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Introduction
Although urban areas account for only ~2% of the global 
land area, they are responsible for approximately 70% 
of greenhouse gas (GHG) emissions, with anthropogenic 
CO2 being the most important of these (United Nations 
Human Settlements Programme, 2011). Determination of 
urban CO2 emissions, then, is of special importance to pol-
icymakers trying to mitigate local fossil fuel consumption. 
This will be most useful to policymakers if the specific 
economic sector contributions to urban CO2 emissions 
can be accurately quantified at the local level (Hutyra et 
al., 2014).

Detailed bottom-up greenhouse gas emissions data 
products exist for few urban areas (e.g. Gurney et al. (2012); 
AIRPARIF (2013)). Considering the variety of ground-based 

sources and the need for mitigation policies, economic 
sectors are defined for each city (e.g. traffic, residential) 
and then distributed spatially and temporally using ancil-
lary information such as traffic counts, building use types, 
temperature, etc. These bottom-up data products often 
lack uncertainty estimates, because it is difficult to assess 
the uncertainties in much of the data used. Direct meas-
urements exist for some sectors (e.g. stack flow data on 
power plants), but such data may be limited and affected 
by large biases (Ackerman and Sundquist 2008; Gurney et 
al., 2016).

Atmospheric observations may be useful in addressing 
the current gaps in knowledge. Several studies have evalu-
ated whole-city CO2 emissions (e.g. Turnbull et al. (2011); 
Font et al. (2015); Staufer et al. (2016); Heimburger et 
al. (2017)), while only a few studies have attempted to 
quantify sub-city scale and source-specific emissions. 
Atmospheric inversions can potentially combine top-
down and bottom-up information to address this prob-
lem (e.g. Lauvaux et al. (2016)). Trace gases and isotopes 
are already being used to identify and quantify specific 
sources. The 14CO2 isotope, specifically, has the ability 
to discriminate the anthropogenic, fossil-fuel-related 
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CO2 (CO2ff) enhancements from biogenic and other CO2 
sources (Levin et al., 2003; Turnbull et al., 2007, 2011; 
Vogel et al., 2010; Miller et al., 2012). But 14CO2 distin-
guishes only total locally-added CO2ff and cannot further 
partition CO2ff into source sectors. Some urban studies 
have augmented the 14C-based CO2ff determination with 
source information gleaned from the other isotopes in 
CO2 (e.g. Djuricin et al. (2010); Newman et al. (2016). δ13C 
has proven useful for distinguishing between gasoline-
related, coal-related, and natural-gas-related contribu-
tions (Clark-Thorne and Yapp, 2003; Widory and Javoy, 
2003).

There is also strong evidence that other trace gases are 
strongly related to CO2ff and could potentially be used to 
separate CO2ff by source sector. We summarize the avail-
able information on various species and their relation-
ship to CO2ff in Figure 1. This figure is meant to expose 
the reader to the full range of atmospheric gases being 
recorded for this study and the initial state of knowledge 
of this investigation for the gases’ relationship to prede-
fined CO2ff source sectors.

In the figure, the colors of the boxes qualitatively iden-
tify how much CO2ff source sector knowledge, in any 
urban environment, is available from existing literature. 
The sizes of the boxes are also scaled as a qualitative met-
ric for the relative proportion of emissions among the 
sectors: the absence of boxes means no emissions are 
expected from that species in that sector, small boxes 
mean few emissions are expected, and large boxes indi-
cate that most emissions are expected to be from that 
sector. If the relative proportions among sectors are 
unknown, all boxes are left as large. This also applies to 
cases such as CH4 where the major sources (e.g. the land-
fill and the wastewater treatment plant in Indianapolis 
(Cambaliza et al., 2015; Lamb et al., 2016)) do not fit into 
any of the predefined CO2ff sector categories. The sizes of 
the boxes are purely qualitative and are not intended to 
represent any number nor to appear to have been nor-
malized. Additionally, the final 2 columns showcase the 
raw-data r2 values from linear regressions against CO2ff as 
well as r2

pared for pared-down datasets, as described in detail 
later. Overall, Figure 1 introduces some of the problems 

Figure 1: A preliminary literature survey provided some source-sector-related information for the included species, 
with references stated in the text. One goal of this study is to determine these relationships directly from the atmos-
pheric measurements. The box sizes in the figure qualitatively represent the relative contribution for a species to 
a sector, if it is known (else they are all large). The r2 and pared-down r2

pared values from plots against CO2ff for the 
INFLUX dataset are included in the final 2 columns, where applicable. DOI: https://doi.org/10.1525/elementa.131.f1

https://doi.org/10.1525/elementa.131.f1
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and raises some of the questions which are addressed in 
this manuscript. These include whether there actually 
exist unique tracer species for each CO2ff source sector, 
whether they would be directly detectable from atmos-
pheric observations if they did exist, and determining how 
much prior source flux information is needed for accurate 
detection and attribution.

CO is an example of a species with a strong relation-
ship to CO2ff. It is co-emitted with CO2ff in varying ratios 
depending on combustion conditions, and in U.S. and 
European cities is predominantly from vehicles (Turnbull 
et al., 2011, 2015a; Vogel et al., 2010). When the urban 
plume is well-mixed, the CO:CO2ff relationship can be 
diagnosed and used to determine the CO2ff flux ((Levin 
and Karstens, 2007; Turnbull et al., 2011). Variability in 
the CO:CO2ff relationship in space and time is related to 
variability in the source mix (Vogel et al., 2010), suggest-
ing that the relative contributions of different sources 
could be determined from these observations. Turnbull 
et al. (2015a) showed that the CO:CO2ff ratio varies diur-
nally in Indianapolis, driven by diurnal variability in the 
relative contribution of on-road traffic to total CO2ff 
emissions. This result utilized the fact that on-road traffic 
produces significant CO emissions, whereas other CO2ff 
in Indianapolis produce little or no CO (Turnbull et al., 
2015a).

Many other trace gases are emitted from anthropogenic 
sources, often associated with some subset of CO2ff sec-
tors, suggesting that they have potential to help partition 
CO2ff by source sector. For example, Miller et al. (2012) 
used 6 years of approximately semi-monthly airborne pro-
files downwind of the Northeastern US, and found statisti-
cally significant correlations for 22 anthropogenic species 
against CO2ff. Stronger correlations were found when ana-
lyzing the winter and summer measurements separately. 
Similarly, Turnbull et al. (2011), used aircraft measure-
ments over Sacramento, CA, and found strongly statisti-
cally significant correlations for anthropogenically-related 
hydrocarbons and halocarbons, but a statistically insignifi-
cant relationship with biomass burning and ocean trac-
ers. A number of studies have shown strong relationships 
between CO and a host of tracers in urban areas (Warneke 
et al., 2007; Baker et al., 2008). The current knowledge 
of the urban budget for these tracers varies, with some 
fairly well understood, while we have only limited knowl-
edge of others. Acetylene (C2H2) for example, is associ-
ated with combustion in urban areas and comes primarily 
from traffic, as demonstrated by strong correlations with 
CO in many studies (e.g. Warneke et al., 2007; Baker et 
al., 2008). It may still have non-negligible contributions in 
other sectors, particularly heavy industry due to its use in 
welding (Fortin et al., 2005; Whitby and Altwicker, 1978). 
In general, trace hydrocarbons are expected to be associ-
ated with traffic sources (e.g. Colvile et al., 2001; Fortin et 
al., 2005; Fujita et al., 1995; Warneke et al., 2007; Watson 
et al., 2001), as they are combustion byproducts, and 
other combustion-related sectors like industry and elec-
tricity production have often optimized the efficiency of 
their burning methods, which minimizes the emission of 
such byproducts. Yet light hydrocarbons such as ethane, 

propane, and butane also enter the atmosphere through 
evaporation of spills during distribution and use (United 
States Environmental Protection Agency, 2012), a process 
which produces no CO2. Still, the observed strong correla-
tions with CO suggest that these hydrocarbons could be 
good tracers for traffic in an urban area.

Other species may be associated with other CO2ff sec-
tors, however. Halocarbons are typically associated with 
distinct processes such as refrigerants, industrial sol-
vents, propellants, and foam-blowing agents (Barletta et 
al., 2013; Kim et al., 2011; Purohit and Hoglund-Isaksson, 
2016, and references therein). This may allow for cases 
where individual species can be directly associated with 
a single CO2ff sector, as in the case of HFC-125, which is 
mainly used for commercial purposes in refrigerant blends 
(O’Doherty et al., 2009; Velders et al., 2009). Similarly, 
HFC-134a enters the atmosphere primarily through leak-
age from mobile (vehicle) air conditioners (Papasavva et 
al., 2009), so it can be associated with the traffic emissions 
sector. It cannot be assumed, however, that HFC-134a 
emissions are linear with traffic CO2ff emissions, since 
the leaks of HFC-134a are governed by a different process 
than CO2 ff from combustion.

SF6 is an example of a species that had been thought 
to be a good anthropogenic tracer. It is primarily used 
in high-voltage gas-insulated switchgears (GIS’s) in elec-
trical transmission and distribution systems (as a spark 
quencher) (Maiss and Brenninkmeijer, 1998). Because of 
this, it has been thought of as a useful tracer for utilities, 
and has been used as such in previous atmospheric stud-
ies (e.g. Bakwin et al., 1998; Geller et al., 1997; Turnbull et 
al., 2006).

Some gases, such as CH4 and N2O, are produced by com-
bustion, but have significant or even dominant sources 
that are unrelated to CO2ff. For CH4, these include land-
fills, wastewater, and natural gas pipeline leaks (Lamb et 
al., 2016). For example, Mckain et al. (2015) found that 
between ~60–100% of methane emissions in Boston could 
be attributed to natural gas, depending on the season. For 
N2O, these dominant sources are mostly agriculture and 
biomass burning (Ciais et al., 2013; Davidson and Kanter, 
2014). Davidson and Kanter (2014) estimate that global 
anthropogenic emissions are 66% from agriculture, 15% 
from energy and transport, 11% from biomass burning, 
and 8% from other sources. H2, too, may be used as a traffic 
tracer, but it also has non-combustion sources (Aalto and 
Lallo, 2009; Barnes, 2003). Indeed, while ~40% of global 
emissions may be attributed to the burning of fossil fuel 
and biomass, the oxidation of methane and non-methane 
hydrocarbons constitute another ~50%, with the remain-
ing ~10% being attributed to volcanic emissions, oceanic 
emissions, and production by legumes during nitrogen 
fixation (Barnes, 2003; Novelli et al., 1999).

The analysis presented here attempts to separate out 
the economic-sector-level emissions within an urban area 
by utilizing numerous trace gas species and investigating 
their relationship to CO2 ff values. First, we examine exist-
ing flask-based observations of CO2ff and a suite of 34 
other trace gases from the observationally-densest urban 
mission to date, the INdianapolis FLUX project (INFLUX) 
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(Turnbull et al., 2012, 2015a; Richardson et al., 2017). We 
determine the types of relationships that exist between 
CO2ff and the other trace gases and use these to con-
strain some Observing System Simulation Experiments 
(OSSEs). Next we present the OSSE approach, which estab-
lishes a methodology for relating multi-species atmos-
pheric measurements directly to CO2ff-related economic 
source sectors. Idealized sector-related tracers are tested 
in a pseudo-data framework to determine if they can be 
accurately attributed to their source sector given a wide 
range of emission scenarios that include both linear and 
nonlinear relationships with CO2ff. A self-organizing 
map (SOM) is utilized to explore the different trace gases 
and their origin based purely on their co-localization in 
space. No relationship is assumed between trace gases. 
The advantages and limitations of this methodology are 
explored over 495 experimental OSSE analyses with the 
goal of eventually being able to provide policymakers with 
a direct, independent verification of urban GHG emissions 
at the sector level.

Methodology
The INFLUX project was started as a testbed to develop 
methodologies for measuring urban emissions in 2010. As 
part of this project, 12 communications towers are instru-
mented within and just outside of the city of Indianapo-
lis. All 12 measure quasi-continuous CO2 and CH4 using 
Cavity Ring-Down Spectrometers (CRDS) (Crosson, 2008; 
Rella et al., 2013; Miles et al., 2017), and five measure 
quasi-continuous CO (http://sites.psu.edu/influx/site-
information/). There are additionally continuous LIDAR 
measurements and aircraft measurement flights using 
CRDS’s for CO2, CO, and CH4. Six of the communication 
towers also collect flask samples for multi-species analysis 
(and flasks are also collected during the aircraft flights). 
These flask measurements will be used as a starting point 
for the OSSE investigation, as explained in detail later.

Multi-species flask measurements
The flask collection and measurement techniques are as 
described in detail in Turnbull et al. (2012). Whole air sam-
ples are collected as one-hour integrated samples using a 
large, 15L mixing volume and variable flow rate to obtain a 
rough linear mixture of air from the one-hour integration 
period, with the final sample stored in 2 flasks for a total 
of ~4L of air retained. This representative hourly mixed 
sample is ideally suited for inclusion in models which do 
not resolve shorter time-scale atmospheric fluctuations. 
To further ensure the most representative atmospheric 
samples, the flasks recorded for this analysis were taken 
in the mid-afternoon, when daily atmospheric mixing is 
expected to be at its peak (Stull, 1988; Bakwin et al., 1998; 
Yi et al., 2001; Miles et al., 2017).

Samples are collected only when the air flows from the 
west, so that Tower One, which is located slightly southwest 
of Indianapolis, as shown in Figure 3, is always upwind. 
Tower One thus serves as a local background constraint. 
Urban enhancement values are calculated through sub-
tracting off the corresponding Tower One measurement 

value for each measured species. We have reason to 
believe that the measurements recorded at Tower One 
have not been influenced by background sources that are 
not being measured (Turnbull et al., 2015a; Lauvaux et al., 
2016; Miles et al., 2017). Analyses have shown that Tower 
One has the lowest CO2 concentrations on average over 
time (Lauvaux et al., 2016), including in the dormant sea-
son, where it has been shown to be within 0.2 ppm of the 
lowest CO2 INFLUX tower measurement 43% of the time, 
which is the highest percentage of any tower, and poten-
tial source signals were only found in the southeast (Miles 
et al., 2017), which would have no impact on this analysis 
given the flask sampling strategy. However, it is possible 
that there are unknown background sources for some of 
the other measured trace gases which have not yet been 
fully explored. From December 27, 2010 through June 5, 
2015, there were 1,246 tower flask measurements (948 
not from Tower One) over 307 unique days.

Each flask sample is analyzed on multiple instruments 
to retrieve concentrations for 35 different atmospheric 
trace gas species (Turnbull et al., 2012), which are all 
included in Figure 1. The greenhouse gases, CO2, CH4, 
CO, H2, N2O, and SF6 are analyzed at the National Oceanic 
and Atmospheric Association’s Earth Science Research 
Laboratory (NOAA/ESRL) using the MAGICC system 
(Sweeney et al., 2015). The remaining halocarbons and 
hydrocarbons are analyzed using a Gas Chromatograph 
Mass Spectrometer (GCMS) (Montzka et al., 1993) at 
NOAA/ESRL. The 14CO2 measurements, which are used to 
separate out the CO2ff signal from the CO2 signal (Meijer 
et al., 1996; Levin et al., 2003; Turnbull et al., 2006, 2009; 
Djuricin et al., 2010; Van Der Laan et al., 2010; Turnbull 
et al., 2015a), are processed to CO2 gas at the University 
of Colorado, INSTAAR and graphitized and measured at 
either University of California Irvine (Turnbull et al., 2007) 
or GNS Science (Turnbull et al., 2015a; b). Data quality 
from both analysis laboratories has typical repeatability 
around 1.8‰ (Turnbull et al., 2007, 2015b).

The CO2ff value is calculated using the CO2 and 14CO2 
measurements following the procedure detailed in 
Turnbull et al. (2009):

 
( )2

2 ,obs obs bg

ff bg

CO
CO ff

Δ − Δ
=

Δ − Δ
 (1)

where CO2obs is the observed CO2 mole fraction, ∆obs is the 
corresponding observed 14CO2 value, ∆bg is the background 
14CO2 value, and ∆ff is –1000‰. Note that Tower 1 serves 
as the background for 14CO2 measurements, too, which 
is the best available site when approximating emissions 
from only Indianapolis, as described in detail in Turnbull 
et al. (2015a). For this urban study, we assume no sig-
nificant biases from heterotrophic respiration or other 
sources (Turnbull et al., 2009).

At sufficiently large sampling distances, tracer-tracer 
relationships often appear as linearly related to each other 
(e.g. Turnbull et al. (2011); Miller et al. (2012)). As distance 
between the receptor and the emitter decreases, the true 
complexity of relationships between trace gases become 

http://sites.psu.edu/influx/site-information/
http://sites.psu.edu/influx/site-information/
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increasingly apparent. Sources may be approximately 
but not exactly co-located (e.g. SF6 is used in electricity 
junction boxes at powerplants, whereas CO2ff is emit-
ted directly from smokestacks). Even when co-located, 
the processes may differ. For example, HFC-134a will be 
emitted from mobile air conditioner leaks in vehicles 
that also produce CO2ff from combustion. Therefore, we 
evaluate as a first-order approach the linear relationships 
between CO2ff and other trace gases with a series of linear 
regressions to identify the possible use of tracer-to-tracer 
relationships.

Hestia: An Indianapolis bottom-up estimate using 
source sectors
For the INFLUX project, a high-resolution CO2ff inven-
tory called Hestia was generated for Marion County and 
the 8 counties surrounding Indianapolis (Gurney et al., 
2012). In this study, the building-level-resolution product 
was aggregated into 1-km2 pixels filling an 87 × 87-km2 
domain. Hestia’s estimates are separated into economic 
sectors: Airport, Commercial, Industrial, OnRoad, Non-
Road, Railroad, Residential, and Electricity Production. 
The spatial variability for the NonRoad sector was not 
well-defined at the time of this analysis (every pixel in the 
domain was assigned some nonzero value), though this 
has since been improved. In addition to the absence of 
spatial information, NonRoad emissions represented only 
2% of the total city emissions. For these two reasons, we 
omitted this sector in this study. All emissions estimates 
are provided at hourly resolution. However, except for 
electricity-generating processes which are required to 
report high frequency emissions (United States Environ-
mental Protection Agency, 2006), temporal variability is 
often based on averaged weekly and diurnal cycles. The 
OnRoad sector emissions estimates come from traffic flow 
data when and where available. In this study, considering 
the limited time coverage due to the flask sampling strat-
egy focusing on the early afternoon, only the spatial infor-
mation is critical to attribute tracer gases to specific sec-
tors. The Hestia inventory is used in this analysis to set the 
spatial boundaries for each economic sector, and also for 
the creation of pseudodata, as is described in detail later.

Using footprints for spatial identification
We used the Weather Research and Forecasting (WRF) 
(Skamarock and Klemp, 2008) model coupled with the 
Lagrangian Particle Dispersion Model (LPDM) (Uliasz, 
1994) at 1-km resolution to produce footprints for the 
INFLUX tower sites, following the procedure described in 
detail in Lauvaux et al. (2016). For this study, footprints 
were calculated only from those towers where flask meas-
urements were recorded during the investigated period, 
which are Towers 2, 3, 5, and 9, with Tower 1 serving as 
the background tower, as explained in detail later. The 
top-left panel of Figure 3 shows an example 12-hour foot-
print run from Tower 2 for the flask measurement hour of 
November 10, 2012 at 19:00 UTC. These footprints were 
used to tie the atmospheric flask multi-species measure-
ments at the associated towers to the spatially-defined 

economic source sectors outlined in Hestia as shown in 
the other panels of Figure 3.

The 1-km resolution WRF model covering Marion and 
the surrounding 8 counties provides an 87 × 87 box grid. 
The LPDM is used as the adjoint of the WRF-FDDA (Four 
Dimensional Data Assimilation) model to disperse back-
wards in time 6,300 particles per hour per measurement 
site. The particle positions are recorded every 2-minute 
and the trajectories are integrated over 12 hours to ensure 
all particles have had time to traverse the domain under 
any meteorological conditions. The surface-source influ-
ences are determined via the proportion of particles near 
the surface (below 50 meters), as detailed in Seibert and 
Frank (2004). Footprints are created for all days between 
September 1, 2012 and October 31, 2013, and this is the 
date range for flask measurements in the portion of the 
investigation that utilizes footprints.

Observing system simulation experiments (OSSE)
Building the Pseudodatasets
The initial analysis of the recorded multi-species atmos-
pheric data will highlight the complex relationships many 
of these species have with CO2ff. This will beg the ques-
tion of whether it would be possible to disentangle these 
relationships, and further if this could be performed in a 
manner that accurately identifies tracer species with their 
corresponding CO2ff sectors, if they exist. Since each of 
the CO2ff source sectors is distinct, and since unique trac-
ers for each source sector were not able to be identified a 
priori from the multi-species dataset, a theoretical investi-
gation is undertaken.

In this investigation, a self-organizing map (SOM) is 
used to test whether sector-based emissions recorded in 
theoretical multi-species flask measurements can be prop-
erly attributed to their appropriate CO2ff economic source 
sectors, under a wide range of emission scenarios, using 
information provided by footprints and the Hestia distri-
butions of those economic sectors. The framework of this 
analysis is defined as follows.

We define a unique tracer for each source sector of 
interest:

 Airport → Tracer A
 Commercial → Tracer C
 Industrial → Tracer I
 OnRoad → Tracer OR
 Railroad → Tracer RR
 Residential → Tracer Re
 Electricity Production → Tracer EP

Starting from unique tracers, we create an “emission 
matrix”. Each row corresponds to one of the emission 
source sectors, and each column corresponds to a pre-
defined tracer (cf. Table 1). Thus, each cell corresponds 
to the nature (type) of the emissions occurring from that 
source sector (row) from that tracer (column). We define 
4 possible types of emissions in the emission matrices: 
no emission, emissions linearly scaled with CO2ff, con-
stantly emitting, and randomly emitting. These four types 
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 represent the different scenarios described earlier. When 
being implemented into our OSSE’s, each tracer is repre-
sented as follows:

   0No Emission =  (2)
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where j denotes the source sector of interest, X are the 
Hestia inventory flux values, H are the footprint (influence 
function) values, and the sum across i → nj denotes the 
cumulative total through the nj pixels where the footprint 
overlaps Hestia sector j. Here, α = 1, β = 1.0e4 gCkm–1hr–1, 
and R ~ U ([0, 1]) (R is a random number sampled from 
a uniform distribution between 0 and 1). The constant 
number for β was determined in a trial-and-error process 
to approximately match the magnitudes of Hestia emis-
sions at a semi-arbitrary flask measurement time. Note 
that we construct the emissions to all be around the same 
order of magnitude so that the SOM is not disproportion-
ately influenced by one species over another. It is pre-
sumed that, in the case where this technique is applied 
to real data, each species’ enhancement values would first 
undergo some normalization process to similarly ensure 
equitable treatment by the clustering algorithm.

Table 1 shows only one example of an emission matrix. 
In this example, each sector has its corresponding tracer 
emitting exactly scaled with CO2ff following Equation 3, 
where α = 1. Additionally, Tracer C (normally identified 
with the Commercial sector) will be randomly emitting in 
the OnRoad sector following Equation 5. Emission matri-
ces like these delineate the framework around which the 
OSSE is performed.

For the purposes of this analysis, 33 different emis-
sion matrices are created to be representative of all the 

different possible emission scenarios. The number 33 
came about as a consequence of there being 3 perfect-
diagonal cases and there being 6 non-diagonal tracers 
in any row or column. By incrementally turning on the 
remaining tracers in a row or column, we gain groups of 6 
representative matrices. Note that, in all of our scenarios, 
the idealized tracers were always at least set to be emitting 
in some capacity within their namesake sector (that is to 
say, no diagonal was ever set to 0). We pre-established five 
such groupings-of-six for testing how these differing emis-
sion scenarios would affect the SOM’s ability to determine 
an accurate multi-species signature. These 33 matrices are 
defined as follows.

The first group, matrices 1–6 have each tracer along the 
diagonal (corresponding to each tracer’s namesake sector) 
emitting scaled with CO2ff, and Tracer C is also emitting 
scaled with CO2ff in an incrementally increasing amount 
of additional sectors. For example, matrix 1 has Tracer C 
emitting in the Commercial sector and the OnRoad sec-
tor, and matrix 2 has Tracer C emitting in the Commercial 
sector, the OnRoad sector, and the Airport sector. This 
continues until matrix 6 has Tracer C emitting in every 
sector. Matrices 7–12 follow the same pattern, except all 
tracers that are emitting are constantly emitting rather 
than being scaled with CO2ff. Similarly, matrices 13–18 
follow the same pattern, but with all emitting tracers 
randomly emitting. As a variation, matrices 19–24 have 
constant emissions from the tracers along the diagonal, 
but the increments of Tracer C have random emissions in 
the off-diagonal source sectors. Matrices 25–30 start with 
the same diagonal as matrices 7–12 (constantly emitting), 
but instead of Tracer C incrementally increasing amount 
of sectors from which it constantly emits, the Residential 
sector itself incrementally gains an increasing amount of 
randomly-emitting tracers. For example, matrix 25 has 
constant emissions along the diagonal, but has Tracer A 
also randomly emitting in the Residential sector. Matrix 
26 has the same diagonal, but Tracers A and C are both 
randomly emitting in the Residential sector. This contin-
ues until matrix 30, which has all off-diagonal tracers ran-
domly emitting in the Residential sector. Finally, matrices 
31–33 are the perfect diagonal sets for scaled emissions, 
constant emissions, and random emissions, respectively.

Table 1: Example of an emission matrix, from which pseudodatasets are created. “Scaled” means the tracers will be 
scaled linearly with CO2ff emissions, as in Equation 3 (where α = 1). Similarly, “Random” means the tracer will be 
randomly emitting in the corresponding sector according to Equation 5. Thirty-three emission matrices are created to 
build 165 pseudodatasets. DOI: https://doi.org/10.1525/elementa.131.t1

Sector Tracer A Tracer C Tracer I Tracer OR Tracer RR Tracer Re Tracer EP

Airport Scaled 0 0 0 0 0 0

Commercial 0 Scaled 0 0 0 0 0

Industrial 0 0 Scaled 0 0 0 0

OnRoad 0 Random 0 Scaled 0 0 0

Railroad 0 0 0 0 Scaled 0 0

Residential 0 0 0 0 0 Scaled 0

Elec. Prod. 0 0 0 0 0 0 Scaled

https://doi.org/10.1525/elementa.131.t1
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Each matrix is used as a template for creating a 
 pseudo-flask measurement during the construction of a 
pseudodataset. For each case, the structure of a pseudo-
flask measurement is similar to Table 1, where each row 
represents that sector’s contribution to the pseudo-flask 
measurement. A full pseudodataset, then, includes one 
pseudo-flask measurement for every instance that a real 
flask measurement was recorded in Indianapolis during 
the period for which their corresponding footprints exist, 
September 1, 2012 through October 31, 2013. In addition 
to pseudodata created for the ideal tracers via the cor-
responding emission matrix, the pseudo-flask measure-
ments which comprise the pseudodataset also include 
a column for the corresponding CO2ff value (following 
Equation 3).

For each emission matrix scenario, five pseudodata cases 
are created. These all contain the original pseudo-flask 
measurements constructed from the emission matrices 
along with some amount of added columns for random 
(“noise”) species: either 0, 1, 2, 5, or 10 additional columns. 
In these columns, the assigned values for all sectors and 
all tower measurements follow the exact calculation from 
Equation 5. The purpose of including varying amounts of 
noise species is to test how their presence in the dataset 
being analyzed affects the self-organizing map’s ability to 
properly identify emission signals. By having these five dif-
ferent noise-species pseudodata scenarios for each emis-
sion matrix, we end up with 165 pseudodatasets, in total.

Self-organizing maps
This investigation attempts to address potential linear and 
nonlinear relationships between the emissions of CO2ff 
and the other atmospheric species using a self-organizing 
map. Although only a few of the atmospheric species 
measured in the INFLUX dataset will be shown to exhibit 
strong linear correlations with CO2ff, it still may be possi-
ble that non-linear emissions relationships exist. By using 
an SOM, we can investigate the detectability of these 
types of signatures, as well. Similar attempts to attribute 
measured multi-species enhancements to specific sources 
have been undertaken in the air quality community using 
techniques such as Positive Matrix Factorization (PMF) 
(Paatero and Tapper, 1994; United States Environmental 
Protection Agency, 2008). This technique is suitable in the 
case where information is available before analysis about 
the expected multi-species signatures of certain dominant 
sources (the sources’ “factor profiles”). However, where 
this type of information is not readily available ahead of 
time (see Figure 1), a different multivariate approach may 
be preferred.

The two most common tools for reducing the dimen-
sionality of a dataset are Principal Component Analysis 
(PCA) and Self-Organizing Maps (SOM’s). The problem 
presented here also seeks to reduce dimensionality by 
condensing the multivariate mixing ratio measurements 
of the 35 trace gas species to distinct CO2ff source sig-
natures associated with each economic sector. Although 
both approaches have been used in a wide range of scien-
tific studies, each also have their limitations. The PCA is 
limited by the fact that it seeks to optimize the problem 

by assuming that a linear combination of factors are able 
to represent the observed variability. Here, we attempt to 
associate tracers to any given sector of the economy with-
out assuming a specific relation with CO2 emissions or any 
other trace gases. Therefore, we seek a methodology able 
to detect co-located emissions which may or may not scale 
with any other tracers. For this reason, we used a neural 
network approach (here SOM) for our dimension-reduc-
tion problem.

The SOM is a machine learning algorithm which is used 
to identify similar values in a high-dimensional dataset 
through the use of a neural network (Kohonen, 1990). 
The network is established with a predefined number 
of nodes (neurons) in some predefined topology (usu-
ally organized as a series of squares or hexagons; hexa-
gons in this investigation). The network is then inserted 
into the multivariate dataset and trained in an iterative 
fashion which deforms the nodes towards any clusters 
of datapoints within the dataset via competitive learn-
ing. An excellent visualization of this process is included 
in Tamayo et al. (1999). In this investigation, this means 
that the “classes” discussed later are initialized at a ran-
dom position in the multispecies dataset, which is com-
posed of enhancement (or pseudo-enhancement) values 
for all included species. For this analysis, after competi-
tive learning identifies the “winning” neuron, the same 
procedure updates all neighboring neurons within some 
neighborhood of radius d(i ∈ Ni(d)) in accordance with 
the Kohonen rule:

 ( ) ( ) ( ) ( )( )1 1 ,i i iW q W q P q W qγ= − + − −  (6)

for weight vectors W attached to neuron i at iteration step 
q for input vector P, where γ is a monotonically decreasing 
learning coefficient. The final weight vector results can be 
used to map any dummy input vector to its correspond-
ing representative node (also known as a neuron, and for 
much of this investigation will be called a “class”).

In this analysis, we use the SOM to identify characteris-
tic multi-species signatures of the CO2ff source sectors. By 
doing so, we aim to identify which tracers are associated 
with which sectors, even if those tracers have nonlinear 
contributions. And to test whether such attribution is able 
to be achieved accurately with this methodology, the SOM 
analyses are run in an OSSE capacity, as explained in detail 
in the preceding subsection.

Defining a pseudodataset as previously described will 
yield an a × b two-dimensional matrix. The number of 
rows, a, is defined as 7 * Nobs, where Nobs is the total num-
ber of flask (or pseudo-flask) measurements in the time 
period of interest and 7 represents the number of CO2ff 
source sectors which have potential contributions. The 
number of columns, b, is defined as 7 + Nnoise, where Nnoise 
is the number of noise species (0, 1, 2, 5, or 10) chosen 
to be included in that pseudodataset and 7 represents 
the number of predefined tracers (one for each poten-
tial source sector). As explained earlier, each row of the 
pseudodataset then is filled with pseudodata enhance-
ment values for that sector’s contribution in that pseudo-
flask measurement from each of the columns’ species as 
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defined by the predetermined emission matrix for this 
pseudodataset and using Equations 2–5.

First, the procedure for identifying the multi-species 
signature for each desired source sector is as follows:

1) The self-organizing map is trained on a pseudodata-
set. (For the uninitiated, this is where the neural 
network is deformed iteratively, following Equation 
6, to fit the dataset).

2) All rows in the pseudodataset corresponding to 
one specific source sector of interest are averaged 
together to get a mean multi-species enhancement 
value signature for that source sector.

3) The mean signature (P in Equation 6) is simulated 
through the self-organizing map’s network to out-
put the corresponding class (i in Equation 6).

As explained earlier, the class number corresponds to a 
node in the neural network, and its position in the dataset 
will be the multi-species enhancement value signature for 
the nearest cluster of datapoints. By determining which 
class number is associated with the mean multi-species 
signature for a given CO2ff source sector, we also gain that 
source sector’s corresponding multi-species signature, 
which then can be analyzed for accuracy.

Results and Discussion
Justifying the OSSE with INFLUX observations
Linear regressions against CO2ff
We use linear regressions of CO2ff against the suite of gases 
measured in the INFLUX flasks to examine their potential 
relationships in an urban setting. The linear regressions 
are executed by fitting a first-order polynomial function 
to the scattered dataset using the least-squares method. 
These correlation plots aim to give a sense of potential 
relationships, and we use the coefficient of determination 
(r2) as a simple diagnostic of those relationships. We do 
not express the ratio of gas: CO2ff (the slope of the correla-
tion), which would require using a least squares method 
that allows both variables to be independent (such as ordi-
nary distance regression). In this context, r2 acts as a first-
order check on how well a species correlates with CO2ff, 
and we do not explicitly account for measurement uncer-
tainty. Instead, r2 implicitly includes evaluation of both 
the noise generated by measurement uncertainty and 
the scatter due to variability in the sources and emission 
ratios of each species through the ~5 years of measure-
ments. For most species, this range of variability is much 
larger than the measurement uncertainty, so that it is 
negligible by comparison. This is not the case with CO2ff, 
which has an uncertainty of approximately 1 ppm, so this 
uncertainty will always contribute to an r2 of less than 
unity. Thus, r2 gives a simple metric to examine the types 
of relationships that occur in a real urban environment. 
We consider (a) the full flask dataset for each species, and 
(b) a pared dataset where the observations with the high-
est and lowest 5% of values for the non-CO2ff species are 
removed. This “pared” dataset removes outlier points that 
can strongly influence the overall correlation, and we give 
some examples of reasons these outliers might occur and 

why it may be useful to exclude them later in this section. 
The full and pared r2 values for all species measured in the 
INFLUX flask network are summarized in Figure 1 and 
correlation plots for all species are given in the Supple-
mentary material.

Figure 2 demonstrates the three general tracer-to-tracer 
relationships observed in the INFLUX flask observational 
dataset: linear, not strictly linear, and no obvious relation-
ship. The regression of COxs versus CO2ffxs shows that linear 
relationships can be found for some trace gases. Because 
CO and CO2ff originate from the same combustion pro-
cesses and there are no other significant CO sources in 
the urban area (United States Environmental Protection 
Agency, 2006), the ratio remains fairly similar for the full 
dataset. However, the combustion ratio itself is known to 
vary between car engines, furnaces, and the power plant, 
and therefore may vary across space and time. Further, 
even in the absence of any atmospheric variability in 
the ratio, the uncertainty of each CO2ff of ~1 ppm would 
induce a maximum r2 of 0.8 in our dataset. Nonetheless, 
in this dataset, the CO:CO2ff relationship appears consist-
ent across multiple towers, seasons, and years (Turnbull et 
al., 2015a).

Figure 2 also shows the example of the HFC-134axs ver-
sus CO2ffxs relationship, that is not strictly linear. Because 
HFC-134a corresponds to leaks in mobile air condition-
ing systems, the emissions of HFC-134a do not scale with 
CO2ff emissions in a direct sense. CO2ffxs and HFC-134axs 
do generally scale together, but there are some significant 
outliers that we speculate may be due to large HFC-134a 
leak events (such as air conditioner maintenance). Thus, 
the “pared” r2 is also included, where the top and bottom 
5% mixing ratio enhancements measured for each non-
CO2ff species are discarded, which improves the regres-
sion somewhat, indicating that there may be sufficient 
relationship between CO2ff and HFC-134a to be used in 
a meaningful way.

Finally, the CO2ffxs versus SF6,xs plot shows no relation-
ship, linear or otherwise, even when we use the simple 
paring technique of removing the top and bottom 5% 
of values. Although the primary use of SF6 as a spark 
quencher in electrical facilities would suggest that it 
should correlate with power generation facilities and 
some previous studies have shown a relationship at 
larger spatial scales, none is observed here. In this case, 
we suspect that the non-co-location of sources at the 
urban scale and the small signal-to-noise ratio combine 
to produce this result. For example, CO2ff emissions from 
large electrical facilities are emitted from the top of the 
smoke stack, which may be several hundred meters above 
ground level, whereas SF6 leakage from electrical boxes 
at the same facility will be at or near ground level and 
possibly hundreds of meters away from the smoke stack. 
In the case of some other species, it may simply be that 
there is no relationship with CO2ff (e.g. CH2Br2, which is 
produced from oceanic biological and chemical processes 
(Fuhlbrügge et al., 2016)).

These three plots in Figure 2, then, illustrate three 
distinct possible linear regression scenarios: an obvious 
linear relationship, a relationship that may exist but may 
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Figure 2: Three linear regression plots of species against CO2ffxs are shown, demonstrating an apparent linear rela-
tionship (COxs), an apparent relationship that is not strictly linear (HFC-134axs), and an apparent non-relationship 
(SF6,xs). The error bars on CO2ff are approximately 1 ppm and are left off for clarity. DOI: https://doi.org/10.1525/
elementa.131.f2

https://doi.org/10.1525/elementa.131.f2
https://doi.org/10.1525/elementa.131.f2
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not be linear, or obviously no relationship. Figures S1–S9 
in the Supplemental material show the raw-data scatter 
plots for all species against CO2ff for the interested reader. 
The calculated r2 values from linear regressions of the raw 
data against CO2ff are included as a column in Figure 1 
and indicate that, in this dataset, very few species have an 
appreciable correlation–only 4 of the 34 species even have 
an r2 value above 0.2. These are much lower than those 
found in previous studies such as Turnbull et al. (2011) 
and Miller et al. (2012). We believe that this is a conse-
quence of the relatively short distance between emission 
and detection in the INFLUX urban sample network. This 
leaves very little time for signals from multiple source 
sectors with different (or zero) emission ratios to become 
well-mixed before detection. Conversely, the low r2 values 
imply that different sources are observed on different 
days, and consequently suggests that indeed it might be 
possible to separate these sources using observations.

Miller et al. (2012) also found that, by separating out the 
seasonality of their signal, the winter measurements yield 
stronger correlation coefficients. For the Indianapolis 
dataset, separating out the winter signal (defined as meas-
urements in December through February) yielded only 
marginal improvements in the correlation coefficients, 
with now 6 species having an r2 value above 0.2, where 
Benzene (C6H6) is the only species besides CO (0.58) with 
a value above 0.3 at 0.31. The relative changes in r2 values 
from the INFLUX winter signal compared to the full data-
set are small enough as to not warrant further investiga-
tion for the purposes of this manuscript.

Towards direct spatial attribution to CO2ff sectors
Identifiable relationships between gases and CO2ff source 
sectors, even if nonlinearly related to CO2ff, are useful to 
inform about the sector origins of any enhancements. 
We present here the spatial attribution of flask measure-
ments by comparing the exact footprints derived from our 
backward model simulations for each flask sampling time 
against the known spatial extent of the source sectors as 
defined in Hestia.

Figure 3 shows that the footprint from a single tower 
overlaps with multiple economic sectors within the 
Indianapolis domain. Here, the footprint is plotted in the 
top left panel, and its overlap with each sector fills in the 
remaining panels (overlapping pixels being colored yel-
low). Given enough tower footprints, we expect an appre-
ciable amount of variation in the number and type of 
sectors being overlapped. By relating the corresponding 
flask measurements to this wide variety of footprints, we 
want to determine which measured species are associated 
with different source sectors considering their observed 
enhancements.

In a case lacking sufficient information from the foot-
print/sector overlaps, there is no mathematical way 
to properly distinguish which sectors have strong (or 
any) relationships with any given species’ mole fraction 
enhancements, without including additional a priori 
information about sectoral emissions. Here, five of the 
seven economic sectors of interest are overlapped by every 

footprint except for the OnRoad sector (intersected 88 out 
of 89 footprints). In this study, we will refer to the “domain 
filling problem” to describe this lack of sector-specific 
observations. Figure 4 illustrates the attribution problem 
assuming that any sector located within the tower foot-
print can be associated with a corresponding atmospheric 
enhancement. This problem is presented in detail in sub-
section Introducing the Domain-Filling Problem.

The self organizing map analysis
Observing system simulation experiments
As discovered during the Linear regressions against CO2ff 
subsection, the assumption that a tracer’s emissions will 
be linearly correlated with CO2ff emissions from a given 
sector is unlikely (only 4 of 34 species has an r2 above 0.2). 
Trace gas emissions originate from processes which have 
been grouped into economic sectors rather than process-
based sectors. The greater the number of processes associ-
ated with a sector, the greater the chance that the CO2ff 
emissions will not have a singular tracer for which emis-
sions are linearly proportional. There may even be vari-
ability in the proportionality of emissions from within the 
same process (e.g. different engines for different vehicles 
may emit the same chemicals in different proportions, 
but all are counted as traffic emissions in the OnRoad sec-
tor). Thus, we implement Observing System Simulation 
Experiments (OSSEs), with the framework described in 
the Methodology section, to explore under what circum-
stances accurate tracer attribution may be gleaned. This 
can help determine what types of tracers would be able to 
be detected–including nonlinear emissions with respect 
to CO2ff–and how much prior information is necessary 
for accurate source sector attribution. Nonlinear relation-
ships can be caused by irregular emissions within a CO2ff 
sector or by variations in the relative contributions of 
CO2ff sectors with consistent gas: CO2ff emission ratios. 
The attribution problem described here assumes that the 
spatial distributions of sectors from Hestia are correct. We 
also assume that the background mole fractions, which 
introduce additional errors in atmospheric enhancements 
as explained in Lauvaux et al. (2016), are known quanti-
ties.

Sector signatures and measures of success
Using the framework described in the Methodology 
 section above, we want to identify multi-species signa-
tures for each CO2ff source sector and evaluate the SOM’s 
capabilities for sector attribution of any pseudodatasets. 
Because every row of enhancement values in a pseudo-
dataset will be assigned to a class (neuron) of the SOM, we 
evaluate a CO2ff source sector’s signature by finding the 
class assigned to the mean of all pseudodata rows asso-
ciated with that sector’s contributions and comparing it 
against the emission matrix which was used to define that 
pseudodataset. We describe hereafter how we determine 
quantitatively whether the assigned class matches the 
original pseudodata. Figure 5 is used for demonstrative 
purposes. The SOM’s classification result for the Indus-
trial sector is chosen for this example, because it exhibits 



Nathan et al: Investigations into the use of multi-species measurements for source 
apportionment of the Indianapolis fossil fuel CO2 signal

Art. 21,	page 11	of	22

many of the potential difficulties which will be discussed 
in detail, especially around the idea of properly defining if 
an assigned class has been “successful” in its tracer assign-
ments; it is not meant to be necessarily viewed as a repre-
sentative case.

As Figure 5 demonstrates, the question of a successful 
classification is wrought with nuance. The classification 
result in the bar chart on the right is the result of a 1000-
class SOM classification for a pseudodataset based on the 
emission matrix on the left. For this source sector (here 
the Industrial sector), the emission matrix defines Tracer 
C and Tracer I emitting linearly with CO2ff emissions. 
The scale factor (α in Equation 3) is set to 1, so Tracer C 
and Tracer I should have the same enhancement values 
as CO2ff. No other tracer emits in this source sector, and 
10 noise species are added to evaluate the impact of irrel-
evant flask data that may have been mistakenly included 
if this were a real-data multi-species analysis.

The bar chart in Figure 5 shows that four of the ran-
dom noise species are found to have higher average 
enhancement values than any of the known tracers and 

CO2ff. Recall that the noise species are defined to fluctu-
ate around the same order of magnitude as CO2ff (and 
that any real-data analysis will be expected to similarly 
put each species’ measurements in the dataset through 
some normalization process before analysis to avoid bias-
ing the clustering), so this represents an analysis scenario 
where 10 species in a dataset are unknowingly being emit-
ted unpredictably and indiscriminately within the domain 
of interest. Although the we can test for apparent rela-
tionships before analysis, these noise species account for 
cases of misjudgment. Tracer C and Tracer I are correctly 
classified by the SOM to have enhancement magnitudes 
equal to CO2ff, however these magnitudes are only the 
fifth through the seventh largest among measured spe-
cies for this source sector, respectively. Thus, the question 
of whether or not the SOM’s classification is successful is 
inherently dependent on how the analyzer (the subjective 
interpreter) defines that success. Three metrics are created 
here for gauging the success of any given classification, 
called “Success Rate”, “Top Rank”, and “Harsh Top Rank”, 
which are defined as follows:

Figure 3: The top-left panel shows an example footprint from the one-hour flask measurement at Tower 2 on  November 
10, 2012 at 19:00 UTC. White triangles denote INFLUX tower sites and red stars indicate those towers where flask 
measurements were recorded during the period of this investigation. The remaining panels show the spatial extent 
of the Hestia flux maps for each source sector in green, with the pixels overlapping the footprint in yellow. These 
maps show only whether any emissions could occur and do not indicate the relative magnitude. DOI: https://doi.
org/10.1525/elementa.131.f3
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The “Success Rate” looks only at the tracers of the 
emission matrix (not the noise species or CO2 ff) and is 
defined as the fraction of those tracers which are cor-
rectly identified as emitting or not emitting based on 
their emission matrix designation. In mathematical 
terms:

   ,cor

tracer

N
Success Rate

N
=  (7)

where Ncor is the number of tracers correctly identified as 
on or off and Ntracer is the total number of potential trac-
ers (Ntracer = 7, for all cases in this investigation). In the 

Figure 4: Cartoon demonstrating the domain-filling problem. The left panel shows the ideal case where each source 
sector’s spatial distribution and corresponding tracer are known a priori. In the right panel, representing the real-
world case, the lack of a priori bottom-up flux inventory information for most of the measured atmospheric species 
used in this analysis is a problem. Emissions could have come from anywhere within the atmospheric footprint. There 
is no way to precisely and accurately identify a source within this area using just this individual footprint, although 
it may be possible to overcome this limitation given enough footprints with a wide enough variety of source sectors 
being overlapped. DOI: https://doi.org/10.1525/elementa.131.f4

Figure 5: An example of a final class definition for the Industrial sector, derived by a self-organizing map of 1000 
nodes (classes), using an emission matrix where Tracer C and Tracer I are the only tracers expected to be emitting, as 
highlighted by the light blue box over the Industrial sector’s row. Here “Scaled” means that the tracers should have 
enhancements with magnitudes linearly scaled with CO2ff (in this case, the scale factor = 1, so they should have 
identical values). In this example, four of the noise species in the dataset have higher mean enhancements than the 
known emitting tracers, which may be problematic in a real-world case where it was not known ahead of time which 
tracers are expected to be emitting. DOI: https://doi.org/10.1525/elementa.131.f5
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 example of Figure 5, the Success Rate would be 2 5
7 1+ = . 

The Success Rate metric does not concern itself with the 
magnitude of the enhancement.

The Top Rank metric evaluates specifically among the 
subset of known tracers from the emission matrix which 
are supposed to be emitting, meaning all of those non-
noise, non-CO2ff species from the emission matrix which 
are not set as zero when building the pseudodataset. This 
thus also assumes that any random noise species will be 
able to be identified and ignored prior to analysis of any 
real dataset. All of the known possible tracers are sorted 
based on their enhancement values. The Top Rank asks 
the question of if the tracers that were supposed to be 
emitting in a given sector (based on the corresponding 
emission matrix) are the same tracers found to have the 
highest mean enhancement values among all potential 
tracers in that sector:

 
_  ,cor top

emit

N
Top Rank

N
=  (8)

where Nemit is the number of tracers which are supposed to 
be emitting (number of emitters), and Ncor_top are the num-
ber of emitters which correctly occupy the top Nemit spots 
of the Ntracer values that have been sorted by enhancement 
value.

In the example of Figure 5, we can determine the Top 
Rank as follows. We know that there are always 7 potential 
non-noise, non-CO2ff tracers in the emission matrix cor-
responding to the 7 CO2ff source sectors. Of these 7, the 
emission matrix on the left of Figure 5 shows that 2 trac-
ers were assigned to be emitting when the pseudodataset 
was built: Tracer C and Tracer I. This means that Nemit = 2. 
If we then sort the enhancement values for all tracers of 
the emission matrix (that is, ignoring the noise species), 
then how many of the top 2 spots (largest enhancement 
values) are occupied by either Tracer C or Tracer I? By look-
ing at the sorted enhancement values plotted in the right 
of Figure 5, we see that the answer is that both of them 
occupy the top 2 spots, so Ncor_top = 2. Thus, the Top Rank 
would be 22 1= .

While the Top Rank metric has the advantage of 
accounting for the magnitude of the enhancements, it 
also introduces the assumption that the tracers which 
are emitting will have the largest mean enhancements. 
One of the issues with this assumption is that the accu-
racy of this metric becomes highly dependent on the 
assumption that any noise species have been accu-
rately identified and removed from the dataset prior to 
analysis.

To address this secondary assumption, the Harsh Top 
Rank metric is defined as follows:

 _    ,cor top

emit

N
Harsh Top Rank

N

∗

=  (9)

which is calculated after sorting every species in the data-
set (Ntot) by enhancement value–including the random 
noise species and CO2ff. Similar to Top Rank, _cor topN ∗  is 
the number of expected emitters (from the corresponding 
emission matrix) correctly occupying the top Nemit posi-
tions of the sorted Ntot dataset.

In the example of Figure 5, the Harsh Top Rank is thus 
determined as follows. The total number of species in this 
pseudodataset is 18: 7 tracers from the emission matrix, 
10 noise species, and CO2ff. Of these, we know that two 
tracers are expected to be emitting based on the emission 
matrix in the left of Figure 5: Tracer C and Tracer I. This 
means that Nemit = 2, exactly as with Top Rank. After hav-
ing sorted the species by enhancement value, as shown 
on the right of Figure 5, we ask how many of the top 2 
spots among all 18 species are occupied by Tracer C and 
Tracer I. The top 2 spots among all species in the dataset 
are clearly occupied by Rand 6 and Rand 10, however, so 
Ncor_top = 0. The Harsh Top Rank value for this classifica-
tion, then, would be 0

2 0= . This is considered to be a more 
realistic metric, as noise species can negatively influence 
the success value.

Control experiments: Proof of concept
A total of 495 self-organizing map classifications are per-
formed, consisting of 165 pseudodatasets from 33 emis-
sion matrices with 5 different amounts of noise species, 
all run with 3 different amounts of classes (nodes): 100, 
200, and 1000. The runs with different amounts of classes 
are performed since the optimal number will depend on 
the geometry of the dataset and is not known prior to 
classification. The ideal number of classes has enough to 
capture all of the similar groupings of datapoints (clus-
ters) without having multiple classes assigned to the same 
grouping.

Since this analysis is being done to address whether 
proper CO2ff source sector attribution is possible under 
ideal circumstances, these 495 trials represent the most 
ideal case for the INFLUX flask dataset. In these original 
165 pseudodatasets, it is already known ahead of time 
which tracers are emitting from which sector, and the 
exact spatial bounds of the economic sectors are known 
(from Hestia). We also assume that the number of noise 
species not tied to a source sector is known. This initial 
evaluation will provide our initial control experiments 
from which to evaluate the loss of information on the sec-
tor attribution.

Figure 6 shows the mean results of the OSSE SOM clas-
sifications across all success metrics for each of the source 
sectors. The Airport and Electricity Production sectors have 
low and sporadic successes across all metrics, presumably 
because these sectors have small spatial signatures–only a 
few scattered pixels in the domain–which are not able to 
be well captured in the model. In all of the other sectors, 
though, the self-organizing map performs well across all 
success metrics. For these sectors, the Success Rate and 
Top Rank metrics are around the 90–100% range. The 
Harsh Top Rank is closer to the 70% range, though, show-
ing the dramatic negative impact that is brought by the 
inclusion of extraneous species measurements in a data-
set. While 90–100% may arguably be enough to justify 
using this method for identifying the tracers emitting in 
a source sector, 70% is low enough that this becomes dif-
ficult to justify, and starts to beg the question of where the 
acceptability threshold really lies. Restated as a real-world 
example: it may be easier to justify using the attribution 
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results in a future analysis such as an inversion if only 0–1 
attributions out of 10 are potentially wrong, compared to 
the case where 3 in 10 may be wrong. We will not attempt 
to determine what this acceptability range is, only stating 
when results are clearly unacceptable (e.g. worse than a 
coin-flip).

In keeping with the idea that this control scenario is 
aiming for the most generous conditions to determine 
whether proper source sector identification is at all pos-
sible, Figure 7 shows the relative successes for each pseu-
dodata noise scenario across all emission matrices, but 
only for those source sectors which provided good results 
in Figure 6. Additionally, Figure 7 is focused on the 200-
class SOM case, which seemed to perform the best of the 
three cases (100-class, 200-class, and 1000-class), and it 
shows only the results from the Top Rank success metric, 
for which the classification had the highest success val-
ues. These choices of 200-classes and the Top Rank metric 
will maintain consistent through the rest of the analysis as 
adjustments are made.

For Figure 7, each shaded region moving across the 
x-axis represents one of the incremental group-of-six 
emission matrices explained in the Methodology section 
(cf. subheading “Building the Pseudodatasets”). A brief 
description of how the tracers are defined in each scenario 
is included underneath the scatter plot. Emission matrices 
1–6 (shaded gray) represent the emission matrices where 
the “Expected Tracers” (i.e. related to the sectors) down the 
diagonal of the emission matrices were all set by applying 
a multiplicative factor (set to 1 here) to the original CO2ff 
emissions (thus referred to as “Scaled”). The off-diagonal 
“Unexpected Tracers” are also emitting “Scaled” and are 
incrementing “Across Sectors”, moving down a column of 

the emission matrix. (For example, emission matrix 1 is set 
“Scaled” along the diagonal, but also has Tracer C emitting 
“Scaled” in the OnRoad sector. Emission matrix 2 is identi-
cal but also includes Tracer C emitting “Scaled” emissions 
from the Airport sector.) Because each emission matrix 
has 5 pseudodatasets associated with it, corresponding to 
the inclusion of 5 amounts of noise tracers, the success 
values for all 5 pseudodatasets are plotted in Figure 7 for 
each emission matrix. When results remain independent 
of the number of noise tracers, dots overlap. According to 
this Top Rank metric, the success values for tracer assign-
ment are consistently high across our different cases.

Figure 7 shows that the metrics tend to perform bet-
ter in scenarios with fewer noise species in the dataset. 
The real-world implication of this is that species whose 
sources are not well-constrained should be removed from 
a dataset before beginning analysis. For the INFLUX flask 
data, this would at least mean removing all species with 
gray boxes in Figure 1 unless one is able to create or 
obtain emission maps for them. This point is accentuated 
if compared against the Harsh Top Rank metric, shown in 
Figure S12 in the Supplemental material. Additionally, in 
scenarios where the tracers were scaled with CO2ff emis-
sions, proper identification was lowest among all emis-
sion matrix scenario groups. This is believed to be a result 
of the real CO2ff emission data, after being divided into 
sector contributions, having values close enough to 0 on 
the ppm scale that the SOM’s nodes for one sector may 
be influenced by contributions in another, despite being 
defined as independent in the emission matrix from 
which the dataset was constructed. These influences lead 
to misclassifications, and, being near-zero, these misclas-
sifications are proportionally greater in magnitude, which 

Figure 6: The mean successes in the control case across all pseudodatasets are shown, for each source sector, specified 
by the type of success metric (SR = Success Rate, TR = Top Rank, and HTR = Harsh Top Rank) and by the number of 
classes in the SOM. The Success Rate and Top Rank have very good success (between 90–100%) for all source sectors 
except the Airport and Electricity Production sectors. Presumably this is because the Airport and Electricity Produc-
tion sectors are only comprised of a few pixels in the domain, so the model has difficulty distinguishing their signals. 
For the sectors which the model was able to characterize well, the Harsh Top Rank only had success values around 
70%. DOI: https://doi.org/10.1525/elementa.131.f6
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can lead to mis-ordering and therefore failures according 
to the Top Rank formula.

Introducing the domain-filling problem
Considering that, in the control case, the identification 
of most sectors with the self-organizing map is success-
ful, we evaluate whether these successes maintain their 
performance after introducing the domain-filling prob-
lem identified earlier and illustrated in Figure 4. For the 
control experiment, the pseudodatasets were constructed 
as a series of pseudo-flask measurements whereby the 
exact contributions from each source sector were known 
(defined by the corresponding emission matrix) and were 
explicitly stated in their own rows. The domain-filling case 
uses the same pseudo-flask measurements as a starting 
point, mimicking the real-world case, and projects them 
back into the domain using only the tower footprints. The 
new domain-filled sector values, then, are derived with the 
following formula:

 ,j
yj y

tot

n

n
Δ = Δ ∗  (10)

where ∆y is the pseudo-flask enhancement for species y, nj 
is the number of pixels where the footprint overlaps Hes-
tia sector j, and ntot is the total number of pixels contained 
in the footprint. An approach like formula 10 is neces-
sary to properly account for there not being any a priori 
information about any species’ spatial emissions distribu-
tion within any given footprint, as is true for nearly every 
species in the real flask data case. The formula here in 
 equation 10 is chosen instead of maintaining the form 
of equation 3, because direct reliance on the influence 

function would heavily favor identifying sources as being 
nearby the tower.

Using this methodology, all 165 pseudodatasets are 
reconstructed, and the 495 self-organizing map trials are 
rerun. Figure 8 shows the new results for each noise sce-
nario across all the emission matrices. In keeping with the 
control analysis, the 200-class case and the Top Rank suc-
cess metric are used.

The results of Figure 8 show success values around 
40%, incrementally increasing to near 70%. The appar-
ent increase in success (up to 70%) is an artifact based on 
the formulation of the Top Rank equation (Equation 8). 
In the domain-filling problem, by definition, every tracer 
will be present in every spatially-defined sector within a 
footprint. According to equation 10, the relative sectoral 
enhancement will be proportional to the relative spatial 
fraction of the footprint occupied by that sector. To under-
stand this artifact, note first that the denominator of the 
Top Rank equation is the number of tracers in the emis-
sion matrix expected to be emitting. Thus, as one steps 
across any of the groups of 6 matrices which are incremen-
tally increasing the number of tracers which are emitting 
in the sectors, the denominator grows. If one also notes 
that all tracers are always present within a footprint in the 
domain-filling case, then one can see how Ncor_top grows as 
Nemit grows, and the Top Rank metric artificially looks more 
successful. This feature is ignored in the results.

Considering the other scenarios, the highest success 
values are around 20–40%, depending on the emission 
scenario group. This shows that the Top Rank, considered 
the most generous success metric, indicates that the inclu-
sion of the domain-filling problem alone makes proper 

Figure 7: The mean successes using the “Top Rank” metric for each noise scenario across all the different emission 
matrices. The table below the scatter plot identifies which incremental emission scenario the points correspond to. 
The 200-class case is chosen for each of the success metrics, as it generally had greater agreement than the 100- and 
1000-class cases. The Top Rank is the most generous metric of success, so will be the benchmark metric for the most 
ideal conditions. DOI: https://doi.org/10.1525/elementa.131.f7
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sector identification with an SOM nonviable. Indeed, the  
other success metrics do fare worse. The Success Rates 
are in the 20–30% range after the control case had them 
around 90–100%, as can be seen in the Supplemental 
material Figure S13. The Harsh Top Rank metric benefits 
in part from the same artifact as the Top Rank metric, but 
even with this some of the scenarios with higher amounts 
of noise species hover around 0%, as can be seen in the 
Supplemental material Figure S14. With none of the suc-
cess metrics having a trustworthy value above 50%, none 
of them could be considered useful for source sector 
identification.

The “all towers” case: Attempting to improve results 
through an expanded dataset
The two pseudodata scenarios (with and without the 
domain-filling problem) are rerun with an expanded data-
set. Rather than only creating a pseudodata measurement 
from each tower with a real simultaneous flask measure-
ment (on average ~2 towers per measurement time), a 
pseudodata measurement is simultaneously created for all 
functional towers in the domain every time any real flask 
measurement was recorded. In this way, we evaluate the 
impact of data availability on the domain-filling problem, 
assuming that there were not enough data points previ-
ously to allow the self-organizing map to compensate for 
the information lost through domain-filling. These tests 
are referred to as the “all towers” cases.

First, the control results are rerun under the “all towers” 
conditions. Figure 9 shows the comparison between the 
two, with the original control results in blue and the “all 
towers” results in red. In contrast to Figures 7 and 8, only 

the results of the first emission matrix in any incremental 
group are included, as well as the results of each perfect 
diagonal emission matrix. This change is made so that the 
domain-filled comparison later will no longer include the 
aforementioned Top Rank artifact which falsely implies 
improvement of the success values as they increment 
within the emission matrix scenario groups. The new “all 
towers” control results are very close to the original con-
trol results.

Figure 10 shows that expanding the dataset to include 
additional measurement locations from all available tow-
ers in the INFLUX domain at any measurement time does 
not overcome the domain-filling problem. The relative 
successes among the emission matrices are almost identi-
cal to the original analysis. Additionally, there is an appar-
ent dip for the perfect diagonal cases, which appears to 
be a result of the same artifact from Figure 8. If anything, 
though, this implies that the real Top Rank success values 
in the domain-filled scenarios are closer to 20% than 40%. 
Regardless, neither of these results for the domain-filling 
cases would be viable for justifying this methodology for 
source sector attribution.

Conclusions
In this study, we examined the use of multi-species flask 
measurements to attribute atmospheric signals emanat-
ing from specific CO2ff economic source sectors at the 
scale of an urban domain. Initial simple correlation plots 
of actual observations from the INFLUX network showed 
that many species are related to CO2ff; the relatively weak 
correlations suggest that multiple sources contribute to 
the overall signal and in principle these could be separated 

Figure 8: The mean successes for each noise scenario across all the different emission matrices for the pseudodatasets 
with the domain-filling issue. As with Figure 7, the 200-class case is chosen for the Top Rank success metric. High-
lighted with a red box, the Top Rank values start at near 40% and apparently improve, but this is an artifact. Since 
the improvements are artifacts, the numbers across the emissions scenarios should be considered as in the 20–40% 
range. DOI: https://doi.org/10.1525/elementa.131.f8
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Figure 9: The mean successes using the Top Rank metric are shown for each noise scenario for both the original control 
case (blue) and the “all towers” case (red). Compared to Figures 7 and 8, only the first emission matrix scenario from 
any incremental group is included, as well as each perfect diagonal emission matrix scenario. As would be expected, 
the Top Rank successes in the “all towers” case are at least as good as those in the control case. DOI: https://doi.
org/10.1525/elementa.131.f9

Figure 10: The mean successes with the domain-filling problem according to the Top Rank metric are shown for each 
noise scenario, with the original in shades of blue and the “all towers” case in shades of red. The same emission matrix 
scenarios as in Figure 9 are included to avoid having the Top Rank false-improvement artifact of Figure 8. Unfortu-
nately, the expansion of the dataset for the “all towers” case did not greatly improve the success results. DOI: https://
doi.org/10.1525/elementa.131.f10
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to evaluate the contribution of these different sources to 
the total emissions.

We used an OSSE to explore how an SOM could be used 
to attribute these urban observations to source sectors. 
All analyses were performed in a highly unconstrained 
fashion–without any other a priori information (such as 
emission ratios or bottom-up inventories) about any of 
the non-CO2ff species. A high-resolution meteorological 
model was applied to each flask measurement to find the 
footprints within which emissions could have occurred. 
The overlaps of these footprints with predefined CO2ff 
emission source sectors from the Hestia inventory were 
scrutinized to identify any measured atmospheric species 
that could constrain atmospheric CO2ff measurements to 
their appropriate source sectors.

The direct-attribution attempts with real data did not 
yield useful results, because of the large effects of sev-
eral real-world sources of uncertainty. One such source 
of uncertainty in this analysis concerns which meas-
ured species are specifically known a priori to be related 
to which (if any) CO2 ff source sectors, as defined in the 
Hestia dataproduct. Further, a consistent and promi-
nent source of uncertainty comes from the lack of a 
priori knowlege for the expected spatial distribution of 
emissions for any non-CO2 ff measured species within 
any projected footprint. This last source of uncertainty, 
labeled the “domain-filling” problem, makes it unfeasable 
to assign sectors for the real-world case, where virtually 
every tower footprint overlaps 5 of the 7 source sectors 
every time. This problem forced the investigation into the 
realm of pseudodata.

The OSSE pseudodata investigation showcased the self-
organizing map’s ability to successfully identify emissions 
from tracers that are or are not emitting in source sectors 
with adequate spatial coverage within a flask measure-
ments’ footprints. This is, on its surface, very encourag-
ing for solving the problem of source sector attribution 
of greenhouse gas measurements. However, we know that 
in the real-world case, for any flask collected at a given 
time, the exact locations of the trace gas sources are nearly 
always undefined within the flask footprint. We showed 
here that the self-organizing map approach is unable to 
overcome this “domain-filling” problem to correctly attrib-
ute trace gases to specific sectors, even in a case with a 
greatly expanded dataset. The inability to overcome this 
limitation suggests that the real-world source apportion-
ment problem may be irreconcilable without additional 
a priori information related to the processes emitting all 
observed gases of interest. It is additionally shown in the 
OSSE analysis that the inclusion of extraneous species in 
the dataset significantly hinders the ability to associate 
tracer emissions to their source sector. Only atmospheric 
species that are specifically relevant to the source attri-
bution problem should be included in further analyses. 
Future investigations will aim at pre-identifying individ-
ual species-of-interest and at gathering first-guess spatial 
inventory estimates to address both the domain-filling 
problem and the issue of including unnecessary species. 
Our results suggest that an obvious path forward is to 
partition CO2ff by source sector at the whole city scale, 

and/or to develop higher resolution a priori information 
to inform future studies.
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