic equations. For hyperbolic equations, the
existence of such smooth solutions seems to require at least strong assumptions on the semilinear term under
consideration. For this reason, in this paper, we provide, for what seems to be the first time, the extension
of the linearization procedure considered for the first time by [12], to solutions lying in Sobolev space instead
of Hölder continuous space. This extension of the analysis of [12] allows us to consider the case of nonlinear
hyperbolic equations.

As mentioned above, our approach consists in transforming our inverse problem into the recovery of
a time-dependent potential of the form q(t, x) = ∂uF (t, x, u(t, x)), where u solves (1.5). This means that
the regularity of the coefficient q will depend explicitly on the solution of the nonlinear problem (1.5).
For this reason, we can not apply results dealing with recovery of smooth time-dependent coefficients. In
Theorem 1.2 and 1.3, we use the results of [10, 18, 19, 20] dealing with the global recovery of such coefficients
with low regularity assumptions. For Theorem 1.1, we need to use results of recovery of time-dependent
coefficients on the portion (0, T )× γ of the lateral boundary (0, T )× ∂M from measurement restricted also
to (0, T ) × γ. Moreover, we need to consider such results on some general Riemannian manifold. To our
best knowledge [32] is the only work dealing with results close to the one needed for Theorem 1.1 (see also
[31] for time-independent coefficients). However, the approach of [32], based on local properties of general
geometric optics solutions, requires strong smoothness assumptions and it can not be applied in the context
of Theorem 1.1. For this reason we introduce a new approach for the recovery of less-regular coefficients in
the proof of Theorem 3.1 (see Section 3). The result of Theorem 3.1 is based on a global construction of
particular solutions of the linear problem (3.1), with a control of their behavior close to the boundary. In
contrast to other related results (e.g. [31, 32]) we do not restrict our analysis on some local properties of
general geometric optics solutions associated with (3.1), but some global construction in boundary normal
coordinates suitable designed for any point (t, x) ∈ (0, T )× γ.

In contrast to other related results for parabolic or elliptic equations (e.g. [7, 12, 13, 14]), we make only
small restrictions on the class of nonlinear terms under consideration. Indeed, we even consider semilinear
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equations with solutions that may blow-up at finite time. For this purpose, we state our result on, what can
correspond to, the infimum of the final time of existence, denoted by T∗, of maximal solutions associated
with all possible semi-linear terms lying in A. Here T∗ is a function of the size of the data (f, u0, u1) and it
is well defined thanks to the lower bound (2.3) that we derive for this expression in Lemma 2.1. We believe
that with additional assumptions on the class of admissible nonlinear terms A (see [3, 16, 11]) our result
would be equivalent to the one stated by [7, 12, 13, 14] for global solutions of some nonlinear parabolic
equations. However, in order to preserve the generality of our results, we prefer to keep this statement.

Let us observe, that, to our best knowledge, contrary to all other works dealing with recovery of nonlinear
terms (e.g. [7, 12, 13, 14, 15, 33]), we do not state our results with boundary map BF,γ1 or NF,γ1 associated
with the nonlinear problem (1.5), but with some partial knowledge of their Fréchet derivative. By taking
into account the important amount of data contained into BF,γ1 or NF,γ1 , this statement of the main results
makes an important difference in terms of restriction of the data used for solving the inverse problem.

Our analysis is restricted to dimension of space n = 2, 3, but we believe that with suitable assumptions
it could be extended to higher dimension. This restriction is due the application of the Sobolev embedding
theorem in the linearization procedure.

1.7. Outline. This paper is organized as follows. In Section 2, we prove existence of sufficiently smooth
solutions of (1.5). Then, we define the maps BF,γ1 and NF,γ1 and we prove that they admit a Fréchet
derivative associated with solutions of linear wave equations with time-dependent coefficients. In Section
3, we establish the recovery on the portion (0, T ) × γ of a time-dependent potential from measurements of
solutions of the linear problem restricted to (0, T ) × γ. We prove this result, which is stated in Theorem
3.1, for coefficients q ∈ H2((0, T )×M) ∩ C([0, T ]×M). In Section 4, we recall some results about recovery
of time-dependent coefficients appearing in hyperbolic equations borrowed from [19, 20]. Finally, in Section
5, we combine all the arguments introduced in the preceding sections of the paper in order to complete the
proof of Theorem 1.1, 1.2 and 1.3.

2. Forward problem and linearization of the inverse problem

In this section we will consider results related to existence and uniqueness of sufficiently smooth solutions
of (1.5). Then we will use these results in order to prove that the maps BF,γ1 and NF,γ1 are well defined
and admit a continuous Fréchet derivative.

We start with a result of local well-posedness for the problem (1.5) that can be proved by mean of
Strichartz estimates stated in this context.

Lemma 2.1. Assume that n = 2 or n = 3. Let F ∈ A and let f ∈ H 5
2 ((0,+∞) × ∂M), u0 ∈ H

5
2 (M) and

u1 ∈ H
3
2 (M) satisfy f|t=0 = u0|∂M , ∂tf|t=0 = u1|∂M . Assume also that there exists L > 0 such that

‖f‖
H

5
2 ((0,+∞)×∂M)

+ ‖u0‖
H

5
2 (M)

+ ‖u1‖
H

3
2 (M)

6 L. (2.1)

We consider the estimate
‖u‖C([0,T ];H1(M)) + ‖u‖Lp(0,T1;L2p(M)) 6 C1L, (2.2)

with C1 depending only on b, M , a1, and we define the sets
TF,L := {T > 0 : for all data (f, u0, u1) satisfying (2.1), (1.5) admits a unique solution

u ∈ C1([0, T ];L2(M)) ∩ C([0, T ];H1(M)) ∩ Lp(0, T1;L2p(M)) satisfying (2.2)},

TL :=
⋂
F∈A
TF,L,

with p > b, when n = 2 and p = 5 when n = 3. Then the set T is not empty and sup TL = T∗(L) ∈ (0,+∞]
depends on L, b, M and a1. Moreover, L 7→ T∗(L) is non-increasing and, for any ε1 ∈ (0, 1), we have the
following lower bound for T∗(L) given by

T∗(L) > C min
(
L
p(1−b)
(p−b) , L

2(1−b)
(2+b) , L1+ε1 , 1

)
(2.3)



6 YAVAR KIAN

with C depending only on b, M , ε1 and a1. In addition, (1.5), with T = T∗(L), admits a unique solution
lying in C1([0, T∗(L));L2(M)) ∩ C([0, T∗(L));H1(M)) ∩ Lploc(0, T∗(L);L2p(M)).

Proof. We prove this result by applying some arguments of [16, 18] that we adapt to problems stated with
non-homogeneous Dirichlet boundary conditions. According to [28, Theorem 2.3, Chapter 4], there exists
G ∈ H3((0,+∞)×M) satisfying

G|(0,+∞)×∂M = f, G|t=0 = u0, ∂tG|t=0 = u1,

‖G‖H3((0,+∞)×M) 6 C(‖f‖
H

5
2 ((0,+∞)×∂M)

+ ‖u0‖
H

5
2 (M)

+ ‖u1‖
H

3
2 (M)

) 6 CL (2.4)

where C depends only on M . From now on and in all the remaining part of this proof, we denote by C a
constant depending on M and b. Moreover, by the Sobolev embedding theorem, we have G ∈ C([0, T ]×M)
and fixing

G1 := −(∂2tG−∆gG),

one can check that G1 ∈ H1(0, T ;L2(M)). Then, we can split the solutions of (1.5) into two terms u = G+v
with v solving  ∂2t v −∆gv + F (t, x, v +G) = G1(t, x), in (0, T1)×M,

v = 0, on (0, T1)× ∂M,
v(0, ·) = 0, ∂tv(0, ·) = 0 in M.

(2.5)

We will prove existence of a solution of (2.5) by mean of a fixed point argument. We denote by A the
operator −∆g in M with Dirichlet boundary condition. Now consider, for some T1 > 0 to be determined,
the map G defined on C([0, T1];H1

0 (M)) ∩ Lp(0, T1;L2p(M)) by

G[v)](t) := −
∫ t

0

sin((t− s)A 1
2 )A−

1
2F (s, ·, v(s, ·) +G(s, ·))ds+

∫ t

0

sin((t− s)A 1
2 )A−

1
2G1(s, ·)ds

Combining the Christ-Kieslev lemma (see for instance [18, Lemma 1] and also [7] for the original result) with
the Strichartz estimates on manifolds stated in [2, Theorem 1] and following [18, Lemma 2], we deduce that

‖G(v)‖C([0,T1];H1(M)) + ‖G(v)‖Lp(0,T1;L2p(M))

6 C ‖H‖L1(0,T ;L2(M)) + 2 ‖G1‖L1(0,T1;L2(M))

6 Ca1
∥∥(1 + |v +G|b)

∥∥
L1(0,T ;L2(M))

+ 2T1 ‖G1‖L∞(0,T1;L2(M))

6 Ca12b−1
∥∥|v|b∥∥

L1(0,T ;L2(M))
+ Ca12b−1

∥∥|G|b∥∥
L1(0,T ;L2(M))

+ 2T
3
2
1 ‖G1‖H1(0,T1;L2(M)) + Ca1T1

6 Ca12b−1 ‖v‖bLb(0,T ;L2b(M)) + Ca12b−1 ‖G‖bLb(0,T ;L2b(M)) + 4T
3
2
1 L+ Ca1T1

with H(t, x) := F (t, x, v(t, x) +G(t, x)). On the other hand, by the Sobolev embedding theorem, we have

‖G‖Lb(0,T ;L2b(M)) 6 C ‖G‖Lb(0,T ;L∞(M)) 6 C ‖G‖Lb(0,T ;H2(M)) 6 CT
1
b
1 ‖G‖L∞(0,T ;H2(M)) 6 CT

2+b
2b

1 L

and the Hölder inequality implies

‖v‖Lb(0,T ;L2b(M)) 6 CT
p−b
pb

1 ‖v‖Lp(0,T ;L2p(M)) .

Thus, we have
‖G(v)‖C([0,T1];H1(M)) + ‖G(v)‖Lp(0,T1;L2p(M))

6 Ca1T
p−b
p

1 ‖v‖bLp(0,T ;L2p(M)) + Ca1T
2+b
2

1 Lb + 4T
3
2
1 L+ Ca1T1.

(2.6)

In the same way, fixing v1, v2 ∈ C([0, T1];H1
0 (M)) ∩ Lp(0, T1;L2p(M)), we find

‖G(v1)−G(v2)‖C([0,T1];H1(M)) + ‖G(v1)−G(v2)‖Lp(0,T1;L2p(M))

6 Ca1T
p−b
p

1 ‖v1 − v2‖Lp(0,T ;L2p(M)) (‖v1‖b−1Lp(0,T ;L2p(M)) + ‖v2‖b−1Lp(0,T ;L2p(M)) + 1)
(2.7)
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Combining (2.6)-(2.7) with the Poincaré fixed point theorem, we deduce that for

T1 := C min
(
L
p(1−b)
(p−b) , L

2(1−b)
(2+b) , L1+ε1 , 1

)
,

with C some suitable constant depending only on b, M , ε1 and a1, the map G admits a unique fixed point
v in the set

{w ∈ C([0, T1];H1
0 (M)) ∩ Lp(0, T1;L2p(M)) : ‖w‖C([0,T1];H1(M)) + ‖w‖Lp(0,T1;L2p(M)) 6 C1L},

where C1 is also a constant depending only on b, M and a1. One can easily deduce that this fixed point
v is also lying in C1([0, T1];L2(M)), it satisfies (2.2) and it solves (2.5). This proves the existence of local
solutions for (1.5). The uniqueness can be deduced from arguments inspired by [16, Theorem 2.1] (see also
[21, page 134] for similar arguments). This result gives also the lower bound for T∗(L) and it completes the
proof of the lemma. �

This result gives us the existence and uniqueness of variational solutions of (1.5) on (0, T ), provided
T < T∗(L). We believe that, under some suitable restriction imposed to the set A (see for instance [3, 4, 16]),
this result can be extended to a global existence result corresponding to the condition T∗(L) = +∞, L > 0.
However, in the general setting, there is counterexamples to the global existence of solutions due to the
blow up at finite time of some of them (e.g. [4, Proposition 6.4.1]). In order to preserve the generality of
our results, we do not consider possible restriction of the class A of nonlinear terms which would allow the
extension of our local well-posedness result to existence of global solutions by proving that T∗(L) = +∞,
L > 0.

By mean of suitable conditions, we can increase the regularity of the solution u of (1.5) in the following
way.

Lemma 2.2. Assume that n = 2 or n = 3 and for L > 0 fix T < T∗(2L). Let F ∈ A and let (f, u0, u1) ∈ H.
Assume also that

‖f‖
H

5
2 ((0,T )×∂M)

+ ‖u0‖
H

5
2 (M)

+ ‖u1‖
H

3
2 (M)

6 L.

Then, (1.5) admits a unique solution lying inW 1, p
b−1 (0, T ;H2(M))∩W 2, p

b−1 (0, T ;H1(M))∩Lp(0, T ;L2p(M))
satisfying

‖u‖
W

1,
p
b−1 (0,T ;H2(M))

+ ‖u‖
W

2,
p
b−1 (0,T ;H1(M))

+ ‖u‖Lp(0,T ;L2p(M))

6 C
(
‖f‖

H
11
2 ((0,T )×∂M)

+ ‖u0‖
H

11
2 (M)

+ ‖u1‖
H

9
2 (M)

)
,

(2.8)

with C depending on L, M , b, n and a1.

Proof. We start by extending f to an element of H
5
2 ((0,+∞)× ∂M) satisfying

‖f‖
H

5
2 ((0,+∞)×∂M)

6 2 ‖f‖
H

5
2 ((0,T )×∂M)

.

According to [28, Theorem 2.3, Chapter 4], in view of the compatibility condition (1.4), there exists G ∈
H6((0,+∞)×M) satisfying

G|(0,+∞)×∂M = f, G|t=0 = u0, ∂tG|t=0 = u1, ∂
2
tG|t=0 = ∆gu0,

∂3tG|t=0 = ∆gu1, ∂4tG|t=0 = ∆2
gu0,

(2.9)

‖G‖H6((0,+∞)×M) 6 C
(
‖f‖

H
11
2 ((0,+∞)×∂M)

+ ‖u0‖
H

11
2 (M)

+ ‖u1‖
H

9
2 (M)

)
. (2.10)

Then, following Lemma 2.1, the solution u ∈ C1([0, T ];L2(M)) ∩ C([0, T ];H1(M)) ∩ Lp(0, T ;L2p(M)) of
(1.5) takes the form u = v + G with v ∈ C1([0, T ];L2(M)) ∩ C([0, T ];H1

0 (M)) ∩ Lp(0, T ;L2p(M)) solving
(2.5). Thus, the proof will be completed if we prove that v ∈W 1, p

b−1 (0, T ;H2(M))∩W 3, p
b−1 (0, T ;L2(M))∩

Lp(0, T ;L2p(M)) satisfies

‖v‖
W

1,
p
b−1 (0,T ;H2(M))

+ ‖v‖
W

2,
p
b−1 (0,T ;H1(M))

+ ‖v‖Lp(0,T ;L2p(M)) 6 C ‖G‖H6((0,+∞)×M) . (2.11)
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For this purpose, we remark first that since v ∈ C1([0, T ];L2(M)) ∩ Lp(0, T ;L2p(M)), for

q(t, x) := ∂uF (t, x, u(t, x)), (t, x) ∈ [0, T ]×M,

we have
‖q‖

L
p
b−1 (0,T ;L3(M))

6 a1
∥∥1 + |u|b−1

∥∥
L

p
b−1 (0,T ;L3(M))

6 C(‖u‖b−1Lp(0,T ;L3(b−1)(M)) + 1)

and using the fact that, for n = 3, 2p = 10 > 3( 13
3 − 1) > 3(b − 1), and the fact that p > b is arbitrary

for n = 2, we have q ∈ L
p
b−1 (0, T ;L3(M)). Thus, by the Sobolev embedding theorem, we deduce that

q∂tv ∈ L
p
b−1 (0, T ;H−1(M)). Moreover, using the fact that by density, for a.e (t, x) ∈ (0, T )×M , we have

∂t[F (t, x, u(t, x))] = ∂tF (t, x, u(t, x)) + ∂uF (t, x, u(t, x))∂tv(t, x) + ∂uF (t, x, u(t, x))∂tG(t, x)

and the fact that for

G2(t, x) := −∂uF (t, x, u(t, x))∂tG(t, x)− ∂tF (t, x, u(t, x))− ∂3tG(t, x) + ∆g∂tG(t, x), (t, x) ∈ [0, T ]×M,

we have
‖G2‖L pb (0,T ;L2(M))

6 C(‖u‖Lp(0,T ;L2p(M)) + 1),

we deduce that E : (t, x) 7→ F (t, x, u(t, x)) ∈ W 1, pb (0, T ;H−1(M)) ⊂ C([0, T ];H−1(M)) and v1 := ∂tv ∈
C([0, T ];L2(M)) ∩ C1([0, T ];H−1(M)). Moreover, in view of (2.9), we have

G1(0, x) = −∂2tG(0, x) + ∆gG(0, x) = 0, x ∈M.

Therefore, fixing w ∈ C∞([0, T ]×M) ∩ C([0, T ];H1
0 (M)) satisfying w(T, ·) = ∂tw(T, ·) = 0, we find〈

v1, ∂
2
tw −∆gw

〉
L2(0,T ;L2(M))

=
〈
∂tv, ∂

2
tw −∆gw

〉
L2(0,T ;L2(M))

= −
〈
∂2t v −∆gv, ∂tw

〉
L
p
b (0,T ;L2(M)),L

p
p−b (0,T ;L2(M))

= 〈E −G1, ∂tw〉
L
p
b (0,T ;L2(M)),L

p
p−b (0,T ;L2(M))

= −
∫
M

F (0, x, u0(x))w(0, x)dVg(x)− 〈∂tE − ∂tG1, w〉
L
p
b (0,T ;H−1(M)),L

p
p−b (0,T ;H1

0 (M))

= −
∫
M

F (0, x, u0(x))w(0, x)dVg(x)− 〈qv1, w〉
L
p
b (0,T ;H−1(M)),L

p
p−b (0,T ;H1

0 (M))
+ 〈G2, w〉

L
p
b (0,T ;L2(M)),L

p
p−b (0,T ;L2(M))

= −
∫
M

F (0, x, u0(x))w(0, x)dVg(x)− 〈v1, qw〉
L

p
p−b (0,T ;L2(M)),L

p
b (0,T ;L2(M))

+ 〈G2, w〉
L
p
b (0,T ;L2(M)),L

p
p−b (0,T ;L2(M))

.

Thus, we obtain〈
v1, ∂

2
tw −∆gw + qw

〉
L

p
p−b (0,T ;L2(M)),L

p
b (0,T ;L2(M))

= −
∫
M

F (0, x, u0(x))w(0, x)dVg(x) + 〈G2, w〉
L
p
b (0,T ;L2(M)),L

p
p−b (0,T ;L2(M))

.
(2.12)

By the Sobolev embedding theorem, for any w ∈ C([0, T ];H1(M)), we find qw ∈ L
p
b−1 (0, T ;L2(M)) and,

by density, the identity (2.12) holds true for any w ∈ X, where X denotes the space of all elements w ∈
C1([0, T ];L2(M)) ∩ C([0, T ];H1

0 (M)) ∩W 2, pb (0, T ;H−1(M)) satisfying

∂2tw −∆gw + qw ∈ L
p
b (0, T ;L2(M)), w(T, ·) := ∂tw(T, ·) = 0.

Moreover, according to [27, Theorem 9.1, Chapter 3] combined with [10, Proposition 1]1, v1 is the unique
element of L

p
p−b (0, T ;L2(M)) satisfying (2.12) for any w ∈ X. On the other hand, by the Sobolev embedding

theorem we have u0 ∈ C1(M) and it follows that x 7→ F (0, x, u0(x)) ∈ C1(M). Therefore, using the fact

1The result [10, Proposition 1] is stated for a bounded subdomain of Rn but it can be extended without any difficulty to a
compact Riemannian manifold of dimension n.
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that n 6 3 and applying [10, Proposition 1], we deduce that there exists a unique z ∈ C1([0, T ];L2(M)) ∩
C([0, T ];H1

0 (M)) solving the linear problem ∂2t z −∆gz + q(t, x)z = G2(t, x), in (0, T )×M,
z = 0, on (0, T )× ∂M,
z(0, ·) = 0, ∂tz(0, ·) = −F (0, x, u0(x)) in M.

Moreover, integrating by parts, for any w ∈ X, we find〈
z, ∂2tw −∆gw + qw

〉
L

p
p−b (0,T ;L2(M)),L

p
b (0,T ;L2(M))

= −
∫
M

F (0, x, u0(x))w(0, x)dVg(x) + 〈G2, w〉
L
p
b (0,T ;L2(M)),L

p
p−b (0,T ;L2(M))

and by the uniqueness of the elements of L
p
p−b (0, T ;L2(M)) satisfying (2.10), we deduce that v1 = z. It

follows that v1 ∈ C1([0, T ];L2(M)) ∩ C([0, T ];H1
0 (M)) and v1 solves ∂2t v1 −∆gv1 + q(t, x)v1 = G2(t, x), in (0, T )×M,

v1 = 0, on (0, T )× ∂M,
v1(0, ·) = 0, ∂tv1(0, ·) = −F (0, x, u0(x)) in M.

(2.13)

In the same way, we can prove that v2 = ∂tv1 = ∂2t v is lying in C1([0, T ];L2(M)) ∩ C([0, T ];H1
0 (M)) and it

solves the linear problem ∂2t v2 −∆gv2 + q(t, x)v2 = G3(t, x), in (0, T )×M,
v2 = 0, on (0, T )× ∂M,
v2(0, ·) = −F (0, x, u0(x)), ∂tv2(0, ·) = −∂uF (0, x, u0(x))u1(x)− ∂tF (0, x, u0(x)) in M,

(2.14)
with

G3(t, x) :=− ∂uF (t, x, u(t, x))∂2tG(t, x)− 2∂u∂tF (t, x, u(t, x))[∂tG(t, x) + v1(t, x)]− ∂2t F (t, x, u(t, x))

− ∂4tG(t, x) + ∆g∂
2
tG(t, x)− ∂2uF (t, x, u(t, x))[v1(t, x) + ∂tG(t, x)]2, (t, x) ∈ [0, T ]×M.

Here we use the fact that, by the Sobolev embedding theorem, G ∈ C3([0, T ];H2(M)) ⊂ C3([0, T ];L∞(M))

and G3 ∈ W 1, pb (0, T ;L2(M)). Finally, using similar arguments, we can prove that v3 = ∂tv2 = ∂2t v1 ∈
C1([0, T ];L2(M)) ∩ C([0, T ];H1

0 (M)) solves the linear problem ∂2t v3 −∆gv3 + q(t, x)v3 = G4(t, x), in (0, T )×M,
v3 = 0, on (0, T )× ∂M,
v3(0, x) = ∂tv2(0, x), ∂tv3(0, x) = −∆g[F (0, x, u0(x)] + q(0, x)F (0, x, u0(x) +G3(0, x), x ∈M,

(2.15)
with

G4(t, x) := ∂tG3(t, x)− ∂2uF (t, x, u(t, x))(v1(t, x) + ∂tG(t, x))v2(t, x).

This proves that, for a.e. t ∈ (0, T ), v1(t, ·) solves the boundary value problem{
−∆gv1(t, ·) = −v3(t, ·)− q(t, ·)v1(t, ·) +G2(t, ·), in M,
v1 = 0, on (0, T )× ∂M

and using the fact that −v3 + qv1 + G2 ∈ L
p
b−1 (0, T ;L2(M)), we deduce that v1 ∈ L

p
b−1 (0, T ;H2(M)). It

follows that v ∈W 1, p
b−1 (0, T ;H2(M))∩W 2, p

b−1 (0, T ;H1(M))∩Lp(0, T ;L2p(M)) and we deduce the required
regularity result as well as (2.11). �

Now let us consider the following linear initial boundary value problem ∂2tw −∆gw + qw = 0, in (0, T )×M,
w = h, on (0, T )× ∂M,
w(0, ·) = h0, ∂tw(0, ·) = h1 in M,

(2.16)
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to which we associate the linear operator

Dq,γ1 : H 3 H = (h, h0, h1) 7−→ (∂νw|(0,T )×γ1 , w(T, ·)|M ) ∈ L2((0, T )× γ1)×H1(M),

and for w solutions of (2.16), with h0 = h1 = 0, the linear operator

Λq,γ1 : H∗ 3 h 7−→ ∂νw|(0,T )×γ1 ∈ L
2((0, T )× γ1).

From now on, for any H = (h, h0, h1) ∈ H, we denote by ‖H‖H the norm defined by

‖H‖2H := ‖h‖2
H

11
2 ((0,T )×∂M)

+ ‖u0‖2
H

11
2 (M)

+ ‖u1‖2
H

9
2 (M)

We proceed now to the following linearization of the maps BF,γ1 and NF,γ1 introduced in Section 1.1.

Theorem 2.1. Assume that n = 2 or n = 3 and let F ∈ A. Then, the maps BF,γ1 and NF,γ1 admit a
continuous Fréchet derivative B′F,γ1 and N ′F,γ1 on

{G ∈ H : ‖G‖
H

5
2 ((0,T )×∂M)×H

5
2 (M)×H

3
2 (M)

6 L},

{h ∈ H∗ : ‖h‖
H

5
2 ((0,T )×∂M)

6 L}.

Moreover, fixing
G ∈ {K ∈ H : ‖K‖

H
5
2 ((0,T )×∂M)×H

5
2 (M)×H

3
2 (M)

6 L},

f ∈ {h ∈ H∗ : ‖h‖
H

5
2 ((0,T )×∂M)

6 L},

qF,G(t, x) := ∂uF (t, x, uF,G(t, x)) and qF,f (t, x) := ∂uF (t, x, uF,f (t, x)), we find

B′F,γ1(G)H = DqF,G,γ1H, N ′F,γ1(f)h = ΛqF,f ,γ1h, H ∈ H, h ∈ H∗. (2.17)

Proof. Since the proof for BF,γ1 and NF,γ1 are similar, we will only prove this result for BF,γ1 . Moreover,
without lost of generality, we assume that γ1 = ∂M . For this purpose, we fix H := (h, h0, h1) ∈ H satisfying
‖H‖

H
5
2 ((0,T )×∂M)×H

5
2 (M)×H

3
2 (M)

+ ‖H‖H 6 ε and we consider v = uF,G+H −uF,G−wF,G,H , with w solving
(2.16) with q = qF,G. By taylor expansion in u of F , we find

F (t, x, uF,G+H(t, x))

= F (t, x, uF,G(t, x)) + ∂uF (t, x, uF,G(t, x))((uF,G+H(t, x)− uF,G(t, x))

+

(∫ 1

0

(1− s)∂2uF (t, x, uF,G(t, x) + s(uF,G+H(t, x)− uF,G(t, x)))ds

)
((uF,G+H(t, x)− uF,G(t, x))2.

Then, v solves the linear problem ∂2t v −∆gv + qF,Gv = RF,G,H , in (0, T )×M,
v = 0, on (0, T )× ∂M,
v(0, ·) = 0, ∂tv(0, ·) = 0 in M,

(2.18)

with
RF,G,H(t, x)

:=

(∫ 1

0

(1− s)∂2uF (t, x, uF,G(t, x) + s(uF,G+H(t, x)− uF,G(t, x)))ds

)
((uF,G+H(t, x)− uF,G(t, x))2.

By the Sobolev embedding theorem, the space W 1, p
b−1 (0, T ;H2(M)) embedded continuously into C([0, T ]×

M) and we deduce that

‖RF,G,H‖L2(0,T ;L2(M)) 6 C ‖RF,G,H‖L∞((0,T )×M) 6 C ‖uF,G+H − uF,G‖2L∞((0,T )×M) .
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Combining this with [1, Theorem A.2], [10, Proposition 1], (2.2) and applying the Sobolev embedding
theorem, we obtain

‖∂νv‖L2((0,T )×∂M) + ‖v‖C([0,T ];H1(M)) 6 C
(
‖RF,G,H‖L1(0,T ;L2(M)) + ‖qF,Gv‖L1(0,T ;L2(M))

)
6 C

(
‖RF,G,H‖L2(0,T ;L2(M)) + ‖qF,G‖L1(0,T ;L3(M)) ‖v‖L∞(0,T ;H1(M))

)
6 C ‖RF,G,H‖L2(0,T ;L2(M))

6 C ‖uF,G+H − uF,G‖2L∞((0,T )×M) .

(2.19)
On the other hand, y := uF,G+H − uF,G solves the problem ∂2t y −∆gy + VF,G,Hy = 0, in (0, T )×M,

y = h, on (0, T )× ∂M,
y(0, ·) = h0, ∂ty(0, ·) = h1 in M,

(2.20)

with

VF,G,H(t, x) :=

∫ 1

0

∂uF (t, x, uF,G(t, x) + s(uF,G+H(t, x)− uF,G(t, x)))ds.

Using the fact that u ∈W 1, b
b−1 (0, T ;H2(M)) ⊂W 1, b

b−1 (0, T ;L∞(M)), we deduce that VF,G,H ∈W 1, b
b−1 (0, T ;L∞(M)).

Thus, y1 = ∂ty solves ∂2t y1 −∆gy1 + VF,G,Hy1 = ∂tVF,G,Hy, in (0, T )×M,
y1 = ∂th, on (0, T )× ∂M,
y1(0, ·) = h1, ∂ty1(0, ·) = ∆gh0 − VF,G,H(0, ·)h0 in M,

where one can check that

VF,G,H(0, x) =

∫ 1

0

∂uF (0, x, u0(x) + sh0(x))ds, x ∈ Ω.

Combining this with the fact that G,H = (h, h0, h1) ∈ H, we deduce from [10, Proposition 1] that this
problem admits a unique solution y1 ∈ C([0, T ];H1(M)) ∩ C1([0, T ];L2(M)), satisfying

‖y1‖C1([0,T ];L2(M)) 6 C(‖H‖H + ‖VF,G,H‖L∞((0,T )×M) ‖y‖C([0,T ];L2(M)))

6 C ‖H‖H .

Note that here we use the fact that for ‖H‖H 6 ε, ‖VF,G,H‖L∞((0,T )×M) is upper bounded by a constant
depending only on ε, G, T and M . Thus, we have y ∈ C2([0, T ];L2(M)) and

‖∆y‖C([0,T ];L2(M)) 6
∥∥∂2t y∥∥C([0,T ];L2(M))

+ ‖VF,G,H‖L∞((0,T )×M) ‖y‖C([0,T ];L2(M)) 6 C ‖H‖H .

Combining this with the fact that for all t ∈ [0, T ], y(t, ·) solves the boundary value problem{
−∆gy(t, ·) = ∂2t y(t, ·)− VF,G,Hy(t, ·), in M,
y(t, ·) = h(t, ·), on ∂M,

we deduce that y ∈ C([0, T ];H2(M)) satisfies the estimate

‖y‖C([0,T ];H2(M)) 6 C ‖H‖H .

Then, by the Sobolev embedding theorem, we get

‖uF,G+H − uF,G‖L∞((0,T )×M) = ‖y‖L∞((0,T )×M) 6 C ‖H‖H
and, from (2.19), we get

‖∂νuF,G+H − ∂νuF,G − ∂νwF,G,H‖L2((0,T )×∂M) + ‖uF,G+H − uF,G − wF,G,H‖C([0,T ];H1(M))

6 C ‖H‖2H .
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This proves that BF,γ1 is Fréchet differentiable at G and

B′F,γ1(G)H = (∂νwF,G,H |(0,T )×γ , wF,G,H(T, ·)|M ) = DqF,G,γ1H.

Now let us prove the continuity of the map G 7→ B′F,γ1(G) = DqF,G,γ1 . For this purpose, we fix z :=

wF,G+K,H − wF,G,H , with K = (k, k0, k1) ∈ H,

‖H‖
H

5
2 ((0,T )×∂M)×H

5
2 (M)×H

3
2 (M)

+ ‖K‖
H

5
2 ((0,T )×∂M)×H

5
2 (M)×H

3
2 (M)

+ ‖H‖H + ‖K‖H 6 ε,

and we remark that z solves the problem ∂2t z −∆gz + qF,Gz = SF,G,H , in (0, T )×M,
z = k, on (0, T )× ∂M,
z(0, ·) = k0, ∂tz(0, ·) = k1 in M.

(2.21)

with
SF,G,H = −(qF,G+K − qF,G)wF,G+K,H .

On the other hand, we can prove that ‖wF,G+K,H‖C([0,T ];H2(M)) 6 C with C depending on G, ε, M , T .
Therefore, we find

‖SF,G,H‖L2((0,T )×M) 6 C ‖qF,G+K − qF,G‖L∞((0,T )×M) . (2.22)

Using the Taylor expansion of ∂uF in u, we find

qF,G+K(t, x)− qF,G(t, x) =

(∫ 1

0

∂2uF (t, x, uF,G + s(uF,G+K − uF,G))ds

)
(uF,G+K − uF,G)

and repeating the above arguments, we obtain

‖qF,G+K − qF,G‖L∞((0,T )×M) 6 C ‖K‖H .

Combining this with (2.22) and the estimate

‖∂νz‖L2((0,T )×∂M) + ‖z‖C([0,T ];H1(M)) 6 C ‖SF,G,H‖L2((0,T )×M) ,

we deduce the continuity of G 7→ B′F,γ1(G) = DqF,G,γ1 . This completes the proof of the theorem. �

3. Recovery of a time-dependent coefficient on parts of the boundary

For T > 0 and q ∈ L∞((0, T )×M) we consider the initial boundary value problem ∂2t u−∆gu+ qu = 0, in (0, T )×M,
u = f, on (0, T )× ∂M,
u(0, ·) = 0, ∂tu(0, ·) = 0 in M,

(3.1)

with non-homogeneous Dirichlet data f . According to [26], for f ∈ H1((0, T )×∂M) satisfying f|t=0 = 0 this
problem admits a unique solution u ∈ C([0, T ];H1(M))∩C1([0, T ];L2(M)) satisfying ∂νu ∈ L2((0, T )×∂M).
Thus, fixing γ an open portion of ∂M , we can define the partial hyperbolic Dirichlet-to-Neumann map in
the following way

Λq,γ,∗ : H∗,γ 3 f 7→ ∂νu|(0,T )×γ , supp(f) ⊂ (0, T ]× γ,

with H∗,γ := {f ∈ H∗ : supp(f) ⊂ (0, T ]× γ} and with u solving problem (3.1). In this section, we consider
the problem of recovering q restricted to (0, T )× γ from the knowledge of Λq,γ,∗.

Theorem 3.1. Let (M, g) be a smooth connected and compact Riemannian manifold of dimension n > 2
and let q1, q2 ∈ C([0, T ]×M) ∩H2((0, T )×M). Then Λq1,γ,∗ = Λq2,γ,∗ implies that q1 = q2 on (0, T )× γ.
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We mention that [31] established results similar to Theorem 3.1 for time-independent coefficients and
[32] treated the case of time-dependent coefficients from some measurements associated with some general
hyperbolic equation on a Lorentzian manifold. Both of these results require strong smoothness assumptions
on the coefficients under consideration. In Theorem 3.1, we extend such results to time-dependent potentials q
lying in C([0, T ]×M)∩H2((0, T )×M). To prove this result, like in [31, 32], we consider specific solutions of the
problem (3.1) also called geometric optics. However, since we restrict the regularity of the coefficients under
consideration, in contrast to [31, 32], we will use a new global construction involving some approximation of
the potential q. We mention that the recovery of coefficients lying in C([0, T ]×M)∩H2((0, T )×M) will be
a crucial point in the proof of Theorem 1.1.

3.1. Geometric optics solutions. Let t0 ∈ (0, T ) and consider δ > 0 a constant that will be fixed later.
The goal of this subsection is to construct energy class solutions uj of the equation{

∂2t uj −∆guj + qjuj = 0, in (0, T )×M,
uj(0, ·) = 0, ∂tuj(0, ·) = 0 in M,

(3.2)

whose restriction to [0, t0 + δ]×M takes the form

uj(t, x) = eiρ(t−ψ(x))
(
a0(t, x) +

aj,1(t, x)

ρ
+
aj,2,ρ(t, x)

ρ2

)
+Rj,ρ(t, x), ρ > 1, (3.3)

with the remainder term Rj,ρ ∈ C([0, t0 + δ];H1(M)) ∩ C1([0, t0 + δ];L2(M)) satisfying

∂2tRj,ρ −∆gRj,ρ ∈ L2((0, T )×M),

Rj,ρ = 0 on (0, t0 + δ)× ∂M, Rj,ρ(0, ·) = ∂tRj,ρ(0, ·) = 0 on M, (3.4)
lim

ρ→+∞
ρ ‖∂νRj,ρ‖L2((0,t0+δ)×∂M) = 0. (3.5)

More precisely, we fix x0 ∈ γ and we want to construct solutions of the form (3.3) on [0, t0 + δ]×M that
will allow us to recover q(t0, x0) = q1(t0, x0)− q2(t0, x0).

In order to get the decay (3.5), we choose ψ, a0, aj,1 and aj,2,ρ, j = 1, 2, so that they satisfy the following
eikonal and transport equations

d∑
i,j=1

gij(x)∂xiψ∂xjψ = |∇gψ|2g = 1, (3.6)

2i∂ta0 + 2i

d∑
i,j=1

gij(x)∂xiψ∂xja0 + i(∆gψ)a0 = 0, (3.7)

2i∂tak,1 + 2i

d∑
i,j=1

gij(x)∂xiψ∂xjak,1 + i(∆gψ)ak,1 = −(∂2t −∆g + qk)a0, k = 1, 2, (3.8)

2i∂tak,2,ρ + 2i

d∑
i,j=1

gij(x)∂xiψ∂xjak,2,ρ + i(∆gψ)ak,2,ρ = −(∂2t −∆g + qk)ak,1,ρ, k = 1, 2, (3.9)

on some neighborhood of [0, t0 + δ]× ∂M . Here ak,1,ρ is a smooth approximation of ak,1 that we will precise
later.

Using boundary coordinates we will solve the equations (3.6)-(3.9). For any y ∈ M and θ ∈ SyM , we
denote by γy,θ the maximal geodesic starting at y in the direction θ. Then, for some ε > 0 small enough, we
define the map exp∂M : ∂M × [0, ε) −→M given by

exp∂M (x′, xn) := γx′,−ν(x′)(xn), (x′, xn) ∈ ∂M × [0, ε).
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For any s > 0, we define the submanifold Ms := {x ∈ M : dist(x, ∂M) < s}. It is well known (e.g. [17,
Section 2.1.16]) that, for ε sufficiently small, exp∂M is a diffeomorphism from ∂M × [0, ε) to Mε with

exp−1∂M (x) := (x′, xn), xn = dist(x, ∂M), x ∈Mε.

Here dist denotes the Riemanian distance function on (M, g). Thus, we can consider the boundary normal
coordinates (x′, xn) on Mε given by x = exp∂M (x′, xn) where xn > 0 and x′ ∈ ∂M . It is well known (see
e.g. [17, Section 2.1.18]) that in these coordinates the metric takes the form g(x′, xn) = g0(x′, xn) + dx2n
with g0(x′, xn) a metric on ∂M that depends smoothly on xn. We choose

ψ(x) = dist(x, ∂M), x ∈Mε. (3.10)

As ψ is given by xn in the boundary normal coordinates, one can easily check that ψ solves (3.6) in Mε.
Let us now turn to the transport equation. We write a(t, x′, xn) = a(t, exp∂M (x′, xn)) and use this no-

tation to indicate the representation in the boundary normal coordinates also for other functions. Moreover,
we define β(x′, xn) = detg0(x′, xn), and transform (3.7) into

∂ta0 + ∂xna0 +

(
∂xnβ

4β

)
a0 = 0.

From now on we fix δ ∈
(

0, min(ε,t0,T−t0)
16

)
. Then, we consider χ ∈ C∞0 ((−2δ, 2δ)) such that χ = 1 on [−δ, δ],

χ1 ∈ C∞0 ((−3δ, 3δ)) such that χ1 = 1 on [−2δ, 2δ], ϕ ∈ C∞0 (γ) such that ϕ = 1 on a neighborhood of x0 and
ϕ1 ∈ C∞0 (γ) such that ϕ1 = 1 on a neighborhood of supp(ϕ). We choose

a0(t, x′, xn) := χ((t− t0)− xn)ϕ(x′)β(x′, xn)−1/4. (3.11)

Using the fact that
a0(t, x′, xn) = 0, t ∈ [0, t0 + δ), xn ∈ [3δ,+∞),

we can extend a0 by zero to a function defined on [0, t0 + δ]×M solving (3.7) on (0, t0 + δ)×M . With this
choice of a0, (3.8) is transformed into

∂taj,1 + ∂xnaj,1 +

(
∂xnβ

4β

)
aj,1 =

i

2
[(∂2t −∆g)a0(t, x′, xn) + qja0(t, x′, xn)].

From now on, we use the notation

f̃(s1, s2, x
′) : f

(
s1 + s2

2
+ t0, x

′,
s1 − s2

2

)
, s1, s2 ∈ [−3δ, 3δ], x′ ∈ ∂M.

We choose

aj,1(t, x′, xn) :=
i

2
χ1((t− t0)− xn)ϕ1(x′)β(x′, xn)−

1
4 (a1∗(t, x

′, xn) + aj,1,∗(t, x
′, xn)) , (3.12)

on (0, t0 + δ)×M2δ, where

ãj,1,∗(s1, s2, x
′) := χ(s2)ϕ(x′)

1

2

(∫ s1

s2

β

(
x′,

τ − s2
2

) 1
4

q̃j(τ, s2, x
′)dτ

)
, s1, s2 ∈ [−2δ, 2δ], x′ ∈ ∂M,

and a1∗ given by

ã1∗(s1, s2, x
′) =

1

2

(∫ s1

s2

β

(
x′,

τ − s2
2

) 1
4

d̃1(τ, s2, x
′)dτ

)
, s1, s2 ∈ [−3δ, 3δ], x′ ∈ ∂M

with d1 = (∂2t −∆g)a0. It is clear that

aj,1,∗(t, x
′, 0) = ãj,1,∗ (t− t0, t− t0, x′) = 0.

Thus, one can check that
a1,1(t, x) = a2,1(t, x), (t, x) ∈ (0, T )× ∂M. (3.13)
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For the construction of aj,2,ρ, we need first to define the expression aj,1,ρ which is an approximation of
aj,1. For this purpose, we consider an approximation of qj given by the following lemma.

Lemma 3.1. There exists qj,ρ ∈ C∞([0, T ]×M) such that

lim
ρ→+∞

‖qj,ρ − qj‖H2(M) = 0, (3.14)

‖qj,ρ‖H`(R×M1)
6 C`ρ

`−2
4 , ` > 2. (3.15)

with C` independent of ρ.

Proof. We consider first (Mj , g), j = 1, 2, two compact an smooth connected manifolds such that M is
contained into Int(M1), M1 is contained into Int(M2). Then, we fix qj∗ ∈ H2(R × M1) supported on
(−1, T + 1)× Int(M1), which coincides with qj on (0, T )×M such that

‖qj∗‖H2(R×M1)
6 C ‖qj‖H2((0,T )×M) ,

with C > 0 depending only on M1, T . We fix the following local coordinates in M2:

(ϕ1, U1), . . . , (ϕm, Um)

such that

M1 ⊂
n⋃
k=1

Uk ⊂ Int(M2).

We fix also ψk ∈ C∞0 (Uk), k = 1, . . . ,m, such that
n∑
k=1

ψk(x) = 1, x ∈M1

and ψk,] ∈ C∞0 (Uk), k = 1, . . . ,m, satisfying ψk,] = 1 on supp(ψk). Then, we set ζ ∈ C∞0 (R1+n) such that
supp(ζ) ⊂ {(t, x) : |(t, x)| 6 1}, ζ > 0 and ∫

R1+n

ζ(t, x)dxdt = 1.

We consider also ζρ(t, x) = ρ
n+1
4 ζ(ρ

1
4 t, ρ

1
4x) and, for j = 1, 2 and k = 1, . . . ,m, we define

qj,k,ρ(t, y) = ζρ ∗ ((ϕ−1k )∗ψk,]qj∗)(t, y)

=

∫
R1+n

ζρ(t− s, y − z)ψk,](ϕ−1k (z))q̃j(s, (ϕ
−1
k (z))dsdz, j = 1, 2, (t, y) ∈ R1+n,

and we consider

qj,ρ(t, x) =

m∑
k=1

qj,k,ρ(t, ϕk(x))ψk(x), (t, x) ∈ R×M1, j = 1, 2.

Note that

‖qj,ρ − qj‖L2((0,T )×M) =

∥∥∥∥∥
m∑
k=1

(ϕ∗kqj,k,ρ − qjψk,])ψk

∥∥∥∥∥
L2((0,T )×M)

6
m∑
k=1

‖ϕ∗kqj,k,ρ − qjψk,]‖L2((0,T )×Uk)

6
m∑
k=1

∥∥qj,k,ρ − (ϕ−1k )∗qjψk,]
∥∥
L2((0,T )×ϕk(Uk))

6
m∑
k=1

∥∥qj,k,ρ − (ϕ−1k )∗qj∗ψk,]
∥∥
L2(R1+n)

.
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Combining this with the fact that

lim sup
ρ→+∞

∥∥qj,k,ρ − (ϕ−1k )∗qj∗ψk,]
∥∥
L2(R1+n)

= lim sup
ρ→+∞

∥∥ζρ ∗ ((ϕ−1k )∗ψk,]qj∗)− (ϕ−1k )∗qj∗ψk,]
∥∥
L2(R1+n)

= 0

we deduce that
lim

ρ→+∞
‖qj,ρ − qj‖L2((0,T )×M) = 0.

In the same way, using the fact that qj∗ ∈ H2(R×M1), we deduce (3.14)-(3.15). �

Using this result we define aj,1,ρ as follows

aj,1,ρ(t, x
′, xn) :=

i

2
χ1((t− t0)− xn)ϕ1(x′)β(x′, xn)−

1
4 (a1∗(t, x

′, xn) + aj,1,∗,ρ(t, x
′, xn)) ,

on (0, t0 + δ)×M2δ, where

ãj,1,∗,ρ(s1, s2, x
′) := χ(s2)ϕ(x′)

1

2

(∫ s1

s2

β

(
x′,

τ − s2
2

) 1
4

q̃j,ρ(τ, s2, x
′)dτ

)
, s1, s2 ∈ [−2δ, 2δ], x′ ∈ ∂M.

Then according to (3.14)-(3.15) and the expression (3.12) of aj,1, we have

lim
ρ→+∞

‖aj,1,ρ − aj,1‖H2((0,t0+δ)×M) = 0, (3.16)

‖aj,1,ρ‖H`((0,t0+δ)×M1)
6 C`ρ

`−2
4 , ` > 2. (3.17)

Finally, for all s1, s2 ∈ [−3δ, 3δ], x′ ∈ ∂M , we fix

ãj,2,ρ(s1, s2, x
′) := χ1(s2)ϕ1(x′)β

(
x′,

s1 − s2
2

)− 1
4 1

4i

(∫ s1

s2

β

(
x′,

τ − s2
2

) 1
4

b̃j,1,ρ(τ, s2, x
′)dτ

)
, (3.18)

where
bj,1,ρ(t, x

′, xn) := −(∂2t −∆g + qj)aj,1,ρ(t, x
′, xn).

In particular, we have

a1,2,ρ(t, x) = a2,2,ρ(t, x), (t, x) ∈ (0, t0 + δ)× ∂M, ρ > 1. (3.19)

Combining these properties with the fact that, for t ∈ [0, t0 + δ], the function xn 7→ χ((t − t0) − xn) is
supported on [−t0 − 2δ, 3δ] we deduce that

supp(a0(t, ·)) ∪ supp(aj,1(t, ·)) ∪ supp(aj,2,ρ(t, ·)) ⊂Mδ ⊂Mε, j = 1, 2.

and we can extend the map

Gj,ρ : (t, x) 7−→ eiρ(t−ψ(x))
(
a0(t, x) +

aj,1(t, x)

ρ
+
aj,2,ρ(t, x)

ρ2

)
by zero to a function lying in H2((0, t0 + δ)×M). Moreover, (3.16)-(3.17) imply that∥∥∂2tGj,ρ −∆gGj,ρ + qjGj,ρ

∥∥
L2((0,t0+δ)×M)

=

∥∥∥∥ (∂2t −∆g + qj)(aj,1 − aj,1,ρ)
ρ

+
∂2t aj,2,ρ −∆gaj,2,ρ + qjaj,2,ρ

ρ2

∥∥∥∥
L2((0,t0+δ)×M)

6 C

(
ρ−1 ‖aj,1 − aj,1,ρ‖H2((0,t0+δ)×M) +

1 + ‖aj,1,ρ‖H4((0,t0+δ)×M)

ρ2

)
.

Here we have exploited the explicit expression of aj,2,ρ. Combining this with (3.14)-(3.15), we find

lim
ρ→+∞

ρ
∥∥∂2tGj,ρ −∆gGj,ρ + qjGj,ρ

∥∥
L2((0,t0+δ)×M)

= 0. (3.20)
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We choose Rj,ρ ∈ C([0, t0 + δ];H1(M)) ∩ C1([0, t0 + δ];L2(M)) to be the unique solution of the IBVP ∂2tRj,ρ −∆gRj,ρ + qjRj,ρ = −(∂2tGj,ρ −∆gGj,ρ + qjGj,ρ), in (0, t0 + δ)×M,
Rj,ρ = 0, on (0, t0 + δ)× ∂M,
Rj,ρ(0, ·) = 0, ∂tRj,ρ(0, ·) = 0 in M.

(3.21)

Applying [26, Theorem 2.1], we obtain

‖∂νRj,ρ‖L2((0,t0+δ)×∂M) 6 C
(∥∥∂2tGj,ρ −∆gGj,ρ + qjGj,ρ

∥∥
L2((0,t0+δ)×M)

+ ‖qjRj,ρ‖L2((0,t0+δ)×M)

)
6 C

(∥∥∂2tGj,ρ −∆gGj,ρ + qjGj,ρ
∥∥
L2((0,t0+δ)×M)

+ ‖Rj,ρ‖C([0,t0+δ];H1(M))

)
6 C

∥∥∂2tGj,ρ −∆gGj,ρ + qjGj,ρ
∥∥
L2((0,t0+δ)×M)

.

and (3.20) implies (3.5).
We are now in position to complete the proof of Theorem 3.1.

3.2. Proof of Theorem 3.1. Note first that, according to (3.13) and (3.19), we have

G1,ρ(t, x) = G1,ρ(t, x) := f(t, x), (t, x) ∈ [0, t0 + δ]× ∂M.

Using the fact that f ∈ H1((0, t0 + δ)× ∂M), satisfies f|(0,t0)×∂M = 0, we extend f by symmetry in t to an
element of H1((0, T ) × ∂M) satisfying f|t=0 = 0. Then, we fix uj , j = 1, 2, respectively the solution of the
initial boundary problem  ∂2t uj −∆guj + qjuj = 0, in (0, T )×M,

uj = f, on (0, T )× ∂M,
uj(0, ·) = 0, uj(0, ·) = 0 in M.

(3.22)

Since the restriction of uj to (0, t0 + δ)×M solves the initial boundary value problem ∂2t uj −∆guj + qjuj = 0, in (0, t0 + δ)×M,
uj = Gj,ρ, on (0, t0 + δ)× ∂M,
uj(0, ·) = 0, uj(0, ·) = 0 in M.

by the uniqueness of the solution of this problem we deduce that uj takes the form (3.3) on (0, t0 + δ)×M .
Moreover, due to the expression involving χ1 in (3.11),(3.12), (3.18), on can check that supp(f) ⊂ (0, T ]×γ.
Combining this with the condition Λq1,γ,∗ = Λq2,γ,∗, we get

(∂νu1 − ∂νu2)(t, x) = 0, (t, x) ∈ (0, T )× γ.
On the other hand, applying (3.13) and (3.19), for all (t, x) ∈ (0, t0 + δ)× γ, we obtain

0 = ρ(∂νu1 − ∂νu2)

= eiρ(ψ(x)+t)(∂νa1,1 − ∂νa2,1) +
eiρ(ψ(x)+t)(∂νa1,2,ρ − ∂νa2,2,ρ)

ρ

ρ(∂νR1,ρ − ∂νR2,ρ).

(3.23)

Applying (3.17) and using the form of aj,2,ρ, j = 1, 2, we find
‖∂νa1,2,ρ − ∂νa2,2,ρ‖L2((0,t0+δ)×∂M) 6 C(‖a1,2,ρ‖H2((0,t0+δ)×M) + ‖a2,2,ρ‖H2((0,t0+δ)×M))

6 C(1 + ‖a1,1,ρ‖H4((0,t0+δ)×M) + ‖a2,1,ρ‖H4((0,t0+δ)×M))

6 Cρ
1
2 .

Combining this with (3.5) and sending ρ→ +∞ in (3.23), we obtain

‖∂νa1,1 − ∂νa2,1‖L2((0,t0+δ)×γ) = 0.

It follows that
∂νa1,1(t, x)− ∂νa2,1(t, x) = 0, (t, x) ∈ (0, T )× γ.
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Passing to boundary coordinates, this condition becomes

∂xna1,1(t, x′, 0)− ∂xna2,1(t, x′, 0) = 0, (t, x′) ∈ (0, T )× γ.
and, fixing a1 = a1,1 − a2,1 we deduce that

∂s1 ã1(0, 0, x0)− ∂s2 ã1(0, 0, x0) = 0.

On the other hand, fixing q = q1 − q2, one can check that

ã1(s1, s2, x
′) =

i

4
χ(s1)χ1(x′)β

(
x′,

s1 − s2
2

)−1/4(∫ s1

s2

β

(
x′,

τ − s2
2

)1/4

q̃(τ, s2, x
′)dτ

)
and we deduce that

∂s1 ã1(0, 0, x0)− ∂s2 ã1(0, 0, x0) =
iq̃(0, 0, x0)

2
=
iq(t0, x0, 0)

2
.

This proves that q(t0, x0) = 0 and we deduce that q1(t0, x0) = q2(t0, x0). �

4. Recovery of time-dependent coefficients inside the domain

In this section we will recall some results related to the recovery of coefficients inside the domain. Our
first result is stated in a simple manifold and concerns recovery of time-dependent coefficients inside the
manifold with restriction of the data on the bottom t = 0 and the top t = T of the time-space manifold
(0, T )×M .

Theorem 4.1. Assume that (M, g) is a simple manifold. Let T > 0 and let q1, q2 ∈ L∞((0, T )×M). Then
the condition

Dq1,]H = Dq2,]H, H ∈ H
implies that q1 = q2.

This result follows from [20, Theorem 1.2].
Now let us recall an improvement of this result in the Euclidean case. More precisely, let M = Ω with

Ω an open bounded, connected and smooth open subset of Rn.
We introduce also the operator Dq,U : HU 3 H 7→ (∂νw|V , w(T, ·)), with w solving (2.16).

Theorem 4.2. For q1, q2 ∈ L∞((0, T )× Ω), the condition Dq1,U = Dq2,U implies q1 = q2.

This result follows from [19, Theorem 1.1] combined with the definition of the trace map given in [19,
Proposition A.1].

Armed with these results and the one of Theorem 3.1, we will complete the proof of Theorem 1.1, 1.2
and 1.3.

5. Recovery of the nonlinear terms

The goal of this section is to combine all the tools of the preceding sections in order to complete the
proof of Theorem 1.1, 1.2 and 1.3.

Proof of Theorem 1.1. In view of Theorem 2.1, for any λ ∈ [−L1, L1] we have

N ′Fj ,γ(λχ)h = ΛqFj,λχ,γh, h ∈ H∗,γ ,

where we recall that qFj ,λχ(t, x) := ∂uFj(t, x, uFj ,λχ(t, x)). Thus, condition (1.8) implies that ΛqF1,λχ
,γ,∗ =

ΛqF2,λχ
,γ,∗. Moreover, by the Sobolev embedding theorem and Lemma 2.2, we find

uFj ,λχ ∈ (C([0, T ];H2(M)) ∩ C2([0, T ];L2(M))) ⊂ H2((0, T )×M) ∩ C([0, T ]×M).

Combining this with the fact that Fj ∈ C3(R+×M×R), we deduce that qFj ,λχ ∈ H2((0, T )×M)∩C([0, T ]×M)
and applying Theorem 3.1, we obtain

qF1,λχ(t, x) = qF2,λχ(t, x), (t, x, λ) ∈ (0, T )× γ × [−L1, L1].
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Therefore, using the fact that χ = 1 on [δ, T ]× γ, we obtain

∂uF1(t, x, λ) = qF1,λχ(t, x) = qF2,λχ(t, x) = ∂uF2(t, x, λ), (t, x, λ) ∈ [δ, T ]× γ × [−L1, L1].

Finally, applying (1.7), we obtain (1.9). �

Proof of Theorem 1.2 and 1.3. Let us first fix

qFj ,λ(t, x) := ∂uFj(t, x, uFj ,(λ,λ,0)(t, x)).

By the Sobolev embedding theorem, we have uFj ,(λ,λ,0) ∈ C([0, T ]×M) and we deduce that qFj ,λ ∈ C([0, T ]×
M). Then, according to Theorem 2.1, condition (1.11) implies that

DqF1,λ
,∂M = DqF2,λ

,∂M , λ ∈
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
.

Therefore, applying Theorem 4.1, we obtain

qF1,λ(t, x) = qF2,λ(t, x), (t, x, λ) ∈ (0, T )×M ×
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
.

It follows that

∂uF1(0, x, λ) = qF1,λ(0, x) = qF2,λ(0, x) = ∂uF2(0, x, λ), (x, λ) ∈M ×
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
, (5.1)

∂uF1(t, x, λ) = qF1,λ(t, x) = qF2,λ(t, x) = ∂uF2(t, x, λ), (t, x, λ) ∈ [0, T ]× ∂M ×
[
− L

(2T |M |) 1
2

,
L

(2T |M |) 1
2

]
.

(5.2)
Combining this with (1.10) we deduce (1.12)-(1.13). This proves Theorem 1.2. In a similar way, Theorem
1.3 can be deduced by Combining Theorem 2.1 with Theorem 4.2. �
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