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Abstract

In this paper we give a broad unified framework via group actions for constructing com-

plexity functions of infinite words x = x0x1x2 · · · ∈ AN with values in a finite set A. Factor

complexity, Abelian complexity and cyclic complexity are all particular cases of this general

construction. We consider infinite sequences of permutation groups ω = (Gn)n≥1 with each

Gn ⊆ Sn. Associated with every such sequence is a complexity function pω,x : N→ N which

counts, for each length n, the number of equivalence classes of factors of x of length n under

the action of Gn on An given by g ∗ (u1u2 · · ·un) = ug−1(1)ug−1(2) · · ·ug−1(n). Each choice of

ω = (Gn)n≥1 defines a unique complexity function which reflects a different combinatorial

property of a given infinite word. For instance, an infinite word x has bounded Abelian

complexity if and only if x is k-balanced for some positive integer k, while bounded cyclic

complexity is equivalent to x being ultimately periodic. A celebrated result of G.A. Hedlund

and M. Morse states that every aperiodic infinite word x ∈ AN contains at least n+1 distinct

factors of each length n. Moreover x ∈ AN has exactly n+ 1 distinct factors of each length n

if and only if x is a Sturmian word, i.e., binary, aperiodic and balanced. We prove that this

characterisation of aperiodicity and Sturmian words extends to this general framework.

Keywords: Symbolic dynamics, complexity, Sturmian words, discrete interval exchange

transformations.

2010 MSC: 37B10

1. Introduction

For each infinite word x = x0x1x2 · · · ∈ AN, with values in a finite set A, the factor

complexity function px : N → N counts the number of distinct blocks (or factors) of each

length n occurring in x. First introduced by G.A. Hedlund and M. Morse in their 1938
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seminal paper on Symbolic Dynamics under the name of block growth2, the factor complexity

provides a useful measure of the extent of randomness of x and more generally of the subshift

it generates. They proved that every aperiodic (meaning not eventually periodic) infinite

word contains at least n + 1 distinct factors of each length n. They further showed that

an infinite word x has exactly n + 1 distinct factors of each length n if and only if x is

binary, aperiodic and balanced, i.e., x is a Sturmian word. Thus Sturmian words are those

aperiodic words of lowest factor complexity. They arise naturally in many different areas

of mathematics including combinatorics, algebra, number theory, ergodic theory, dynamical

systems and differential equations. Sturmian words also have implications in theoretical

physics as 1-dimensional models of quasi-crystals, and in theoretical computer science where

they are used in computer graphics as digital approximation of straight lines. Despite their

simplicity, Sturmian words possess several deep and mysterious properties (see [15, 16, 17]).

There are several variations and extensions of the Morse-Hedlund theorem associated

with other types of complexity functions of an infinite word x ∈ AN including for instance

Abelian complexity [8, 24], which counts for the number of distinct Abelian classes of words

of each length n occurring in x, palindrome complexity [3], which counts the number of

distinct palindromes of each length n occurring in x, cyclic complexity [7] which counts

the number of conjugacy classes of factors of each length n occurring in x, and maximal

patterns complexity [19]. In most cases, these different notions of complexity may be used

to detect (and in some cases characterize) ultimately periodic words. Generally, amongst

all aperiodic words, Sturmian words have the lowest possible complexity, although in some

cases they are not the only ones (for instance, a restricted class of Toeplitz words is found

to have the same maximal pattern complexity as Sturmian words [19]). There have also

been numerous attempts at extending the Morse-Hedlund theorem in higher dimensions. A

celebrated conjecture of M. Nivat states that any 2-dimensional word having at most mn

distinct m×n blocks must be periodic. In this case, it is known that the converse is not true.

To this day the Nivat conjecture remains open although the conjecture has been verified for

m or n less or equal to 3 (see [9, 25]). A very interesting higher dimensional analogue of the

Morse-Hedlund theorem was recently obtained by Durand and Rigo in [12] in which they

re-interpret the notion of periodicity in terms of Presburger arithmetic.

In this paper we give a broad unified framework via group actions for constructing com-

plexity functions of infinite words. Factor complexity, Abelian complexity and cyclic com-

plexity turn out to be particular cases of this general construction. We consider infinite

sequences of permutation groups ω = (Gn)n≥1 with each Gn ⊆ Sn. Associated with every

such sequence, and with every infinite word x ∈ AN, is a complexity function pω,x : N → N
which counts, for each length n, the number of equivalence classes of factors of x of length n

2In [13], Ehrenfeucht, Lee, and Rozenberg adopted the term subword complexity.
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under the action of Gn on An given by g ∗ (u1u2 · · ·un) = ug−1(1)ug−1(2) · · ·ug−1(n). Thus the

usual factor complexity is obtained by taking the infinite sequence (Idn)n≥1, where Idn is the

trivial subgroup of Sn consisting only of the identity, while Abelian complexity corresponds

to the sequence (Sn)n≥1, and finally cyclic complexity to the sequence (Cn)n≥1, where Cn is

the cyclic group generated by the n-cycle (1, 2, . . . , n). Each choice of ω = (Gn)n≥1 defines a

unique complexity function which reflects some combinatorial property of an infinite word.

For instance, the Morse-Hedlund theorem asserts that an infinite word x has bounded factor

complexity if and only if x is ultimately periodic. Bounded cyclic complexity is also equiva-

lent to x being ultimately periodic [7]. In contrast bounded Abelian complexity is equivalent

to the condition that x is k-balanced for some positive integer k (see [18]). Two Sturmian

words x and y have the same factor complexity and the same Abelian complexity. Instead

they have the same cyclic complexity if and only if they belong to the same minimal subshift,

i.e., they have the same slope (see Theorem 2 in [7]).

We prove that the celebrated theorem of Hedlund and Morse extents to this general

framework. More precisely, if an infinite word x ∈ AN is aperiodic, then for every infinite

sequence of permutation groups ω = (Gn)n≥1 we have pω,x(n) ≥ ε(Gn) + 1 for each n ≥ 1,

where ε(Gn) is the number of distinct Gn-orbits of {1, 2, . . . , n} (see Theorem 1). Applied to

the sequence (Idn)n≥1, it says that every aperiodic word contains at least ε(Idn) + 1 = n+ 1

distinct factors of each length n. Similarly applied to the sequence (Sn)n≥1 it states that

every aperiodic word contains at least ε(Sn) + 1 = 2 Abelian classes of factors of each length

n. We further show that in this general setting, Sturmian words are characterised as those

aperiodic words of minimal complexity. More precisely, we show that if x ∈ AN is aperiodic

and ω = (Gn)n≥1 is such that pω,x(n) = ε(Gn) + 1 for each n ≥ 1, then x is Sturmian. The

converse is in general not true, that is if x is Sturmian and ω = (Gn)n≥1, then it is not

always the case that pω,x(n) = ε(Gn) + 1 for each n ≥ 1. For instance, if x is Sturmian and

ω = (Cn)n≥1, where each Cn is the cyclic subgroup of Sn generated by the n-cycle (1, 2, . . . , n),

then ε(Cn) = 1 while pω,x(n) is unbounded (see Theorem 1 in [7]). However, we show that if

x is Sturmian, then there exists a sequence ω′ = (C ′n)n≥1, where each C ′n is a cyclic subgroup

of Sn generated by an n-cycle, and pω′,x(n) = 2 for each n ≥ 1 (see Corollary 2). Combined

with the fundamental theorem of finite Abelian groups, we prove that if x is a Sturmian

word, then for every infinite sequence ω = (Gn)n≥1 of Abelian permutation groups there

exists ω′ = (G′n)n≥1 with G′n isomorphic to Gn and pω′,x(n) = ε(G′n) + 1 for each n ≥ 1 (see

Theorem 2).

Our methods rely largely on the rich combinatorial properties of Sturmian words and in

particular the structure of the bispecial factors. We use results from [18] on the Christoffel

array associated with a bispecial factor w of a Sturmian word, in which the cyclic conjugates

of 0w1 are ordered lexicographically in a rectangular array. Another key feature is the

use of discrete 3-interval exchange transformations in the sense of [23]. More precisely,

we associate to each Abelian permutation group Gn ⊆ Sn a system of discrete 3-interval

3



exchange transformations which acts on the factors of a Sturmian word of length n.

2. Main Results

Let Sn denote the symmetric group on n-letters which we regard as the set of all bijections

of {1, 2, . . . , n}. Fix a subgroup G ⊆ Sn. We consider the G-action G × {1, 2, . . . , n} →
{1, 2, . . . , n} given by (g, i) 7→ g(i) and let ε(G) denote the number of distinct orbits, i.e.,

ε(G) = Card({G(i) | i ∈ {1, 2, . . . , n}})

where G(i) = {g(i) | g ∈ G} denotes the G-orbit of i. For instance if G is the trivial subgroup

of Sn consisting only of the identity, then ε(G) = n, while if G contains an n-cycle, then

ε(G) = 1. We note that ε(G) strongly depends on the embedding of G in Sn, and in fact is

not a group isomorphism invariant, even for isomorphic subgroups of Sn. For instance, the

subgroups G1 = {e, (1, 2), (3, 4), (1, 2)(3, 4)} and G2 = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
are two embeddings of the Klein four-group Z/2Z × Z/2Z in S4, and yet ε(G1) = 2 while

ε(G2) = 1. On the other hand, it is easily checked that ε(G) only depends on the conjugacy

class of G in Sn.

Let A be a finite non-empty set. For each n ≥ 1, let An denote the set of all words u =

u1u2 · · ·un with ui ∈ A. For a ∈ A we denote by |u|a the number of occurrences of the symbol

a in u. Two words u, v ∈ An are Abelian equivalent, written u ∼ab v, if |u|a = |v|a for each

a ∈ A. It is convenient to consider elements of An as functions u : {1, 2, . . . , n} → A where

u(i) = ui ∈ A for 1 ≤ i ≤ n. For each subset S ⊆ {1, 2, . . . , n} we denote by u|S the restriction

of u to S. There is a natural G-action G× An → An given by g ∗ u : i 7→ u(g−1(i)) for each

i ∈ {1, 2, . . . , n}. In terms of the word representation we have g∗u = ug−1(1)ug−1(2) · · ·ug−1(n).

In particular we have g ∗ u ∼ab u for all g ∈ G.

Let x = x0x1x2 · · · ∈ AN be an infinite word. Then G defines an equivalence relation

∼G on Factx(n) = {xixi+1 · · ·xi+n−1 | i ≥ 0}, the set of factors of x of length n, given by

u ∼G v if and only if g ∗ u = v for some g ∈ G, in other words if u and v are in the same

G-orbit relative to the action of G on An. We say that ∼G is Abelian transitive on x if for

all u, v ∈ Factx(n) we have u ∼ab v if and only if u ∼G v.
We are interested in the number of ∼G equivalence classes, i.e., Card(Factx(n)/ ∼G).

Unlike ε(G), this quantity is not a conjugacy invariant of G in Sn. For instance, consider the

cyclic subgroups G1 = 〈σ1〉 and G2 = 〈σ2〉 of S4 where σ1 = (1, 2, 3, 4) and σ2 = (1, 3, 2, 4).

Let x denote the Fibonacci word fixed by the substitution 0 7→ 01, 1 7→ 0. Then Factx(4) =

{0010, 0100, 0101, 1001, 1010} and

Factx(4)/ ∼G1= {[0100
σ1y 0010]; [0101

σ1y 1010]; [1001]}

while

Factx(4)/ ∼G2= {[0010
σ2y 0100]; [0101

σ2y 1001
σ2y 1010]}.
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We observe that the two equivalence classes relative to ∼G2 correspond to the two Abelian

classes of Factx(4). Thus the equivalence relation ∼G2 is Abelian transitive on x while ∼G1 is

not. On the other hand if y ∈ {0, 1}N is such that Facty(4) = {0000, 0001, 0010, 0100, 1000},
then both ∼G1 and ∼G2 are Abelian transitive on y.

We apply the above considerations to define a complexity function on infinite words.

More precisely, we consider the category G whose objects are all infinite sequences (Gn)n≥1
where Gn is a subgroup of Sn and Hom((Gn)n≥1, (G

′
n)n≥1) is the collection of all (fn)n≥1 where

fn : Gn → G′n is a group homomorphism. Two elements (Gn)n≥1, (G
′
n)n≥1 ∈ G are said to

be conjugate if there exists (σn)n≥1 with σn ∈ Sn such that G′n = σnGnσ
−1
n for each n ≥ 1,

and isomorphic if there exists (fn)n≥1 ∈ Hom((Gn)n≥1, (G
′
n)n≥1) such that fn : Gn → G′n is

a group isomorphism for each n ≥ 1. Associated with every ω = (Gn)n≥1 ∈ G is a complexity

function pω,x : N→ N which counts for each length n the number of ∼Gn equivalence classes

of factors of length n of an infinite word x.

Theorem 1. Let x ∈ AN be aperiodic. Then for every infinite sequence ω = (Gn)n≥1 ∈ G
we have pω,x(n) ≥ ε(Gn) + 1 for each n ≥ 1. Moreover if pω,x(n) = ε(Gn) + 1 for each n ≥ 1,

then x is Sturmian.

Remark 2.1. In our proof of Theorem 1, we actually show that if x is any infinite word

such that pω,x(n) = ε(Gn) + 1 (for each n ≥ 1) for some infinite sequence ω = (Gn)n≥1 ∈
G, then x is binary and balanced. In other words the assumption that x is aperiodic is

necessary to deduce that x is Sturmian. For instance, the complexity function associated

with the sequence ω = (Sn)n≥1 does not distinguish between the eventually periodic word

01ω = 01111 · · · and any Sturmian word. In both cases the complexity is the constant

function pω,x(n) = 2. On the other hand, in view of the Morse-Hedlund theorem, the factor

complexity distinguishes between these two words. The same is true of cyclic complexity

(see Theorem 2 in [7]).

As an immediate corollary we have:

Corollary 1. An aperiodic word x ∈ AN is Sturmian if and only if there exists a sequence

ω = (Gn)n≥1 ∈ G verifying pω,x(n) = ε(Gn) + 1 for each n ≥ 1.

One direction follows immediately from Theorem 1. For the other implication, if x is

Sturmian, we may take the sequence ω = (Idn)n≥1 ∈ G.
In general it is not true that if x is Sturmian and ω = (Gn)n≥1 ∈ G then pω,x(n) = ε(Gn)+1

for each n ≥ 1. For instance, if we take ω = (Cn)n≥1 ∈ G, where each Cn is the cyclic subgroup

of Sn generated by the n-cycle (1, 2, . . . , n), then ε(Cn) = 1 while pω,x(n) is unbounded (see

Theorem 1 in [7]). On the other hand we show that if x is Sturmian, then there exists a

sequence ω′ = (C ′n)n≥1, where each C ′n is a cyclic subgroup of Sn generated by an n-cycle,

such that pω′,x(n) = 2 for each n ≥ 1 (see Corollary 2). Combined with the fundamental
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theorem of finite abelian groups, we are able to obtain a partial converse to Theorem 1 which

is stronger than the characterisation given in Corollary 1. For this purpose we restrict to

the sub category Gab of all infinite sequences (Gn)n≥1 of Abelian subgroups of Sn.

Theorem 2. Let x be a Sturmian word. Then for each infinite sequence ω = (Gn)n≥1 ∈
Gab of Abelian permutation groups there exists ω′ = (G′n)n≥1 ∈ Gab isomorphic to ω with

pω′,x(n) = ε(G′n) + 1 for each n ≥ 1.

Remark 2.2. Let ω = (Idn)n≥1 ∈ Gab, where Idn denotes the trivial subgroup of Sn
consisting only of the identity. Then ε(Idn) = n for each n ≥ 1. Moreover, for each infinite

word x, we have that pω,x(n) = Card(Factx(n)). Thus applying Theorem 1 to ω we deduce

that every aperiodic word x contains at least n + 1 distinct factors of length n and that if

x has exactly n+ 1 distinct factors of each length n, then x is Sturmian. Conversely, if x is

Sturmian, then Theorem 2 applied to ω implies that x contains exactly n+ 1 distinct factors

of length n. Thus we recover the full Morse-Hedlund theorem. On the opposite extreme,

taking ω = (Sn)n≥1, we get that pω,x is the abelian complexity function. Then applying

Theorem 1 to ω we recover a classical result, namely that the abelian complexity of an

aperiodic word is at least 2.

Before embarking on the proofs of Theorems 1& 2 we review a few key facts concerning

aperiodic words in general and Sturmian words in particular. For all other definitions and

basic notions in combinatorics on words we refer the reader to [20]. A factor u of an infinite

word x ∈ AN is called left special (resp. right special) if there exist distinct symbols a, b ∈ A
such that au and bu (resp. ua and ub) are factors of x. A factor u which is both left and

right special is called bispecial. If x is aperiodic, then x admits at least one left and one

right special factor of each length. Given u and v factors of x with u a prefix of v, we write

u |=x v to mean that each occurrence of u in x is an occurrence of v. Clearly, if u |=x v and

u is both a proper prefix and a proper suffix of v, then x is ultimately periodic.

An infinite word x ∈ AN is said to be balanced if for every pair of factors u and v of x of

equal length we have ||u|a − |v|a| ≤ 1 for every a ∈ A. An infinite word is called Sturmian if

it is aperiodic, binary and balanced. Equivalently, x is Sturmian if x admits precisely n+ 1

distinct factors of each length n. This implies that x admits exactly one left and one right

special factor of each length. Moreover, the set of factors of a Sturmian word is closed under

reversal, i.e., u = u1u2 · · ·un is a factor of x if and only if the reverse of ū = un · · ·u2u1 is a

factor of x (see for instance Chapter 2 in [20]). Thus, the right special factors of a Sturmian

word are precisely the reversals of the left special factors and vice versa. In particular, the

bispecial factors of a Sturmian word, also called central words (see Proposition 10 in [11] and

Theorem 2.2.11 in [20]), are palindromes.

Let x ∈ {0, 1}N be Sturmian and fix n ≥ 1. It follows from the above considerations that

there exists a unique word u of length n − 1 such that both u0 and u1 belong to Factx(n),
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and a unique word v of length n− 1 such that both 0v and 1v belong to Factx(n). In other

words u (resp. v) is the unique right (resp. left) special factor of x of length n− 1. In case

u 6= v, then u is a suffix of a unique factor w of length n and both w0 and w1 belong to

Factx(n+ 1). Moreover, for each other factor z 6= w of length n, let z′ denote the suffix of z

of length n−1. Then as z′ is not right special, it follows that there exists a unique a ∈ {0, 1}
such that z′ |=x z

′a. Hence z |=x za. In other words, in case u 6= v, we have that Factx(n)

uniquely determines Factx(n + 1). On the other hand, in case u = v (i.e., u is a bispecial

factor of x of length n − 1), then each of u0, u1, 0u, 1u belong to Factx(n). In this case,

exactly one of the following two cases occurs: Either 0u is right special, in which case by the

balance property we must have 1u |=x 1u0, or 1u is right special, in which case 0u |=x 0u1.

Moreover, each of these two cases is possible, meaning that there exists a Sturmian word x′

whose factors agree with those of x up to length n and differ at length n + 1 : One admits

the factor 0u0 and the other 1u1.

Given a factor u of a Sturmian word x ∈ {0, 1}N and a ∈ {0, 1}, we say that u is rich in

a if |u|a ≥ |v|a for all factors v of x of length equal to that of u.

Proof of Theorem 1. We will make use of the following lemma:

Lemma 2.3. Let E1, E2, . . . , Ek be a partition of {1, 2, . . . , n} ordered so that i < j ⇒
maxEi < maxEj. For each 1 ≤ j ≤ k, let ∼j denote the equivalence relation on An defined

by u ∼j v if and only if u|Ei
∼ab v|Ei

for each 1 ≤ i ≤ j. Then for each aperiodic word

x ∈ AN and for each 1 ≤ j ≤ k we have Card(Factx(n)/ ∼j) ≥ j + 1.

Proof. Let x ∈ AN be aperiodic. We will show that Card(Factx(n)/ ∼1) ≥ 2 and that

Card(Factx(n)/ ∼j+1) ≥ Card(Factx(n)/ ∼j) + 1

for each 1 ≤ j ≤ k − 1. Let mi = maxEi. Since x is aperiodic, x contains at least one

right special factor of each length. In particular, there exists u ∈ A∗, with |u| = m1 − 1,

and distinct letters a, b ∈ A such that ua and ub are factors of x. Let U, V ∈ Factx(n) with

ua a prefix of U and ub a prefix of V. As ua �ab ub and |ua| = |ub| = m1 ∈ E1, we have

U |E1 �ab V |E1 , whence U �1 V. Thus Card(Factx(n)/ ∼1) ≥ 2. Next fix 1 ≤ j ≤ k − 1. We

will show the existence of two factors U and V of length n such that U ∼j V and U �j+1 V.

As above, since x is aperiodic, there exists u ∈ A+, with |u| = mj+1 − 1, and distinct letters

a, b ∈ A such that ua and ub are factors of x. Let U, V ∈ Factx(n) with ua a prefix of U and

ub a prefix of V. Then for each 1 ≤ i ≤ j we have U |Ei
= u|Ei

= V |Ei
and hence U ∼j V. On

the other hand, as before, since ua �ab ub and |ua| = mj+1, we have U �j+1 V.

Fix n ≥ 1, and put G = Gn and ε(G) = k. We will show that if x ∈ AN is aperiodic,

then Card(Factx(n)/ ∼G) ≥ k + 1. Let E1, E2, . . . , Ek denote the full set of G-orbits of

{1, 2, . . . , n}. Then E1, E2, . . . , Ek is a partition of {1, 2, . . . , n} and we can order these sets
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so that i < j ⇒ maxEi < maxEj. For 1 ≤ j ≤ k let ∼j denote the equivalence relation

on Factx(n) defined in the previous lemma. Then for all u, v ∈ Factx(n) we have u ∼G v

implies u ∼k v. Thus

Card(Factx(n)/ ∼G) ≥ Card(Factx(n)/ ∼k) ≥ k + 1 = ε(G) + 1

as required. This concludes our proof of the first statement of Theorem 1.

Next suppose that pω,x(n) = ε(Gn) + 1 for each n ≥ 1. We will show that x is binary

and balanced. Since x is already assumed aperiodic, it will follow that x is Sturmian. Since

ε(G1) = 1, and hence pω,x(1) = 2, it follows that x is on a binary alphabet which we can

take to be {0, 1}.

Lemma 2.4. Let x ∈ {0, 1}N be aperiodic. Then either x is Sturmian or there exist an integer

n ≥ 2, a Sturmian word y and a bispecial factor u ∈ {0, 1}n−2 of y such that Factx(n) =

Facty(n) ∪ {0u0, 1u1}.

Proof. Suppose x is not Sturmian. Let n be the least positive integer such that for all

Sturmian words z we have Factx(n) 6= Factz(n). As x is binary, n ≥ 2. By minimality of n

there exists a Sturmian word y such that Factx(n− 1) = Facty(n− 1). We claim that there

exists a factor u ∈ Factx(n − 2) = Facty(n − 2) which is bispecial in both x and y. In fact,

let u be the unique right special factor of x and y of length n − 2. If u is not left special,

then there exists a unique factor v ∈ Factx(n−1) = Facty(n−1) ending in u, and this factor

would necessarily be right special in both x and y. Moreover all other factors of x and y of

length n − 1 admit a unique extension to a factor of length n determined by their suffix of

length n− 2. Hence we would have Factx(n) = Facty(n) contrary to the choice of n. Thus u

is also left special (in both x and y) and hence bispecial.

Since x is aperiodic, at least one of 0u or 1u is right special in x. Without loss of generality

we may assume 0u is right special. We now claim that 1u must also be right special. In fact,

suppose to the contrary that 1u |=x 1ua for some a ∈ {0, 1}. If a = 0, then Factx(n) would

coincide with the set of factors of length n of some Sturmian word, contrary to our choice of

n. Thus a = 1. We will show that this implies that x is ultimately periodic, and hence gives

rise to a contradiction. We consider two cases: First suppose no non-empty prefix of 1u is

right special; in this case 1 |=x 1u |=x 1u1 whence x is ultimately periodic. Thus we may

assume that some prefix 1v of 1u is right special. Consider the longest such right special

prefix 1v. Since we are assuming that 1u is not right special, it follows that vb is a prefix of

u for some b ∈ {0, 1}. Since vb is left special (as vb is a prefix of u), and since 1v is right

special, we deduce that vb is equal to the reverse of 1v from which it follows that b = 1.

Thus as 1v is a suffix of u (because 1v and u are both right special), we have that 1v1 is a

proper suffix of 1u1. Now since 1v1 |=x 1u |=x 1u1, it follows that x is ultimately periodic.

Thus we have shown that both 0u and 1u are right special. Since in y exactly one of 0u and

1u is right special, the result follows.
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Returning to the proof of Theorem 1, let us suppose that pω,x(n) = ε(Gn)+1 for each n ≥
1 and that x is not Sturmian. By the previous lemma there exist an integer n ≥ 2, a Sturmian

word y and a bispecial factor u ∈ {0, 1}n−2 of y such that Factx(n) = Facty(n)∪ {0u0, 1u1}.
Since y is Sturmian, exactly one of 0u0 and 1u1 is a factor of y. Thus by the first part of

Theorem 1 applied to the aperiodic word y, we deduce that pω,x(n) ≥ pω,y(n)+1 ≥ ε(Gn)+2,

a contradiction. This concludes our proof of Theorem 1.

We next establish various lemmas leading up to the proof of Theorem 2. As is well known,

every finite Abelian group G can be written multiplicatively as a direct product of cyclic

groups Z/m1Z × Z/m2Z × · · · × Z/mkZ where the mi are prime powers. The unordered

sequence (m1,m2, . . . ,mk) completely determines G up to isomorphism and any symmetric

function of the mi is an isomorphic invariant of G. We consider the trace of G given by

T (G) = m1 +m2 + · · ·+mk, and recall the following result from [14].

Proposition 2.5. If an Abelian group G is embedded in Sn, then T (G) ≤ n.

A partition {E1, E2, . . . , Ek} of {1, 2, . . . , n} is called an interval partition if for each

1 ≤ r < s ≤ n, we have r, s ∈ Ei ⇒ t ∈ Ei for all r ≤ t ≤ s.

Lemma 2.6. Let {E1, E2, . . . , Ek} be an interval partition of {1, 2, . . . , n} ordered so that

i < j ⇒ maxEi < maxEj. For each 1 ≤ j ≤ k, let ∼j denote the equivalence relation on

An defined by u ∼j v if and only if u|Ei
∼ab v|Ei

for each 1 ≤ i ≤ j. Then for each Sturmian

word x ∈ {0, 1}N we have Card(Factx(n)/ ∼j) = j + 1 for each 1 ≤ j ≤ k.

Proof. Let x ∈ {0, 1}N be a Sturmian word. In view of Lemma 2.3 it suffices to show that

Card(Factx(n)/ ∼j) ≤ j + 1 for each 1 ≤ j ≤ k. Since x is Sturmian, there are exactly two

Abelian classes of factors of x of each length, thus Card(Factx(n)/ ∼1) = 2. It also follows

from this that for 1 ≤ j ≤ k − 1, each ∼j class splits into at most two ∼j+1 classes. So

it suffices to show that for each 1 ≤ j ≤ k − 1, at most one ∼j class splits under ∼j+1 .

So fix 1 ≤ j ≤ k − 1, and suppose to the contrary that two distinct ∼j classes split under

∼j+1 . Then, there exist u, u′, v, v′ ∈ Factx(n) such that u ∼j u′, v ∼j v′, u �j v, u �j+1 u
′

and v �j+1 v
′. Exchanging if necessary u and u′ and/or v and v′, we may assume u|Ej+1

and v|Ej+1
are rich in 0 while u′|Ej+1

and v′|Ej+1
are rich in 1. Since u �j v, there exists a

largest integer 1 ≤ i ≤ j such that u|Ei
�ab v|Ei

. Exchanging if necessary u and v and u′

and v′, we may assume that u|Ei
is rich in 0 and v|Ei

is rich in 1. Since v|Ei
∼ab v′|Ei

, we

have that u|Ei∪···∪Ej+1
has two more occurrences of 0 than v′|Ei∪···∪Ej+1

, contradicting that x

is balanced.

In the next lemma we consider a discrete 3-interval exchange transformation (a, b, c)

defined on the set {1, 2, . . . , n} (where n = a + b + c) in which the numbers 1, 2, . . . , n are
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divided into three subintervals of length a, b and c respectively which are then rearranged in

the order c, b, a. In other words

1, 2, . . . , n 7→ c+ b+ 1, c+ b+ 2, . . . , n, c+ 1, c+ 2, . . . , c+ b, 1, 2, . . . , c.

This bijection is also called an abc-permutation in [23]. We also include here the degenerate

case in which one of a, b or c equals 0. The following lemma asserts that for each Sturmian

word x and for each positive integer m, there exists an m-cycle corresponding to a discrete

3-interval exchange transformation which identifies all factors of x of length m belonging to

the same Abelian class.

Lemma 2.7. Let x ∈ {0, 1}N be a Sturmian word. Then for each positive integer m there

exists a discrete 3-interval exchange transformation (a, b, c) on {1, 2, . . . ,m} given by an

m-cycle σ such that ∼〈σ〉 is Abelian transitive on x.

Proof. The result is immediate in case m = 1, 2, or 3. In fact, in this case we may take

σ = id, (1, 2), or (1, 2, 3) respectively. Thus we assume m ≥ 4. Let w and w′ be two

consecutive (in length) bispecial factors of x such that |w′| + 2 < m ≤ |w| + 2. Let r and

s denote the number of occurrences of 1 and 0 in 0w1, i.e., r = |0w1|1, s = |0w1|0, so that

r+s = |w|+2. It is known that r and s are coprime (see Proposition 2.1 in [4] or Proposition

2.1 in [5]). Set p = r−1 mod (r + s) and q = s−1 mod (r + s). Then it is readily verified that

p + q = r + s. It is shown that p and q are coprime periods of the central Sturmian word

w (see Lemma 4 in [10] or Theorem 2.2.11 and Proposition 2.2.12 in [20]). Set a = m − q,
b = p + q −m, c = m − p and let σ ∈ Sm denote the corresponding abc-permutation. We

note that |w′| + 2 = max{p, q} (see Lemma 4 in [10] or Corollary 2.2.10 in [20]), whence a

and c are both positive while b ≥ 0. Since gcd(a + b, b + c) = gcd(p, q) = 1, it follows from

Lemma 1 of [23] that σ is an m-cycle.

Now let u and v be two lexicographically consecutive factors of x of length m with

u < v. Assume further that u and v are in the same Abelian class. We will show that

v = σ ∗ u. We consider the lexicographic Christoffel array Cr,s in which the cyclic conjugates

of 0w1 are ordered lexicographically in a rectangular array (see [18]). For instance, if w =

010010, the corresponding Christoffel array C3,5 is shown in Figure 1. Let U and V be two

lexicographically consecutive factors of x of length |w|+2 with u a prefix of U and v a prefix

of V. We recall that U and V differ in exactly two consecutive positions, more precisely we can

write U = X01Y and V = X10Y for some X, Y ∈ {0, 1}∗ (see Corollary 5.1 in [6]). Writing

U = ABCB′ where |A| = a, |B| = |B′| = b and |C| = c, by Theorem C in [18] we have that

V = CB′AB. Since u and v are distinct and belong to the same Abelian class, we have that

X01 is a prefix of u = ABC which in turn implies that B = B′. Whence U = ABCB and

V = CBAB and hence u = ABC and v = CBA and v = σ ∗ u as required.

As an immediate consequence of Lemma 2.7 we have
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C3,5 =



0 0 1 0 0 1 0 1

0 0 1 0 1 0 0 1

0 1 0 0 1 0 0 1

0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0

1 0 0 1 0 1 0 0

1 0 1 0 0 1 0 0


Figure 1: The Christoffel array C3,5.

Corollary 2. Let x ∈ {0, 1}N be a Sturmian word. Then for each positive integer n there

exists a cyclic group Gn generated by an n-cycle such that Card(Factx(n)/ ∼Gn) = 2.

In contrast, if we set Gn = 〈(1, 2, . . . , n)〉, then lim supn→∞Card(Factx(n)/ ∼Gn) = +∞ (see

Theorem 1 of [7]), while lim infn→∞Card(Factx(n)/ ∼Gn) = 2 (see Lemma 9 of [7]).

As another consequence of Lemma 2.7 we have:

Lemma 2.8. Let x ∈ {0, 1}N be a Sturmian word. Let {E1, E2, . . . , Ek} be an interval

partition of {1, 2, . . . , n}, and put mi = Card(Ei). For each 1 ≤ i ≤ k, there exists an mi-

cycle σi = (a1, a2, . . . , ami
) such that Ei = {a1, a2, . . . , ami

} and, if G denotes the subgroup

of Sn generated by σ1, σ2, . . . , σk, then for all factors u, v ∈ Factx(n) we have u ∼G v if and

only if u|Ei
∼ab v|Ei

for each 1 ≤ i ≤ k.

Proof. By Lemma 2.7 we know that, for each i there exists a cycle σi = (a1, a2, . . . , ami
)

with Ei = {a1, a2, . . . , ami
}, such that for all factors u, v ∈ Factx(n) we have u|Ei

∼〈σi〉 v|Ei

if and only if u|Ei
∼ab v|Ei

. In fact, {u|Ei
: u ∈ Factx(n)} = Factx(mi). Moreover as the sets

Ei are pairwise disjoint, the cycles σi are also pairwise disjoint. Hence the σi commute with

one another. Thus, given u, v ∈ Factx(n), if u ∼G v, then there exists g = σr11 · · · σ
rk
k ∈ G

such that v = g ∗ u. However, for each 1 ≤ i ≤ k we have (g ∗ u)|Ei
= (σrii ∗ u)|Ei

, hence

u|Ei
∼ab v|Ei

. Conversely if u|Ei
∼ab v|Ei

for each 1 ≤ i ≤ k, there exists ri such that

v|Ei
= (σrii ∗ u)|Ei

. Hence setting g = σr11 · · ·σ
rk
k ∈ G we have v = g ∗ u.

We now prove Theorem 2.

Proof of Theorem 2. Let x ∈ {0, 1}N be a Sturmian word and let (Gn)n≥1 be a sequence

of Abelian permutation groups. We show that for each n ≥ 1 there exists a permutation

group G′n ⊆ Sn isomorphic to Gn such that Card(Factx(n)/ ∼G′n) = ε(G′n) + 1. Fix n ≥ 1

and put G = Gn. By the fundamental theorem of finite Abelian groups, G is isomorphic

to a direct product Z/m1Z × Z/m2Z × · · · × Z/mkZ where the mi are prime powers. Let
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m = T (G) = m1 +m2 + · · ·+mk. By Proposition 2.5 we have m ≤ n. Thus, short of adding

additional copies of the trivial cyclic group Z/1Z or order 1, we may assume that T (G) = n.

Let E1 = {1, 2, . . . ,m1}, E2 = {m1 + 1, . . . ,m1 +m2}, . . . , Ek = {m1 + · · ·mk−1 + 1, . . . , n}.
Then {E1, E2, . . . , Ek} is an interval partition of {1, 2, . . . , n}. Pick cycles σ1, σ2, . . . , σk as in

Lemma 2.8. Then the σi are pairwise disjoint (and hence commute with one another) and

each σi is of order mi. Hence, the subgroup G′ of Sn generated by σ1, σ2, . . . , σk is isomorphic

to G. Moreover, E1, E2, . . . , Ek is the full set of G′-orbits of {1, 2, . . . n} whence ε(G′) = k.

Also by Lemma 2.8, for all u, v ∈ Factx(n) we have that u ∼G′ v if and only if u|Ei
∼ab v|Ei

for

each 1 ≤ i ≤ k. Thus the equivalence relation ∼G′ on Factx(n) coincides with the equivalence

relation ∼k given in Lemma 2.6. Thus by Lemma 2.6 we deduce that

Card(Factx(n)/ ∼G′) = Card(Factx(n)/ ∼k) = k + 1 = ε(G′) + 1

as required. This concludes our proof of Theorem 2.

As an immediate consequence of Theorem 2 and Cayley’s theorem we have

Corollary 3. Let G be an Abelian group of order n. Then for every Sturmian word x there

exists a permutation group G′ ⊆ Sn isomorphic to G such that Card(Factx(n)/ ∼G′) =

ε(G′) + 1.

The following example illustrates that in Theorem 2, we cannot replace “isomorphic” by

“conjugate”. Let G be the cyclic subgroup of order 3 of S6 generated by the permutation

σ = (1, 2, 3)(4, 5, 6). Then ε(G) = 2. We will show that if x is the Fibonacci word, then

Card (Factx(6)/ ∼G′) ≥ 4

for each subgroup G′ of S6 conjugate to G. To see this, let G′ ⊆ S6 be generated by the

permutation (a, b, c)(d, e, f) where {a, b, c, d, e, f} = {1, 2, 3, 4, 5, 6}. We claim that 100101

and 101001 belong to distinct equivalence classes under the action of G′ on {0, 1}6. In fact,

suppose to the contrary that g ∗ 100101 = 101001 for some g ∈ G′. Then g({1, 4, 6}) =

{1, 3, 6} and g({2, 3, 5}) = {2, 4, 5}. We claim that either g(4) = 3 or g(3) = 4. Otherwise,

g : 4 7→ x 7→ y where {x, y} = {1, 6}. But 4 /∈ g({1, 6}). Thus without loss of generality we

can assume g(4) = 3. This means that g({1, 6}) = {1, 6}, whence g2(1) = 1, which implies

that g2 = id, a contradiction. Having established the claim, consider the induced equivalence

relation ∼G′ on the factors of length 6 of the Fibonacci word. One Abelian class is of size five

{001001, 001010, 010010, 010100, 100100} and the other of size two {100101, 101001}. Since

|G′| = 3, there must be at least two distinct equivalence classes in the first Abelian class,

and following the claim, two equivalence classes in the second. Thus at least 4 equivalence

classes combined.

On the other hand:
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Corollary 4. Let σ ∈ Sn and G = 〈σ〉. Writing σ = σ1 · · ·σk as a product of disjoint cycles,

suppose |σ1|, . . . , |σk| are pairwise relatively prime. Then for every Sturmian word x there

exists G′ ⊆ Sn conjugate to G such that Card (Factx(n)/ ∼G′) = ε(G) + 1.

Proof. Since |σ1|, . . . , |σk| are pairwise relatively prime, we have G = 〈σ1, σ2, . . . σk〉. Adding

if necessary additional σi of the form σi = (a), we may assume that
∑k

i=1 |σi| = n. Let

{E1, E2, . . . , Ek} be an interval partition of {1, 2, . . . , n} such that Card(Ei) = |σi|. By

Lemma 2.8, there exist disjoint cycles σ′1, σ
′
2, . . . , σ

′
k such that |σi| = |σ′i| and, if G′ denotes

the subgroup of Sn generated by σ′1, σ
′
2, . . . , σ

′
k, then for all factors u, v ∈ Factx(n) we have

u ∼′G v if and only if u|Ei
∼ab v|Ei

for each 1 ≤ i ≤ k. Thus G and G′ are conjugate in Sn,

and by Lemma 2.6 we have

Card(Factx(n)/ ∼G′) = Card(Factx(n)/ ∼k) = k + 1 = ε(G′) + 1 = ε(G) + 1.

3. Further generalities and open questions

A first natural question, to which we do not know the answer, is whether Theorem 2

extends to sequences ω = (Gn)n≥1 ∈ G in which the groups Gn are not necessarily Abelian.

Our proof uses in an essential way that each Gn is a direct product of cyclic subgroups.

A second natural question concerns using this general framework to distinguish between

two infinite words x and x′ whose sets of factors are not word isomorphic. In general,

each choice of ω = (Gn)n≥1 ∈ G defines a unique complexity function which reflects some

combinatorial property of a given infinite word. For instance, an infinite word x has bounded

Abelian complexity if and only if x is k-balanced for some positive integer k (see Lemma 3

in [24]). In contrast, an infinite word x has bounded cyclic complexity if and only if x is

ultimately periodic (see Theorem 1 in [7]). Given an infinite word x = x1x2x3 · · · ∈ AN, let

Alph(x) = {xn : n ≥ 1} ⊆ A. We say that two infinite words x and x′ are factor isomorphic

if there exists a bijection τ : Alph(x′) → Alph(x) such that x and τ(x′) have exactly the

same set of factors. Then given two non-factor isomorphic infinite words x and x′, does there

exist a sequence ω = (Gn)n≥1 ∈ G of permutation groups which distinguishes them, i.e., for

which pω,x(n) 6= pω,x′(n) for some n ≥ 1 ?

This question has an affirmative answer if one of the two words is Sturmian. In fact, The-

orem 2 in [7] states that if x is Sturmian and x′ is any infinite word whose cyclic complexity

is equal to that of x, then up to renaming letters, x and x′ have the same set of factors,

i.e., are both Sturmian with the same slope. Thus each Sturmian subshift is completely

characterised by the cyclic complexity of its set of factors.

Another instance in which this question admits an affirmative answer is in case x belongs

to the subshift generated by the Thue-Morse infinite word t = 011010011001011010010 · · ·
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where the nth term of t (starting from n = 0) is defined as the sum modulo 2 of the digits

in the binary expansion of n (see [26]). It is shown in [1] that if x′ has the same factor

complexity of the Thue-Morse infinite word, then either x′ is in the subshift generated by

t or in that generated by σ(t) where σ is the letter doubling morphism 0 7→ 00, 1 7→ 11.

However, if x′ belongs to the subshift generated by σ(t) then x′ would contain the four

factors 111, 110, 011, 000 and hence the Abelian complexity of x and x′ (for n = 3) would

differ.

Let ρ = 00100110001101100010011100 · · · be the regular paperfolding word given by the

sequence of ridges and valleys obtained by unfolding a sheet of paper which has been folded

in half infinitely many times in the same direction [2]. As in the case of the Thue-Morse

word, ρ is a 2-automatic sequence. However, the paperfolding word is arbitrarily unbalanced

while the Thue-Morse word is 2-balanced. Thus the Abelian complexity of ρ is unbounded

while the Abelian complexity of t is bounded. As another example, consider the period

doubling word x = 01000101010001 · · · defined as the fixed point of the morphism 0 7→ 01,

1 7→ 00. Being a fixed point of a 2-uniform morphism, it is also 2-automatic. However, the

limit infimum of the cyclic complexity of the period doubling word is equal to 2 (Example 1

in [7]) while for the Thue-Morse word it is unbounded (Proposition 23 in [7]).

It is likely that the subshift generated by t is completely characterised by the cyclic com-

plexity, although we do not know how to show this. However, cyclic complexity alone does

not in general distinguish between non-factor isomorphic words. For example, consider the

periodic words x = τ((010011)ω) and x′ = τ((101100)ω) where τ is the morphism: 0 7→ 010,

1 7→ 011. Then x and x′ are not factor isomorphic yet have the same cyclic complexity. In

fact, it is readily checked that x and x′ have the same cyclic complexity up to n ≤ 17. Since

both words have period 18, it follows that the cyclic complexities of x and x′ agree for all n.

Acknowledgments: We are very grateful to the two anonymous reviewers of the manuscript
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References

[1] A. Aberkane, S. Brlek, Suites de même complexité que celle de Thue–Morse, in Actes des
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