, IRD) and the CNES

, References 586

S. E. Baer, M. W. Lomas, K. X. Terpis, C. Mouginot, and A. C. Martiny, , p.587, 2017.

P. Stoichiometry, Synechococcus, and small eukaryotic 588 populations in the western North Atlantic Ocean, Environmental Microbiology, vol.589, issue.19, pp.1568-1583

R. T. Bell, Estimating production of heterotrophic bacterioplankton via 591 incorporation of tritiated thymidine, 1993.

J. J. Cole, Handbook of Methods in Aquatic Microbial Ecology, p.594

M. Benavides, H. Berthelot, S. Duhamel, P. Raimbault, and S. Bonnet, Dissolved 595 organic matter uptake by Trichodesmium in the Southwest Pacific, 2017.

K. M. Björkman, M. J. Church, J. K. Doggett, and D. M. Karl, Differential assimilation 598 of inorganic carbon and leucine by Prochlorococcus in the oligotrophic North 599 Pacific Subtropical Gyre, Front Microbiol, vol.6, p.600, 2015.

O. Béjà and M. Suzuki, Photoheterotrophic marine prokaryotes, p.601, 2008.

, Microbial Ecology of the Oceans John Wiley & Sons, p.602

G. Chinleo and D. L. Kirchman, Unbalanced growth in natural assemblages of marine bacterioplankton, Marine Ecology Progress Series, vol.63, pp.1-8, 1990.
DOI : 10.3354/meps063001

A. R. Choi, L. Shi, L. S. Brown, and K. Jung, Cyanobacterial Light-Driven Proton 605 Pump, Gloeobacter Rhodopsin: Complementarity between Rhodopsin-Based 606, 2014.

E. Production, P. Church, M. J. Ducklow, H. W. Karl, and D. M. , Light dependence of [ 3 H]Leucine 608 incorporation in the oligotrophic North Pacific Ocean, PLOS ONE Appl Environ Microbiol, vol.9, issue.70, pp.4079-4087, 2004.

H. Claustre, A. Sciandra, and D. Vaulot, Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program, Biogeosciences, vol.5, issue.3, pp.679-691, 2008.
DOI : 10.5194/bg-5-679-2008

URL : https://hal.archives-ouvertes.fr/hal-00330707

A. Coe, J. Ghizzoni, K. Legault, S. Biller, S. E. Roggensack et al., , p.614, 2016.

, Survival of Prochlorococcus in extended darkness, Limnol Oceanogr, vol.61, pp.1375-615

M. E. Delorenzo, A. J. Lewitus, G. I. Scott, and P. E. Ross, Use of Metabolic Inhibitors to Characterize Ecological Interactions in an Estuarine Microbial Food Web, Microbial Ecology, vol.42, issue.3, pp.317-327, 2001.
DOI : 10.1007/s00248-001-0004-1

A. De-verneil, L. Rousselet, A. M. Doglioli, A. A. Petrenko, and C. Maes, , p.620

P. Aubertot and T. Moutin, OUTPACE long duration stations: physical 621 variability, context of biogeochemical sampling, and evaluation of sampling 622 strategy, Biogeosciences, vol.15, pp.2125-2147, 2018.

S. Duhamel, K. M. Björkman, J. K. Doggett, and D. M. Karl, Microbial response to enhanced phosphorus cycling in the North Pacific Subtropical Gyre, Marine Ecology Progress Series, vol.504, pp.43-58, 2014.
DOI : 10.3354/meps10757

S. Duhamel, K. M. Björkman, and D. M. Karl, Light dependence of phosphorus 627 uptake by microorganisms in the North and South Pacific subtropical gyres, p.628, 2012.

, Aquat Microb Ecol, vol.67, pp.225-238

M. F. Estep and T. C. Hoering, Stable Hydrogen Isotope Fractionations during Autotrophic and Mixotrophic Growth of Microalgae, PLANT PHYSIOLOGY, vol.67, issue.3, pp.474-477, 1981.
DOI : 10.1104/pp.67.3.474

C. Evans, P. R. Gómez-pereira, A. P. Martin, D. J. Scanlan, and M. V. Zubkov, , p.632, 2015.

, Photoheterotrophy of bacterioplankton is ubiquitous in the surface oligotrophic 633 ocean, Progr Oceanogr, vol.135, pp.139-145

S. N. Francoeur, A. C. Johnson, K. A. Kuehn, and R. K. Neely, Evaluation of the 635 efficacy of the photosystem II inhibitor DCMU in periphyton and its effects on 636 nontarget microorganisms and extracellular enzymatic reactions, pp.633-641, 2007.

H. Gao and X. D. Xu, The Cyanobacterial NAD Kinase Gene sll1415 Is Required for Photoheterotrophic Growth and Cellular Redox Homeostasis in Synechocystis sp. Strain PCC 6803, Journal of Bacteriology, vol.194, issue.2, pp.218-224, 2012.
DOI : 10.1128/JB.05873-11

C. Garrigue, J. Clavier, and G. Boucher, The use of photosynthesis inhibitor 642 (DCMU) for in situ metabolic and primary production studies on soft bottom 643 benthos, Hydrobiol, vol.246, pp.141-145, 1992.

J. M. Gasol, J. Pinhassi, L. Alonso-sáez, H. Ducklow, G. J. Herndl et al., Towards a better understanding of microbial carbon flux in the sea*, Aquatic Microbial Ecology, vol.53, 2008.
DOI : 10.3354/ame01230

, Aquat Microb Ecol, vol.53, pp.21-38

J. M. Gasol, U. L. Zweifel, F. Peters, J. A. Fuhrman, and A. Hagstrom, Significance 648 of size and nucleic acid content heterogeneity as measured by flow cytometry in 649 natural planktonic bacteria, Appl Environ Microbiol, vol.65, pp.4475-4483, 1999.

G. Gomez-baena, A. Lopez-lozano, J. Gil-martinez, J. M. Lucena, J. Diez et al., Glucose uptake and its effect on gene expression in 652 Prochlorococcus, Plos One, vol.3, p.653, 2008.

P. R. Gomez-pereira, M. Hartmann, C. Grob, G. A. Tarran, A. P. Martin et al., Comparable light stimulation of organic nutrient uptake by SAR11 655 and Prochlorococcus in the North Atlantic subtropical gyre, ISME J, vol.654, issue.7, pp.603-614, 2013.

C. Grob, O. Ulloa, H. Claustre, Y. Huot, G. Alarcon et al., Contribution of picoplankton to the total particulate organic carbon concentration in the eastern South Pacific, Biogeosciences, vol.4, issue.5, pp.837-852, 2007.
DOI : 10.5194/bg-4-837-2007-supplement

URL : https://hal.archives-ouvertes.fr/hal-00330328

K. H. Halsey, A. J. Milligan, and M. J. Behrenfeld, Contrasting strategies of 660 photosynthetic energy utilization drive lifestyle strategies in ecologically 661 important picoeukaryotes, pp.260-280, 2014.

P. G. Hill, M. V. Zubkov, and D. A. Purdie, and SAR11-dominated bacterioplankton groups to atmospheric dust inputs in the tropical Northeast Atlantic Ocean, FEMS Microbiology Letters, vol.306, issue.1, pp.82-665, 2010.
DOI : 10.1111/j.1574-6968.2010.01940.x

T. Ikeya, K. Ohki, M. Takahashi, and Y. Fujita, Study on phosphate uptake of the marine cyanophyte Synechococcus sp. NIBB 1071 in relation to oligotrophic environments in the open ocean, Marine Biology, vol.129, issue.1, pp.195-202, 1997.
DOI : 10.1007/s002270050160

R. Jeanjean, The Effect of Metabolic Poisons on ATP Level and on Active Phosphate Uptake in Chlorella pyrenoidosa, Physiologia Plantarum, vol.150, issue.2, pp.107-110, 1976.
DOI : 10.1016/0003-9861(52)90070-2

N. Jiao, T. Luo, R. Zhang, W. Yan, Y. Lin et al., 2014) Presence of 672 Prochlorococcus in the aphotic waters of the western Pacific Ocean. Biogeosc 673, pp.2391-2400

X. Johnson and J. Alric, Journal of Biological Chemistry, vol.1757, issue.31, pp.26445-26452, 2012.
DOI : 10.1007/s11120-007-9179-8

Z. I. Johnson and Y. Lin, Prochlorococcus: Approved for export, Proceedings of the National Academy of Sciences, vol.72, issue.1, pp.10400-678, 2009.
DOI : 10.1128/AEM.72.1.723-732.2006

URL : http://www.pnas.org/content/106/26/10400.full.pdf

D. M. Karl, Microbial oceanography: paradigms, processes and promise, Nature Reviews Microbiology, vol.112, issue.10, pp.759-769, 2007.
DOI : 10.1029/2006JC003730

D. L. Kirchman and T. E. Hanson, Bioenergetics of photoheterotrophic bacteria in the oceans, Environmental Microbiology Reports, vol.69, issue.2, pp.188-199, 2013.
DOI : 10.1128/AEM.69.2.1299-1304.2003

H. Knoop, M. Gründel, Y. Zilliges, R. Lehmann, S. Hoffmann et al., Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803, PLoS Computational Biology, vol.14, issue.6, pp.1003081-686, 2013.
DOI : 10.1371/journal.pcbi.1003081.s013

R. Lami, M. T. Cottrell, B. J. Campbell, and D. L. Kirchman, and SAR11 in experiments with Delaware coastal waters, Environmental Microbiology, vol.35, issue.12, pp.3201-3209, 2009.
DOI : 10.1111/j.1462-2920.2009.02028.x

J. Laurent, S. Tambutté, É. Tambutté, D. Allemand, and A. Venn, The influence of 690 photosynthesis on host intracellular pH in scleractinian corals, J Exp Biol, vol.691, issue.216, pp.1398-1404, 2013.

M. R. Lewis, J. J. Cullen, and T. Platt, Relationships between vertical mixing and photoadaptation of phytoplankton: similarity criteria, Marine Ecology Progress Series, vol.15, issue.149, pp.141-694, 1984.
DOI : 10.3354/meps015141

URL : http://doi.org/10.3354/meps015141

W. K. Li, D. V. Rao, W. G. Harrison, J. C. Smith, J. J. Cullen et al., Autotrophic Picoplankton in the Tropical Ocean, Science, vol.219, issue.4582, pp.292-295, 1983.
DOI : 10.1126/science.219.4582.292

K. Longnecker, B. F. Sherr, and E. B. Sherr, Variation in cell-specific rates of leucine and thymidine incorporation by marine bacteria with high and with low nucleic acid content off the Oregon coast, Aquatic Microbial Ecology, vol.43, pp.113-125, 2006.
DOI : 10.3354/ame043113

I. Mary, L. Garczarek, G. A. Tarran, C. Kolowrat, M. J. Terry et al., Diel rhythmicity in amino acid uptake by Prochlorococcus. Env 702 Microbiol, pp.2124-2131, 2008.

I. Mary, J. L. Heywood, B. M. Fuchs, R. Amann, G. A. Tarran et al., SAR11 dominance among metabolically active low nucleic acid 705 bacterioplankton in surface waters along an Atlantic meridional transect, Microb Ecol, vol.704, issue.45, pp.107-113, 2006.

I. Mary, G. A. Tarran, P. E. Warwick, M. J. Terry, D. J. Scanlan et al., Light enhanced amino acid uptake by dominant bacterioplankton groups 709 in surface waters of the Atlantic Ocean, FEMS Microbiol Ecol, vol.708, issue.63, pp.36-45, 2008.

A. C. Martiny, S. Kathuria, and P. M. Berube, Widespread metabolic potential for 711 nitrite and nitrate assimilation among Prochlorococcus ecotypes, PNAS, vol.106, pp.712-10787, 2009.

V. K. Michelou, M. T. Cottrell, and D. L. Kirchman, Light-Stimulated Bacterial Production and Amino Acid Assimilation by Cyanobacteria and Other Microbes in the North Atlantic Ocean, Applied and Environmental Microbiology, vol.73, issue.17, pp.5539-5546, 2007.
DOI : 10.1128/AEM.00212-07

L. R. Moore, More mixotrophy in the marine microbial mix, Proceedings of the National Academy of Sciences, vol.4, issue.9, pp.8323-717, 2013.
DOI : 10.1038/ismej.2010.36

M. A. Moran, E. B. Kujawinski, A. Stubbins, R. Fatland, L. I. Aluwihare et al., Deciphering ocean carbon in a changing world, Proceedings of the National Academy of Sciences, vol.65, issue.6, pp.3143-3151, 2016.
DOI : 10.1126/sciadv.1500531

M. A. Moran and W. L. Miller, Resourceful heterotrophs make the most of light in the coastal ocean, Nature Reviews Microbiology, vol.444, issue.10, pp.792-800, 2007.
DOI : 10.1038/nature05317

X. A. Morán, L. Alonso-sáez, E. Nogueira, H. W. Ducklow, and N. González, , p.723

Á. Urrutia, ) More, smaller bacteria in response to ocean's warming?, p.724, 2015.

S. Proc and . Lond, Biol], vol.282, p.725

T. Moutin, A. M. Doglioli, A. De-verneil, and S. Bonnet, Preface: The Oligotrophy 726 to the UlTra-oligotrophy PACific Experiment (OUTPACE cruise, 2017.
DOI : 10.5194/bg-14-3207-2017

URL : https://www.biogeosciences.net/14/3207/2017/bg-14-3207-2017.pdf

, Biogeosciences, vol.14, pp.3207-3220, 2015.

T. Moutin, T. Wagener, M. Caffin, A. Fumenia, A. Gimenez et al., , p.729

P. Aubertot, M. Pujo-pay, K. Leblanc, D. Lefevre, S. Helias-nunige et al., ) Nutrient availability and the ultimate control 731 of the biological carbon pump in the Western Tropical South Pacific Ocean, Biogeosciences, vol.732, issue.15, pp.2961-2989, 2018.

M. D. Muñoz-marín, I. Luque, M. V. Zubkov, P. G. Hill, J. Diez et al., Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean, 734 J.M. (2013) Prochlorococcus can use the Pro1404 transporter to take up glucose 735 at nanomolar concentrations in the Atlantic Ocean, pp.8597-8602
DOI : 10.2307/1932984

M. D. Muñoz-marín, G. Gómez-baena, J. Díez, and R. J. Beynon,

M. V. Zubkov and J. M. García-fernández, , p.738, 2017.

, Prochlorococcus: Diversity of Kinetics and Effects on the Metabolism. Front 739 Microbiol 8, p.740

S. K. Mühlbauer and L. A. Eichacker, Light-dependent formation of the 741 photosynthetic proton gradient regulates translation elongation in chloroplasts, p.742, 1998.

, Biol Chem, vol.273, pp.20935-20940

A. H. Neilson and R. A. Lewin, The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry*, Phycologia, vol.13, issue.3, pp.227-264, 1974.
DOI : 10.2216/i0031-8884-13-3-227.1

A. Oren, S. Abu-ghosh, T. Argov, E. Kara-ivanov, D. Shitrit et al., Expression and functioning of retinal-based proton pumps in a saltern 747 crystallizer brine, Extremophiles, vol.746, issue.20, pp.69-77, 2016.

H. W. Paerl, Ecophysiological and trophic implications of light-stimulated amino 749 acid utilization in marine picoplankton, Appl Environ Microbiol, vol.57, pp.473-479, 1991.

A. Paoli, M. Celussi, D. Negro, P. Umani, S. F. Talarico et al., Ecological 751 advantages from light adaptation and heterotrophic-like behavior in 752 Synechococcus harvested from the Gulf of Trieste (Northern Adriatic Sea) FEMS 753, 2008.

, Microbiol Ecol, vol.64, pp.219-229

F. Partensky and L. Garczarek, : Advantages and Limits of Minimalism, Annual Review of Marine Science, vol.2, issue.1, pp.305-331, 2010.
DOI : 10.1146/annurev-marine-120308-081034

J. Pinhassi, E. F. Delong, O. Béjà, J. M. González, and C. Pedrós-alió, SUMMARY, Microbiology and Molecular Biology Reviews, vol.80, issue.4, pp.929-954, 2016.
DOI : 10.1128/MMBR.00003-16

P. C. Pollard and D. J. Moriarty, Validity of the tritiated thymidine method for 760 estimating bacterial growth rates: measurement of isotope dilution during DNA 761 synthesis, App Env Microbiol, vol.48, pp.1076-1083, 1984.

T. L. Richardson and G. A. Jackson, Small Phytoplankton and Carbon Export from the Surface Ocean, Science, vol.315, issue.5813, pp.838-840, 2007.
DOI : 10.1126/science.1133471

A. Riddell, R. Gardner, A. Perez-gonzalez, T. Lopes, and L. Martinez, Rmax : A systematic approach to evaluate instrument sort performance using center stream catch, Methods, vol.82, pp.64-73, 2015.
DOI : 10.1016/j.ymeth.2015.02.017

B. Riemann and R. T. Bell, Advances in estimating bacterial production and growth 768 in aquatic systems, Arch Hydrobiol, vol.118, pp.385-402, 1990.

R. Rippka, Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae, Archiv f???r Mikrobiologie, vol.214, issue.1, pp.93-98, 1972.
DOI : 10.1007/BF00424781

C. Ruiz-gonzalez, M. Gali, T. Lefort, C. Cardelus, and R. Simo, Gasol, J.M, p.772, 2012.

, Annual variability in light modulation of bacterial heterotrophic activity in surface 773 northwestern Mediterranean waters, Limnol Oceanogr, vol.57, pp.1376-1388

C. Ruiz-gonzalez, R. Simo, R. Sommaruga, and J. M. Gasol, Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity, Frontiers in Microbiology, vol.4, pp.776-777, 2013.
DOI : 10.3389/fmicb.2013.00131

C. Ruiz-gonzalez, R. Simo, M. Vila-costa, R. Sommaruga, and J. M. Gasol, , p.778, 2012.

D. C. Azam and F. , Sunlight modulates the relative importance of heterotrophic bacteria and 779 picophytoplankton in DMSP-sulphur uptake A simple, economical method for measuring bacterial 781 protein synthesis rates in seawater using 3 H-leucine, ISME J.= Mar Microb Food Webs, vol.6, issue.6, pp.650-659107, 1992.

R. Y. Stanier, Autotrophy and heterotrophy in unicellular blue-green algae, p.785, 1973.

A. Talarmin, F. Van-wambeke, P. Catala, C. Courties, and P. Lebaron, Flow cytometric assessment of specific leucine incorporation in the open Mediterranean, Biogeosciences, vol.8, issue.2, pp.253-265, 2011.
DOI : 10.5194/bg-8-253-2011

URL : https://hal.archives-ouvertes.fr/hal-00573134

A. Talarmin, F. Van-wambeke, S. Duhamel, P. Catala, T. Moutin et al., Improved methodology to measure taxon-specific phosphate uptake in 790 live and unfiltered samples, Limnol Oceanogr Methods, vol.9, pp.789443-453, 2011.

J. H. Vandermeulen, N. D. Davis, and L. Muscatine, The effect of inhibitors of 792 photosynthesis on zooxanthellae in corals and other marine invertebrates, Biol, vol.16, pp.185-191, 1972.

D. A. Viviani, D. M. Karl, and M. J. Church, Variability in photosynthetic production 795 of dissolved and particulate organic carbon in the North Pacific Subtropical Gyre. 796 Front Mar Sc 2, p.797, 2015.

J. B. Waterbury, S. W. Watson, F. W. Valois, and D. G. Franks, Biological and 798 ecological characterization of the marine unicellular cyanobacterium 799 synechococcus, Can J Fish Aquat Sci, vol.214, pp.71-120, 1986.

N. J. West, C. Lepere, C. L. Manes, P. Catala, D. J. Scanlan et al., , p.801, 2016.

, Distinct spatial patterns of SAR11, SAR86, and Actinobacteria diversity along a 802 transect in the ultra-oligotrophic south Pacific Ocean, Front Microbiol, vol.7

R. R. Wright and J. E. Hobbie, Use of Glucose and Acetate by Bacteria and Algae in Aquatic Ecosystems, Ecology, vol.47, issue.3, pp.447-464, 1966.
DOI : 10.2307/1932984

A. P. Yelton, S. G. Acinas, S. Sunagawa, P. Bork, C. Pedros-alio et al., Global genetic capacity for mixotrophy in marine picocyanobacteria, The ISME Journal, vol.10, issue.12, pp.2946-2957, 2016.
DOI : 10.1093/plankt/fbm091

L. You, L. He, and Y. J. Tang, Photoheterotrophic fluxome in Synechocystis sp. strain 810 PCC 6803 and its implications for cyanobacterial bioenergetics, J Bacteriol, vol.811, issue.197, pp.943-950, 2015.
DOI : 10.1128/jb.02149-14

URL : https://jb.asm.org/content/197/5/943.full.pdf

M. V. Zubkov, Photoheterotrophy in marine prokaryotes, Journal of Plankton Research, vol.50, issue.2, pp.933-813, 2009.
DOI : 10.1128/AEM.69.2.1299-1304.2003

URL : https://academic.oup.com/plankt/article-pdf/31/9/933/4199936/fbp043.pdf

M. V. Zubkov, B. M. Fuchs, G. A. Tarran, P. H. Burkill, and R. Amann, High rate 815 of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a 816 key to their dominance in oligotrophic oceanic waters, pp.1299-1304, 2003.

M. V. Zubkov and G. A. Tarran, Amino acid uptake of Prochlorococcus spp. in 819 surface waters across the South Atlantic Subtropical Front, Aquat.Microb Ecol, vol.820, issue.40, pp.241-249, 2005.
DOI : 10.3354/ame040241

URL : http://www.int-res.com/articles/ame2005/40/a040p241.pdf

M. V. Zubkov, A. P. Martin, M. Hartmann, C. Grob, and D. J. Scanlan, Dominant 822 oceanic bacteria secure phosphate using a large extracellular buffer, pp.7878-823, 2015.
DOI : 10.1038/ncomms8878

URL : http://www.nature.com/articles/ncomms8878.pdf

. Fig, amol cell ?1 h ?1 ) and group specific (b, d, f, pmol l ?1 h ?1 ) 838 assimilation rates of glucose (a, b), leucine (c, d) and ATP (e, f) by Prochlorococcus 839 (Pro, black bars), Synechococcus (Syn, white bars) and LNA bacteria (LNA, grey bars) in 840 incubations in the light, Error bars represent standard deviation on triplicate samples. * 841 indicate non-measurable rates

. Fig, Scatter plots comparing cell specific uptake (10 ?3 dpm cell ?1 ) in the light 846 (ordinate) and in the dark (abscissa) by picocyanobacteria (Pro: black filled circles, Syn: 847 white filled circles; a, c, e, g) and bacteria (LNA: black filled squares, HNA: grey filled 848 squares; b, d, f), for 3 H radiolabeled glucose ( 3 H-Glc, p.849

. Fig, (d) and LDC ? 60m (e), in incubations in the 855 light (white bars), in the dark (black bars), and in the light with DCMU (checker board 856 pattern) for Prochlorococcus (Pro), Synechococcus (Syn) and LNA bacteria (LNA) Error 857 bars represent standard deviation on triplicate samples. One-way ANOVA multiple 858 treatment comparison results are represented by white or black circles when values are 859 significantly, Cell specific glucose assimilation (amol Glc cell ?1 h ?1 )

. Fig, (d) and LDC ? 60m (e), in incubations in 867 the light (white bars), in the dark (black bars), and in the light with DCMU (checker 868 board pattern) for Prochlorococcus (Pro), Synechococcus (Syn) and LNA bacteria 869 (LNA) Error bars represent standard deviation on triplicate samples. One-way ANOVA 870 multiple treatment comparison results are represented by white or black circles when 871 values are significantly, Cell specific leucine assimilation rate (amol Leu cell ?1 h ?1 )

. Fig, (d) and LDC ? 60m (e), in incubations in the 880 light (white bars), in the dark (black bars), and in the light with DCMU (checker board 881 pattern) for Prochlorococcus (Pro), Synechococcus (Syn) and LNA bacteria (LNA) Error 882 bars represent standard deviation on triplicate samples. One-way ANOVA multiple 883 treatment comparison results are represented by white or black circles when values are 884 significantly, Cell specific ATP assimilation rateP<0.05) different from the light or the dark treatments, respectively. * 885 indicate non-measurable rates

, Figure 6. Bacterial production rates measured using leucine (a, Leu inc , pmol Leu l ?1 h ?1, p.890

, incorporation into TCA insoluble material; 891 leucine to thymidine incorporation ratio (c, Leu inc to Tdr inc ratio); primary production 892 rates (d, nmol C l ?1 d ?1 ) in incubations in the light (white bars), in the dark (black bars), 893 and in the light with DCMU (white and grey checker board pattern); dark to light ratio (e, 894 %) for Leu inc (grey bars, Leu) and Tdr inc (light grey bars, Tdr) Error bars represent 895 standard deviation on triplicate samples (a) or absolute difference between duplicate 896 samples (b, thymidine in the light and light with DCMU) One-way ANOVA multiple 897 treatment comparison results are, 05) different from the light or the dark treatments