Arcades : A deep model for adaptive decision making in voice controlled smart-home

Abstract : In a voice controlled smart-home, a controller must respond not only to user's requests but also according to the interaction context. This paper describes Arcades, a system which uses deep reinforcement learning to extract context from a graphical representation of home automation system and to update continuously its behavior to the user's one. This system is robust to changes in the environment (sensor breakdown or addition) through its graphical representation (scale well) and the reinforcement mechanism (adapt well). The experiments on realistic data demonstrate that this method promises to reach long life context-aware control of smart-home.
Type de document :
Article dans une revue
Pervasive and Mobile Computing, Elsevier, 2018, 49, pp.92-110. 〈https://authors.elsevier.com/c/1XP5T5bwSmo1a6〉. 〈10.1016/j.pmcj.2018.06.011〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01829401
Contributeur : Michel Vacher <>
Soumis le : mercredi 4 juillet 2018 - 09:34:01
Dernière modification le : jeudi 18 octobre 2018 - 14:07:59
Document(s) archivé(s) le : lundi 1 octobre 2018 - 11:19:54

Fichier

2018_PMC_Brenon_auteur.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexis Brenon, François Portet, Michel Vacher. Arcades : A deep model for adaptive decision making in voice controlled smart-home. Pervasive and Mobile Computing, Elsevier, 2018, 49, pp.92-110. 〈https://authors.elsevier.com/c/1XP5T5bwSmo1a6〉. 〈10.1016/j.pmcj.2018.06.011〉. 〈hal-01829401〉

Partager

Métriques

Consultations de la notice

90

Téléchargements de fichiers

98