T. Ali, M. J. Kim, S. U. Rehman, A. Ahmad, and M. O. Kim, Anthocyanin-Loaded PEG-Gold Nanoparticles Enhanced the Neuroprotection of Anthocyanins in an A? 1?42 Mouse Model of Alzheimer's Disease, Molecular neurobiology, vol.54, pp.1-17, 2016.

A. S. Gupta, Nanomedicine approaches in vascular disease: a review, Nanomedicine: Nanotechnology, Biology and Medicine, vol.7, issue.6, pp.763-779, 2011.
DOI : 10.1016/j.nano.2011.04.001

T. Prow, N. Dang, K. Nufer, L. Payne, H. P. Soyer et al., New approach of gold nanoparticles for treating skin disease, Journal of Dermatological Science, vol.84, issue.1, p.125, 2016.
DOI : 10.1016/j.jdermsci.2016.08.374

R. Ankri, D. Leshem-lev, E. I. Lev, M. Motiei, E. Hochhauser et al., Gold Nanoparticles Based Imaging Technique and Drug Delivery for the Detection and Treatment of Atherosclerotic Vascular Disease, International Society for Optics and Photonics, p.97210, 2016.

N. S. Abadeer and C. J. Murphy, Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles, The Journal of Physical Chemistry C, vol.120, issue.9, pp.4691-4716, 2016.
DOI : 10.1021/acs.jpcc.5b11232

P. Baptista, E. Pereira, P. Eaton, G. Doria, A. Miranda et al., Gold nanoparticles for the development of clinical diagnosis methods, Analytical and Bioanalytical Chemistry, vol.33, issue.3, pp.943-950, 2008.
DOI : 10.1016/j.bbagen.2005.12.001

J. C. Kah, K. W. Kho, C. G. Lee, and C. J. Richard, Early Diagnosis of Oral Cancer Based on the Surface Plasmon Resonance of Gold Nanoparticles, International Journal of Nanomedicine, vol.2, p.785, 2007.

W. Hou, F. Xia, G. Alfranca, H. Yan, X. Zhi et al., Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions, Biomaterials, vol.120, pp.103-114, 2017.
DOI : 10.1016/j.biomaterials.2016.12.027

Y. Tan, B. Yan, L. Xue, Y. Li, X. Luo et al., Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma, Lipids in Health and Disease, vol.407, issue.1, p.73, 2017.
DOI : 10.1007/s00216-015-8610-9

X. Cheng, R. Sun, L. Yin, Z. Chai, H. Shi et al., Light-Triggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo, Advanced Materials, vol.136, issue.6, 2017.
DOI : 10.1021/ja508641z

S. Cabana, C. S. Lecona-vargas, H. I. Meléndez-ortiz, A. Contreras-garcía, S. Barbosa et al., Silicone rubber films functionalized with poly(acrylic acid) nanobrushes for immobilization of gold nanoparticles and photothermal therapy, Journal of Drug Delivery Science and Technology, vol.42, pp.245-254, 2017.
DOI : 10.1016/j.jddst.2017.04.006

S. Rajkumar and M. Prabaharan, Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging- Guided Photothermal and Photodynamic Therapy of Cancer, Current Topics in Medicinal Chemistry, vol.17, issue.16, pp.1858-1871, 2017.
DOI : 10.2174/1568026617666161122120537

A. Neshastehriz, M. Tabei, S. Maleki, S. Eynali, and A. Shakeri-zadeh, Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6 MV X-ray on mouth epidermal carcinoma cells, Journal of Photochemistry and Photobiology B: Biology, vol.172, pp.52-60, 2017.
DOI : 10.1016/j.jphotobiol.2017.05.012

M. Zhang, H. S. Kim, T. Jin, and W. K. Moon, Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer, Journal of Photochemistry and Photobiology B: Biology, vol.170, pp.58-64, 2017.
DOI : 10.1016/j.jphotobiol.2017.03.025

A. B. Bucharskaya, G. N. Maslyakova, N. A. Navolokin, G. S. Terentyuk, B. N. Khlebtsov et al., The Assesment of Effectiveness of Plasmonic Resonance Photothermal Therapy in Tumor-Bearing Rats after Multiple Intravenous Administration of Gold Nanorods, International Society for Optics and Photonics, p.103360, 2017.

W. Sung, S. J. Ye, A. L. Mcnamara, S. J. Mcmahon, J. Hainfeld et al., Dependence of gold nanoparticle radiosensitization on cell geometry, Nanoscale, vol.434, issue.Pt B, pp.5843-5853, 2017.
DOI : 10.1016/j.bbrc.2013.03.042

S. Rosa, C. Connolly, G. Schettino, K. T. Butterworth, and K. M. Prise, Biological mechanisms of gold nanoparticle radiosensitization, Cancer Nanotechnology, vol.68, issue.6, 2017.
DOI : 10.1158/0008-5472.CAN-07-5278.Mitochondrial

A. Zaki, A. Cormode, D. Tsourkas, A. Dorsey, and J. F. , Increasing the Therapeutic Efficacy of Radiotherapy Using Nanoparticles Increasing the Therapeutic Ratio of Radiotherapy, pp.241-265978, 2017.

A. Mulgaonkar, S. Moeendarbari, W. Silvers, G. Hassan, X. Sun et al., Radiosensitizing Agents for Radiation Therapy of Breast Cancer, Journal of Biomedical Nanotechnology, vol.13, issue.5, pp.566-574, 2017.
DOI : 10.1166/jbn.2017.2367

N. Ma, F. G. Wu, X. Zhang, Y. W. Jiang, H. R. Jia et al., Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods, ACS Applied Materials & Interfaces, vol.9, issue.15, pp.13037-13048, 2017.
DOI : 10.1021/acsami.7b01112

R. Kumar, W. Ngwa, V. Joshi, S. Kunjachan, R. Berbeco et al., Abstract B41: Gold nanoparticles based platforms for localized radiosensitization in cancer radiation therapy, Cancer Research, vol.77, issue.2 Supplement, pp.41-57, 2017.
DOI : 10.1158/1538-7445.EPSO16-B41

V. Ferrero, G. Visonà, F. Dalmasso, A. Gobbato, P. Cerello et al., Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study, Medical Physics, vol.9, issue.5, pp.1983-1992, 2017.
DOI : 10.1371/journal.pone.0105359

A. Saberi, D. Shahbazi-gahrouei, M. Abbasian, and M. Fesharaki, Baharlouei, A. and Journal of Biomaterials and Nanobiotechnology

Z. Arab-bafrani, Gold Nanoparticles in Combination with Megavoltage Radiation Energy Increased Radiosensitization and Apoptosis in Colon Cancer HT-29 Cells, International Journal of Radiation Biology, vol.93, pp.315-323, 2017.

S. Soleymanifard, A. Rostami, S. A. Aledavood, M. M. Matin, and A. Sazgarnia, Increased radiotoxicity in two cancerous cell lines irradiated by low and high energy photons in the presence of thio-glucose bound gold nanoparticles, International Journal of Radiation Biology, vol.31, issue.4, pp.407-415, 2017.
DOI : 10.25011/cim.v31i3.3473

S. M. Gadoue, D. Toomeh, P. Zygmanski, and E. Sajo, Angular dose anisotropy around gold nanoparticles exposed to X-rays, Nanomedicine: Nanotechnology, Biology and Medicine, vol.13, issue.5, pp.1653-1661, 2017.
DOI : 10.1016/j.nano.2017.02.017

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer, Advanced Drug Delivery Reviews, vol.62, issue.3, pp.346-361, 2010.
DOI : 10.1016/j.addr.2009.11.007

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer: An in Vivo Study, International Journal of Nanomedicine, vol.6, pp.2859-2864, 2011.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Physics in Medicine and Biology, vol.49, issue.18, pp.31-9155, 2004.
DOI : 10.1088/0031-9155/49/18/N03

M. Y. Chang, A. L. Shiau, Y. H. Chen, C. J. Chang, H. H. Chen et al., Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice, Cancer Science, vol.55, issue.7, pp.1479-1484, 2008.
DOI : 10.1016/0360-3016(92)90948-H

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2008.00827.x/pdf

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer, Nanomedicine, vol.65, issue.4, pp.473-480, 2006.
DOI : 10.1117/1.2139970

G. Von-maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das et al., Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas, Cancer Research, vol.69, issue.9, pp.3892-3900, 2009.
DOI : 10.1158/0008-5472.CAN-08-4242

C. K. Anders and L. A. Carey, Biology, Metastatic Patterns, and Treatment of Patients with Triple-Negative Breast Cancer, Clinical Breast Cancer, vol.9, pp.73-81, 2009.
DOI : 10.3816/CBC.2009.s.008

A. Prat and C. M. Perou, Deconstructing the molecular portraits of breast cancer, Molecular Oncology, vol.9, issue.7-8, pp.5-23, 2011.
DOI : 10.1007/BF02616069

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.molonc.2010.11.003/pdf

M. Banda, C. L. Speyer, S. N. Semma, K. O. Osuala, N. Kounalakis et al., Metabotropic Glutamate Receptor-1 Contributes to Progression in Triple Negative Breast Cancer, PLoS ONE, vol.125, issue.1, p.81126, 2014.
DOI : 10.1371/journal.pone.0081126.g009

URL : https://doi.org/10.1371/journal.pone.0081126

M. J. Dufy, P. M. Mcgowan, and J. Crown, Targeted therapy for triple-negative breast cancer: Where are we?, International Journal of Cancer, vol.15, issue.24 Suppl, pp.2471-2477, 2012.
DOI : 10.1158/1078-0432.CCR-09-0317

R. Dufour, P. Daumar, E. Mounetou, C. Aubel, F. Kwiatkowski et al., BCRP and P-gp Relay Overex- Journal of Biomaterials and Nanobiotechnology pression in Triple Negative Basal-Like Breast Cancer Cell Line: A Prospective Role in Resistance to Olaparib, Scientific Reports, vol.5, 2015.

E. Guerrab, A. Bamdad, M. Bignon, Y. J. Penault-llorca, F. Aubel et al., -wild-type triple-negative breast cancer cells, Molecular Carcinogenesis, vol.30, issue.5, 2017.
DOI : 10.1200/JCO.2010.34.5579

, Molecular Carcinogenesis, vol.56, pp.1383-1394

E. Guerrab, A. Bamdad, M. Kwiatkowski, F. Bignon, Y. J. Penault-llorca et al., Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer, Oncotarget, vol.7, issue.45, pp.73618-73637, 2016.
DOI : 10.18632/oncotarget.12037

URL : https://hal.archives-ouvertes.fr/hal-01671418

C. Gani, C. Coackley, R. Kumareswaran, C. Schütze, M. Krause et al., In vivo studies of the PARP inhibitor, AZD-2281, in combination with fractionated radiotherapy: An exploration of the therapeutic ratio, Radiotherapy and Oncology, vol.116, issue.3, pp.486-494, 2015.
DOI : 10.1016/j.radonc.2015.08.003

J. Lee, D. K. Chatterjee, M. H. Lee, and S. Krishnan, Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls, Cancer Letters, vol.347, issue.1, pp.46-53, 2014.
DOI : 10.1016/j.canlet.2014.02.006

D. Clémence, D. Robin, D. Pierre, A. Corinne, S. Claire et al., Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines, Oncotarget, vol.8, issue.56, pp.95316-95331, 2017.
DOI : 10.18632/oncotarget.20517

, KALADRUG-R: Laboratory SOP#18. Simple Method and Tool for Calculation IC50-Values, 2010.

F. M. Veronese and G. Pasut, PEGylation, successful approach to drug delivery, Drug Discovery Today, vol.10, issue.21, pp.1451-1458, 2005.
DOI : 10.1016/S1359-6446(05)03575-0

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanoparticle PEGylation for imaging and therapy, Nanomedicine, vol.19, issue.4, pp.715-728, 2011.
DOI : 10.1021/mp0500420

H. Ghaznavi, Folic acid conjugated PEG coated gold???iron oxide core???shell nanocomplex as a potential agent for targeted photothermal therapy of cancer, Artificial Cells, Nanomedicine, and Biotechnology, vol.4, pp.1-11, 2017.
DOI : 10.1186/s12951-015-0113-5

Z. Y. Ong, Multibranched Gold Nanoparticles with Intrinsic LAT-1 Targeting Capabilities for Selective Photothermal Therapy of Breast Cancer, ACS Applied Materials & Interfaces, vol.9, issue.45, pp.39259-39270, 2017.
DOI : 10.1021/acsami.7b14851

K. Y. Huang, H. L. Ma, and J. Liu, ACS Nano, vol.6, issue.5, pp.4483-4493, 2012.
DOI : 10.1021/nn301282m