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ABSTRACT

Operational Modal Analysis is widely gaining popularity as a
means to perform system identification of a structure. Instead
of using a detailed experimental setup Operational Modal
Analysis relies on measurement of ambient displacements to
identify the system. Due to the random nature of ambient ex-
citations and their output responses, various statistical meth-
ods have been developed throughout the literature both in the
time-domain and the frequency-domain. The most popular
of these algorithms rely on the assumption that the structure
can be modelled as a multi degree of freedom second order
differential system. In this paper we drop the second order
differential assumption and treat the identification problem as
a curve-fitting problem, by fitting a Gaussian Mixture Model
in the frequency domain. We further derive equivalent mod-
els for the covariance-driven and the data-driven algorithms.
Moreover, we introduce a model comparison criterion to au-
tomatically choose the optimum number of Gaussian’s. Later
the algorithm is used to predict modal frequencies on a simu-
lated problem.

NOMENCLATURE
[M] Mass Matrix
[C] Damping Matrix
K] Stiffness Matrix
{z(t)}  Displacement vector at time t
{f()} Force vector at time t
k(T) Auto-correlation function at time-lag =
S(s) Spectral Density at s
GP Gaussian Process
Q Number Of Gaussian’s
GMM  Gaussian Mixture Model
OMA  Operational Modal Analysis
BIC Bayesian Information Criterion
MLE  Maximum Likelihood Estimate
k Number Of free parameters in an algorithm
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1 INTRODUCTION

Modal analysis has been widely used as a means of identify-
ing dynamic properties such as modal frequencies, damping
ratios and mode shapes of a structural system. Traditionally,
the system is subjected to artificial input excitations and output
deformations (displacements, velocities or accelerations) are
measured. These later help in identifying the modal parame-
ters of the system, this process is called Experimental Modal
Analysis (EMA). In the last few decades several algorithms pri-
marily using the assumption of second order differential, Multi
Degree Of Freedom (MDOF) system (equation 1) have been

developed to find modal parameters in EMA (11 (2],

MI{E(t)} + [CHE®)} + [KH{z(@)} = {f(O)} (1)

Here, [M], [C] and [K] denote the mass, damping and stiff-
ness matrices respectively. While, {z(¢)} and {f(¢)} denote
the displacement and force vectors at the time ¢.

Since the last decade Operational Modal Analysis (OMA) has
gained considerable interest in the community. OMA identi-
fies the modal parameters only from the output measurements
while assuming ambient excitations as random noise. OMA is
cheaper because it does not require expensive experimental
setup and and can be used in real time operational use cases
such as health monitoring ¥ 41 1 Several algorithms in
OMA can be seen as extensions of EMA algorithms based on
the similar assumption of second order MDOF system.

In this paper we approach the problem of finding modal pa-
rameters as a problem of curve fitting. We drop the assump-
tion of second order differential MDOF system and use a
Gaussian Mixture Model (GMM) © 7] 1o fit the spectral den-
sity. Moreover we introduce a criteria called Bayesian Informa-
tion criteria (BIC) which performs a trade-off on the accuracy
of the fit and complexity of the model to estimate the modal
order 181 191 1101,

The remaining paper proceeds as follows, section 2 gives an
overview of the traditional operational modal analysis. Sec-
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Figure 1: Different types of measurements for estimation of Modal parameters in OMA

tion 3 details the changes made to current algorithms and in-
troduces the BIC. Section 4 demonstrates the capabilities of
the algorithm on a simulated dataset and finally section 5 con-
cludes the paper with future outlook.

2 OPERATIONAL MODAL ANALYSIS

As stated earlier the operational modal analysis is an output
dependent modal identification technique. The only thing re-
quired is the measurement from the accelerometers placed on
the structure. Figure 1(a) shows an example of ambient mea-
surements x(¢) on a structure. In almost all OMA algorithms
the measurement z(t) is assumed to be generated from a ran-
dom force excitation.

The following subsections describe the various time-domain
subsection 2.1 and frequency-domain algorithms subsection
2.2 for performing OMA.

2.1 Time-domain OMA

In the time-domain a general auto-regression moving average

(ARMA) model can be applied to the measurement x(t) (111,
Here, the modal parameters can be computed from the coef-

ficients of polynomials in ARMA models |12,

If we assume that a second order differential (equation 1) com-
pletely describes the system dynamics. Then Natural Excita-

tion Technique 13) proves that the auto-correlation function
k() in equation 2 can be written as sum of decaying sinu-
soid’s as described by equation 3. The auto-correlation de-
scribes the similarity between measurement as a function of
time lag 7 between them figure 1(b).

k(r) = /m(t)ac(t —7)dt 2

Here, k(1) denotes the auto-correlation for random vector z(t)
as a function of time lag 7.

k(r) = ZAiemp(—)\iT)sin(BiT) 3)

Here, \; and A; denotes the modal frequency and mode
shapes for the i*"* mode. The above coefficients are found by
minimizing the least square error between the measured k()
from equation 2 and the predicted k() from equation 3. This
process is very similar to the Least Square Complex Exponen-
tial (LSCE) (14 (191 1] aigorithm developed for time-domain
EMA.

2.2 Frequency-domain OMA

If we assume the measurement z(t) to be a stationary ran-

dom process, then according to bochner’s theorem (16 the
spectral density or power spectrum S(s) can be represented
as equation 4.

S(s) = /k(T)e,CEp(727T7;STT)dT (4)

Here, S(s) is the power spectrum for the measurement (%),
where s lies in the frequency-damping plane. Figure 1(c)
shows the power spectrum calculated for the measurement
z(t) shown in figure 1(a).

Initially the Peak Picking technique (PP) 17 was used in the
frequency-domain to identify modal frequencies and shapes.
The PP technique is a very easy way to identify modes but
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Assumption: Gaussian Mixture Mode

x(t) = GP(0, covsn)

k() = S wicos(2muit)exp{—2n%c31?} | S(s) = Zwi\/ﬁe:ﬂp{%(s — 1:)?}

TABLE 1: Comparison of fitting functions

becomes inefficient for complex structures 181 This gave rise
to the Frequency Domain Decomposition (FDD) (19 where
modal frequency are denoted as the eigenvalues of spectral
density matrix equation 5.

S(jw) = Uz (5)

Here, modal frequencies and mode shapes can be derived

from 3 and U respectively using FDD (19! or Enhanced-FDD
(20]

Majority of frequency-domain algorithms in EMA fit a Rational
Fractional Polynomial (RFP) 2 in the frequency domain for
modal identification 211 22, The Rational Fractional Polyno-

mial equation 6 form can be derived if we assume the system
to be second order differential equation 1.

Here, the poles of the polynomial denote the modal frequen-
cies, while other modal parameters can be derived from the
coefficients ax and b;. The coefficients of the polynomial can
be found by minimizing the least squared error. RFP based
algorithms face problems since as the number of modes in-
crease the matrix becomes ill-conditioned which gives rise to
stability issues in prediction of modal parameters. In the next
section we will drop the assumption of second order differ-
ential system and treat the modal identification as a purely
curve-fitting problem.

3 GAUSSIAN MIXTURE MODELS (GMM)

Two of the above mentioned OMA algorithms "Natural Exci-
tation Technique” in the time domain and "Rational Fractional
Polynomial” in the frequency domain, have a core assumption

of second order differential system. This assumption fails for
non-linear systems and for cases where modal frequencies
are very close. In the following section we propose to use
Gaussian Mixture Models to fit the power spectrum curve.

Scale location mixtures of Gaussian’s can approximate a
curve to arbitrary precision with enough components 23] pue
to the above property GMM'’s are widely used in machine
learning tasks such as speech recognition [24], financial mod-
elling (2%, handwriting recognition 26 and many more.

Due to the formulation of GMM, the mean, standard deviation
and weight information of the gaussian’s can be used to derive
the modal frequency, damping and mode shape of the system
respectively. For a positive half power spectrum the GMM will
be equivalent to equation 7.

Q
S(s) = S wi——seap{y (s — )} (7)

\ 2mo;

Here, u;, o, and w; are the mean, standard deviation and
weight respectively of the i*" gaussian. While, Q denotes
the number of gaussians used in the GMM. The mean, stan-
dard deviation and weight can be found by minimizing the
least square error between measured power spectrum and
predicted power spectrum S(s). The method to estimate @
will be explained in more detail in subsection 3.1.

The GMM model in the frequency-domain can be transformed
to perform covariance-driven modal identification using the
equation 4. If we assume z(t) to be a stationary random
process then using to equation 7 and equation 4 we can get

equation 8 in the time domain (277,

Q
k(T) = ZwiCOS(Qﬂ-ILLiT)e:Cp{72ﬂ'2Ui2T2 (8)

K3

Here, u;, o, and w,; are the mean, standard deviation and



weight respectively of the " gaussian. While, Q denotes the
number of gaussians used in the GMM, 7 is the time lag be-
tween two measurement instances. The parameters can be
found by minimizing the least squared error.

Moreover, if we assume that z(t) is a zero-mean gaussian
process, then we can transform GMM in frequency-domain to
time-domain. The equation 7 and equation 8 are equivalent to
fitting a zero-mean gaussian process with a spectral mixture

covariance function (28!,

x(t) = GP(0, covsa (t,t)) (9)

Here, GP denotes a gaussian process [29], while covsr rep-
resents a spectral mixture covariance function which resem-

bles equation 8 (281,

We would like to emphasize that keeping the computational
complexities aside, fitting a spectral mixture gaussian process
in time-domain equation 7, fitting equation 8 for covariance-
driven modal identification and fitting a GMM equation 7 in the
frequency-domain are equivalent. In fact the initial idea of this
paper was to fit a Gaussian Process (GP) in the data domain,
but GP’s are computationally heavy and we achieved a good
accuracy by fitting the GMM in frequency domain. Refer to
table 1 for a more comprehensive view at various fitting func-
tions.

3.1 Bayesian Information Criteria (BIC)

While the modal parameters can be chosen by minimizing the
least square error, how to choose the number of modes is a
recurring question in several OMA algorithms. This problem
is partially resolved by using stabilization diagrams or mode
identification functions 211 801 811 Byt in practical situa-
tions engineering judgement is required to estimate the opti-
mal modal order.

Here, we use the Bayesian Information Criteria (BIC) (32
which penalises more complex models to estimate the param-
eter @ in equation 7. It has been shown earlier that the BIC
when applied to GMM’s does not underestimate the true num-

ber of components (33,

BIC(Q) = nIn(MLE) + kln(n) (10)

Here, n denotes the number of data-points to fit, M LE de-
notes the maximum likelihood estimation of the fit and & de-
note the number of free parameters to fit. The BIC per-
forms a trade-off between the data-fit term nIn(MLE) and
the complexity penalty term k1In(n), basically penalizing for
over-fitting. Lowest value of BIC is preferred.

4 RESULTS

In this section we conduct experiments, applying our approach
on a simple 3 degree of freedom system with close by modes.
As stated earlier in section 3 we fit a Gaussian Mixture Model
(GMM) on the spectral density. Later we will compare the
Bayesian Information Criteria to find the optimal value of num-
ber of gaussians for the measurement.

The toolbox used for this paper is Matlab’s Curve Fitting Tool-

box 34, All experiments were performed on an Intel quad-
core processor with 4Gb RAM. Using the curve fitting toolbox
the fitting can be performed by a few lines of code. When com-
pared to other frequency-domain techniques like RFP which
suffer from ill-conditioned matrices, the GMM technique is
highly stable and finds the coefficient’s in seconds.

Figure 2(a) shows the stabilization diagram with increasing
number of gaussians Q. We can observe that as the num-
ber of @ increases the algorithm starts finding better and bet-
ter modes. We can also observe that there are three modes
which start stabilizing from @ = 5. The, figure 2(b) shows the
BIC criterion with increasing number of gaussian’s Q. We can
see that that the BIC is minimum for Q = 6 and hence if we
add anymore gaussian’s for our dataset we will be performing
over-fitting.

Figure 2(c) shows the 6 constituent gaussians which repre-
sent the Q = 6 case. The three principal peaks represent
the modal frequencies of the system, these correspond to the
stabilized frequencies from figure 2(a). The remaining three
peaks are there to compensate for the spectral density not
explained by the three principal peaks.

In the current setting of the GMM model we only propose a
quick and easy way to identify the most important frequen-
cies of a structural system. Neither the mode shapes nor the
damping ratios are estimated in the current format. As can
be observed from figure 2(c) the mode shapes are not only
dependent on the principal gaussian’s but also on the neigh-
bouring gaussian’s. Since some part of the spectral density is
defined by non-stabilized gaussian’s, in future we would like
to derive a method to estimate mode-shape and damping ra-
tio such that the contributions of neighbouring gaussian’s are
also taken into account.

5 CONCLUSION

In this paper we have proposed to identify model frequen-
cies of a system by curve-fitting a mixture of gaussians in the
frequency domain. While the common assumption that the
structure can be modelled as a MDOF second order differen-
tial system causes stability issues in presence of non-linear
systems. The GMM model is mathematically stable, gives re-
sults in seconds and can fit a function upto arbitrary accuracy.
Moreover we introduce the BIC to identify the optimum num-
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ber of gaussians and perform a trade-off between accuracy of
fit and over-fitting.

Without doubt this is very nascent stage of application of GMM
for system identification and there remains problems such as
identification of mode-shape and damping ratio in this algo-
rithm. We wish to tackle these problems in the future. We
also wish to apply the algorithm on a real world dataset and
compare with respect to other time domain and frequency do-
main techniques.
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